PROBABILITY THEORY (D-MATH) EXERCISE SHEET 1

Exercise 1. Let X and Y be independent variables such that X and Y are Poisson distributed with parameters $\lambda > 0$ and $\mu > 0$ respectively, i.e. $\mathbb{P}(X = k) = e^{-\lambda} \lambda^k / k!$ and $\mathbb{P}(Y = l) = e^{-\mu} \mu^l / l!$ for $k, l \in \mathbb{N}_0$. Show that X + Y is Poisson distributed with parameter $\lambda + \mu$, i.e.

$$\mathbb{P}(X+Y=n) = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^n}{n!}$$

for $n \in \mathbb{N}_0$ and determine $\mathbb{P}(X = k \mid X + Y = n)$ for all $k, n \in \mathbb{N}_0$.

Exercise 2. Let U and V be independent random variables which are geometrically distributed with respective parameters $p \in (0, 1)$ and $q \in (0, 1)$, i.e. we have $\mathbb{P}(U = k) = (1 - p)^{k-1}p$ and $\mathbb{P}(V = l) = (1 - q)^{l-1}q$ for $k, l \in \mathbb{N}$. Show that $U \wedge V$ is geometrically distributed with parameter r := 1 - (1 - p)(1 - q), i.e.

$$\mathbb{P}(U \wedge V = n) = (1 - r)^{n-1}r$$

for all $n \in \mathbb{N}$.

Exercise 3. Let X and Y be independent and let both be uniformly distributed on $\{\pm 1\}$. Also let Z = XY. Show that X, Y, Z are pairwise independent but not independent.

Exercise 4. Let E_1, \ldots, E_n be countable sets and let $P_i: \mathcal{P}(E_i) \to [0, 1]$ be a probability measure on the power set of E_i for all $i = 1, \ldots, n$. Let $E = E_1 \times \cdots \times E_n$ and define $P: \mathcal{P}(E) \to [0, 1]$ by

$$P(A) = \sum_{(x_1, \dots, x_n) \in A} P_1(\{x_1\}) \cdots P_n(\{x_n\}) \text{ for } A \subset E.$$

Show that P is a probability measure on E. Also for i = 1, ..., n define the random variable $X_i(x_1, ..., x_n) = x_i$. Show that $X_1, ..., X_n$ are independent.

Exercise 5. Let (A_n) and (B_n) be sequences of events on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- (i) Suppose that $A_n \subset A_{n+1}$ for all $n \ge 1$. Show that $\mathbb{P}(A_n) \to \mathbb{P}(\bigcup_m A_m)$ as $n \to \infty$.
- (ii) Suppose now that $A_n \supset A_{n+1}$ for all $n \ge 1$. In this case, show that $\mathbb{P}(A_n) \to \mathbb{P}(\bigcap_m A_m)$ as $n \to \infty$.
- (iii) We now consider a general sequence (B_n) . Recall the definitions $\liminf_{n\to\infty} B_n = \bigcup_{n\geq 1} \bigcap_{m\geq n} B_m$ and $\limsup_{n\to\infty} B_n = \bigcap_{n\geq 1} \bigcup_{m\geq n} B_m$. Show that

$$\mathbb{P}\left(\liminf_{n\to\infty} B_n\right) \le \liminf_{n\to\infty} \mathbb{P}(B_n) \le \limsup_{n\to\infty} \mathbb{P}(B_n) \le \mathbb{P}\left(\limsup_{n\to\infty} B_n\right)$$

Exercise 6. This question is about π -systems and Dynkin systems.

- (i) Show that $\mathcal{A} = \{[0, a] : a \in [0, 1]\}$ is a π -system generating $\mathcal{B}([0, 1])$.
- (ii) Prove that $\mathcal{A}' = \{(-\infty, a_1] \times \cdots \times (-\infty, a_d] : a_1, \ldots, a_d \in \mathbb{R}\} \cup \{\mathbb{R}^d\}$ is a π -system generating the σ -algebra $\mathcal{B}(\mathbb{R}^d)$.
- (iii) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and fix $A \in \mathcal{F}$. Show that

$$\mathcal{D} := \{ B \in \mathcal{F} \colon \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \}$$

is a Dynkin system.

(iv) Give an example of a Dynkin system which is not a σ -algebra.

Submission of solutions. Hand in by 27/09/2021 5 p.m. (online) following the instructions on the course website

https://metaphor.ethz.ch/x/2021/hs/401-3601-00L/

The exercise classes are listed below; the Zoom meeting details are given on the course website shown above.

\mathbf{Time}	Room	$\mathbf{Assistant}$
Tuesday 2 p.m. – 3 p.m.	HG F 26.5	Matthis Lehmkuehler
Tuesday 2 p.m. – 3 p.m.	ML H 41.1	Luca Pelizzari
Tuesday 3 p.m. – 4 p.m.	Zoom	Daniel Contreras Salinas
Tuesday 3 p.m. – 4 p.m.	ML H 41.1	Genc Kqiku