Plop 2.10 An m-dim submanifold $M \subset \mathbb{R}^{m+1}$ is oreatable it \exists cout. unit nomal rector field $N: M \rightarrow \mathbb{S}^{m}$ (i.e. $N(p) \in T_{p}^{\frac{1}{p}} \forall p \in M$) Pf. $\Leftrightarrow M$ oviedtble $\Leftrightarrow \exists\left\{f_{\alpha}: U_{\alpha} \neg M\right\}_{\alpha \in A}$ s.t. $\bigcup_{a \in A} f_{\alpha}\left(U_{\alpha}\right)=M$, with $\operatorname{det}\left(d f_{\beta}^{-1} d_{\alpha}\right)>0$. Detine $v_{\alpha}: U_{\alpha} \neg \Phi^{\text {mim ang }} f_{\alpha}$ satistoing

$$
v_{\alpha}(x) \in \operatorname{TM}_{P_{\alpha}(x)}^{\perp} \quad \& \quad \operatorname{det}\left(\frac{\partial f_{\alpha}}{\partial x^{\prime}},-, \frac{\partial_{\alpha}}{\partial x^{m}}, v_{\alpha}\right)>0
$$

we must show $f_{\alpha}(x)=f_{\beta}(y)=p \Rightarrow \nu_{\alpha}(x)=\nabla_{\beta}(y)$
Sitadion for $m=2$
$\left(\mathbb{R}^{2}{ }^{e_{2}}{ }^{e_{1}}\right.$

Now, $\left(f_{\alpha}\right)_{x}$ and $\left.F_{A}\right)_{y}$ gre the same $N \Leftrightarrow$

$$
\begin{aligned}
& \left.\operatorname{det}\left(a_{i i}\right)>0 \text { where } \frac{\partial f_{\beta}(y)}{\partial y_{j}}=a_{i j} \frac{\partial f_{\alpha}(x)}{\partial x_{i}} E\right) d\left(f_{\beta}\right)_{y} e_{i}=a_{i j}\left(f_{\left(a_{x}\right)} e_{j}\right. \\
& \left.d \psi_{x}=d P_{p}\right)_{y}^{-1} d f d y k\left(d P_{b}\right)_{y} \text { is } \\
& e_{i}=a_{i j}\left(d f_{\beta}\right)_{y}^{4}\left(d f_{x}\right)_{x} \\
& =a_{i j} \cdot d \psi_{x} e_{j}
\end{aligned}
$$

Hence, $a_{i j}=d \mathcal{F}_{x}^{-1}$ and $\operatorname{det}\left(a_{i j}\right)>0$ (suse by assumption $\left.\operatorname{det}\left(d Y_{x}\right)>0\right)$
\Leftrightarrow Conversely if N is given, given a local pavan.

$$
\left\{f_{\alpha}: V_{\alpha} \rightarrow M\right\}_{\alpha \in A} \text { sit } U_{\alpha \in A} f_{\alpha}\left(V_{\alpha}\right)=M
$$

define $\tilde{f}_{\alpha}:=\left\{\begin{array}{lll}f_{\alpha} & \text { if } \operatorname{det}\left(\frac{\partial f_{\alpha}}{\partial x^{\prime}}, \cdots \frac{\partial f_{\alpha}}{\partial x^{m}}, N\right) & \geq 0 \\ f_{\alpha}\left(-x_{1}, x_{2}, \ldots, x_{m}\right) & \text { if } \quad 11 & <0\end{array}\right.$

Thm 2.11 (Jordon-Brouwer sepatation theoran)
$\phi \neq M \subset \mathbb{R}^{m+1} \quad m$-dim compact conneded submerfold
$\Rightarrow M^{m+1} \backslash M$ has exacty 2 connected components A, B with $M=\partial A=\partial B$, and (hence) M is orientable.
peliminery Given $p \in M$ JVp open neighborthood and φ_{p} submanifle chert such thet

$$
\begin{aligned}
& \text { bomanfold chert such thet } \\
& \varphi_{p}\left(V_{p}\right)=B_{1}, \varphi_{p}\left(M \cap V_{p}\right)=B_{1}(0) \wedge\left\{x_{n}=0\right\}
\end{aligned}
$$

$(n:=m+1)$ Indeed,
Let $\varphi: \hat{V}_{n}^{M} \rightarrow \mathbb{U}_{n}^{n}$
 submentold chat near P;
define $\bar{s}:=\sup \left\{s>0 \mid B_{s}(\varphi(p)) \subset V\right.$ and take $\varphi_{p}:=\left.\frac{\varphi-\varphi \varphi)}{\bar{s}}\right|_{\varphi^{-1}\left(B_{S}(\rho(p))\right)}$

Proof of the 2.11 Step 1 Take $p \in M \Rightarrow$
$V_{p} \backslash M$ is ditteomafic to $B_{1} \backslash\left\{x_{n}=0\right\}$ (φ_{p} is the diffennopione) and hence it hes 2 connected component. Let us show that they belong to different couneded componats of $n^{n} \backslash M$

$$
(n=m+1)
$$

Idea of Step 1

let $P_{ \pm}^{\varepsilon}:=\varphi_{p}^{-1}\left(\pm \varepsilon e_{n}\right)$ supp by cantadition $\exists \gamma:[a, b] \rightarrow \mathbb{R}^{n} \cdot M$ such that $\gamma(a)=p_{4}^{\varepsilon}, \gamma(b)=p^{\varepsilon}$ $(\varepsilon>0$ to be chosen $)$

We will contact a sequence piecewise smooth cures $\gamma^{(i)}, 0 \leq i \leq N$, s.t.

- $\gamma^{(i)}$ joins P_{+}^{ε} and P_{-}^{ε} for all $i=0, \ldots, N$
- $\gamma^{(0)}$ never intersects M
- $\gamma^{(N)} \subset V_{p}$
- $\gamma^{(i)}$ always intersects hasvensely M
- $\#\left(\gamma^{(i)} \cap M\right) \bmod 2$ is the
 same for all $i=0, \ldots W$

This leads to a contradiction since then $\varphi_{p} \circ \gamma^{(N)}$ would be a carve $[a, b] \rightarrow B_{1} \backslash\left\{x_{n}=0\right\}$ joining εe_{n} and $-\varepsilon e_{n}$ and intersecting
an even number of times $x_{n}=0$!
Constuction of $\gamma^{(i)}$: freall $f \in M$ Let

$$
r_{q}:=\sup \left\{r>0 \mid B_{r}(q) \subset V_{f}\right\}
$$

The femily of open balls $\left\{\left.B \frac{r_{q}}{100}(q) \right\rvert\, q \in M\right\}$ coress f, and - suce M is compect - \exists finite subcoven $M C \underset{\alpha \in f \text { finef }}{ } B_{\text {sef }} \frac{q_{\alpha}}{100}\left(q_{\alpha}\right)$
Let $\delta:=\min \left(\frac{\operatorname{dist}\left(\gamma\left([a, b) \backslash V_{P}, M\right)\right.}{100}, \min _{\alpha} \frac{r_{q_{\alpha}}}{100}\right)$

Fix $a=t_{1}<t_{2}<\cdots<t_{K}=b$ such that

$$
\left|\gamma\left(t_{j+1}\right)-\gamma\left(t_{j}\right)\right|<\delta \text { Let } D:=\operatorname{dian}(\gamma([a, b])
$$

Suppose (after trasbation) that $P=0$ and define, for $i \geqslant 0, j=1, \ldots k$,

$$
m^{h} M \rightarrow \gamma_{j}^{(i)}:= \begin{cases}p_{+}^{\varepsilon}=\gamma\left(t_{1}\right) & j=1 \\ (1-\delta / D)^{i} \gamma\left(t_{j}\right)+\delta y_{j}^{(i)}, j=2,-, k \\ p_{-}^{\varepsilon}=\gamma\left(t_{M}\right) & j=k\end{cases}
$$

where $y_{j}^{(i)}$ is any point in B_{1} chosen so that $\gamma_{j}^{(i)} \notin M$. Choose $\varepsilon>0$ so the $\left|p_{ \pm}^{\varepsilon}\right|<\delta$

By contraction $\left\{\begin{array}{l}\mid \gamma_{i}^{(i+1)}-\gamma_{i}^{(i)} \| \leq 3 \delta \\ \left\|\gamma_{j+1}^{(i)}-\gamma_{j}^{(i)}\right\| \leq 3 \delta\end{array} \quad \forall i, j\right.$
Now, for all $i \geqslant 0$, given the (odered by $j!$) separate of pos $\gamma_{1}^{(i)}, \gamma_{2}^{(i)}, \ldots, \gamma_{k}^{(i)}$ and $1 \leq l \leq k$ we refile

$$
\gamma_{j}^{(i, l)}=\left\{\begin{array}{lll}
\gamma_{j}^{(i+1)} & \text { if } & j \leq l \\
\gamma_{j}^{(i)} & \text { it } & j>l
\end{array}\right.
$$

Now for each (i, l) define the cure $\gamma^{(i, e)}:[a, b] \rightarrow \mathbb{R}^{h}$ as follows
(a) It $\operatorname{dist}\left(\gamma_{j}^{(i, e)}, M\right)>\left.20 \delta \quad \gamma_{j}^{(i)}\right|_{\left[t_{j}, t_{j+1}\right]}$ is the segment joinis $\gamma_{j}^{(i, e)}$ and $\gamma_{j+1}^{(i, l)}$
(b) If $\operatorname{dist}\left(\gamma_{j}^{\text {(i,) }}, M\right) \leq 20 \delta$ then choose α such that

$$
\begin{aligned}
& \text { (b) If } \operatorname{dist}\left(\gamma_{j}^{(i, e)}, M\right) \leq 20 \delta \text { then choose } \\
& \gamma_{j, \gamma_{j+1}^{(i, e)}}^{(i, e)} \in V_{P_{\alpha}} \text { and }\left.\gamma_{j}^{(i)}\right|_{\left[t_{j}, t_{j+1}\right]}:=\varphi_{P_{\alpha}}^{-1} \circ\left[\begin{array}{l}
\text { segment joining } \\
\varphi_{P_{k}}\left(\gamma_{j}^{(i)}\right) \& \varphi_{p}\left(\gamma_{j+1}^{(i)}\right)
\end{array}\right]
\end{aligned}
$$

picture

(b)

Now let us show the

$$
\notin\left(\gamma^{(i, e)}([a, j)) \cap M\right)=\notin\left(\gamma^{\left(i, l^{\prime}\right)}([a, b]) \cap M\right) \bmod 2
$$

$$
\text { for all }(i, l),\left(i, l^{\prime}\right)
$$

It is enough to show it for $(i, l) \rightarrow(i, l+1)$ and $(i, k) \longrightarrow(l+1,1)$

In such situation only 1 point, changes between $\gamma^{(i, e)}$ and $\gamma^{\left(i, l^{\prime}\right)}$, $\quad \gamma_{l}^{(i)}$ changes to $\gamma_{l}^{(i+1)}$
Hence the difference in the intersection number is either is alweys even (use $\varphi_{\alpha_{p}}$ when close to bony!)

QD point NEN goint
to

This completes Step S!
(step 2 Let us show that Rh $^{h} M$ has exactly 2 competed components (Step 1 shows at least 2)

Indeed, given any two $p, q \in M$, by step 1 ,

$$
p \in \partial A_{p} \cap \partial B_{p} \& \quad q \in \partial A_{f} \cap \partial B_{q} \text { for }
$$ connected components $A_{p} \neq B_{p}$ and $A_{q} \neq B_{f}$ of $R^{h} M_{M}$ Now, since M is connected \exists arne $C:[a, b] \rightarrow M$ from pto f Let $N:[a, b] \rightarrow \mathbb{S}^{m}$ be a contiunous unit honed to M clang the curve C. Now for $\varepsilon \geq 0$ rel enong the curves $t \longmapsto c(t)+\varepsilon N(t)$ are in $\mathbb{R}^{n} \backslash M$

\Rightarrow either $A_{p} \equiv A_{q}$ and $B_{p}=B_{q}$

$$
\text { or } \quad A_{p} \equiv B_{q} \text { and } A_{f}=B_{p}
$$

$\Rightarrow \mathbb{R}^{h} \backslash M$ has 2 connected controverts and Since M is bald only one of them con be unbounded. We call the bid component interion and the unbid one exterior
Now we define the exterior normal $N: M, S^{n}$ an the normet such that $x+\varepsilon N(x)$ belong to the exterior. (rosp-interior novel). Then N is artinnons on M and hence (by Prop. 2.10) M is orienteble

