PROBABILITY THEORY (D-MATH) EXERCISE SHEET 13

Exercise 1. Let (X_i) be i.i.d. random variables and let $S_n = X_1 + \cdots + X_n$. Consider the following list of settings.

- (i) X_1 is Poisson distributed with parameter $\lambda > 0$.
- (ii) $X_1 \sim B(1, p)$ for $p \in (0, 1)$.
- (iii) X_1 is exponentially distributed with rate $\lambda > 0$.
- (iv) $X_1 \sim N(0, \sigma^2)$ for $\sigma > 0$.

In each of the cases listed above determine the limit $\lim_{n\to\infty} n^{-1} \log \mathbb{P}(S_n > xn)$ for all $x \in \mathbb{R}$ whenever it exists.

Exercise 2. Let (X_n) be a simple symmetric random walk on \mathbb{Z} started at 0. Also let $M_n = \max\{k \le n \colon X_{2k} = 0\}$. The goal of this question will be to show that

 $M_n/n \to \sin^2(\pi U/2)$ in distribution as $n \to \infty$

where $U \sim U(0, 1)$. The law of $\sin^2(\pi U/2)$ is called the arcsine distribution. (i) Show that

$$\mathbb{P}(X_{2k} = 0) = \frac{1 + o(1)}{\sqrt{\pi k}} \quad \text{as } k \to \infty .$$

(ii) Let $P_k(a,b) = \{x \in \mathbb{Z}^{\{0,\dots,k\}} : x_0 = a, x_k = b, |x_i - x_{i-1}| = 1 \ \forall i = 1,\dots,n\}$. Show that $\#P_k(a, a+b) = \#P_k(a, a-b)$ and

$$#P_k(1, -L) = #\{x \in P_k(1, L) : 0 \in \{x_0, \dots, x_k\}\}$$
 for $L \ge 0$ and $k \ge 1$.

Hint: Define a bijection between the two sets.

(iii) Let $A_k = \{X_{2i} \neq 0 \ \forall 1 \leq i \leq k\}$. Show that

$$\sum_{L=1}^{k} \#\{x \in P_{2k-1}(1, 2L) \colon 0 \notin \{x_1, \dots, x_{2k}\}\} = \#P_{2k-1}(1, 0)$$

and hence that $\mathbb{P}(A_k) = \mathbb{P}(X_{2k} = 0)$.

- (iv) Establish that $\mathbb{P}(M_n = k) = \mathbb{P}(X_{2k} = 0)\mathbb{P}(A_{n-k})$ for $0 \le k \le n$.
- (v) Show that for 0 < u < v < 1 we have

$$\mathbb{P}(M_n/n \in (u, v)) \to \int_u^v \frac{dx}{\pi\sqrt{x(1-x)}}$$
 as $n \to \infty$.

(vi) Carefully deduce the main claim.

Exercise 3. Let (X_n) be a simple symmetric random walk on \mathbb{Z}^d started at 0 for $d \ge 1$. We write $X_n = (X_n^1, \ldots, X_n^d)$.

(i) Show that

$$\mathbb{E}((X_n^1)^2 + \dots + (X_n^d)^2) = n$$

Hint: Show that $X_n^i =_d \sum_{k=1}^n \sigma_k B_k$ where the (σ_k) are i.i.d. uniform on $\{-1, 1\}$ and (B_k) is an independent sequence of i.i.d. B(1, 1/d) random variables.

(ii) Show that almost surely, for infinitely many $n \ge 1$ there exists m > n such that $X_m \in \{X_0, \ldots, X_n\}.$

Submission of solutions. Hand in by 20/12/2021 5 p.m. (online) following the instructions on the course website

The exercise classes are listed below; the Zoom meeting details are given on the course website shown above.

\mathbf{Time}	Room	$\mathbf{Assistant}$
Tuesday 2 p.m. – 3 p.m.	HG F 26.5	Matthis Lehmkuehler
Tuesday 2 p.m. – 3 p.m.	ML H 41.1	Luca Pelizzari
Tuesday 3 p.m. – 4 p.m.	Zoom	Daniel Contreras Salinas
Tuesday 3 p.m. – 4 p.m.	ML H 41.1	Genc Kqiku