PROBABILITY THEORY (D-MATH) EXERCISE SHEET 6

Exercise 1. Let X and Y be two independent Bernoulli distributed random variables with parameter p. Define Z = 1(X + Y = 0) and $\mathcal{G} = \sigma(Z)$. Find $\mathbb{E}(X \mid \mathcal{G})$ and $\mathbb{E}(Y \mid \mathcal{G})$. Are these random variables also independent?

Exercise 2. Let X and Y be independent random variables taking values in measure spaces (E, \mathcal{E}) and (E', \mathcal{E}') respectively. Suppose also that $f: E \times E' \to \mathbb{R}$ is a bounded measurable function. Show that

$$\mathbb{E}(f(X,Y) \mid Y) = g(Y) \quad \text{a.s.}$$

where $g(y) = \mathbb{E}(f(X, y))$. In particular, explain why $g: E' \to \mathbb{R}$ is measurable.

Exercise 3. Suppose that X, Y are integrable random variables and that

 $\mathbb{E}(Y \mid X) = X$ and $\mathbb{E}(X \mid Y) = Y$ a.s.

Prove that X = Y almost surely. Hint: Consider the expression

$$\mathbb{E}((X - Y)1(X > c, Y \le c)) + \mathbb{E}((X - Y)1(X \le c, Y \le c))$$

Exercise 4. Consider a σ -algebra \mathcal{G} contained in the σ -algebra of the underlying probability space. Moreover, consider non-negative random variables (X_n) . Show that

$$\mathbb{E}\left(\liminf_{n\to\infty} X_n \mid \mathcal{G}\right) \le \liminf_{n\to\infty} \mathbb{E}(X_n \mid \mathcal{G}) \quad \text{a.s.}$$

This is Fatou's lemma for conditional expectations.

Exercise 5. Let *E* be an exponentially distributed random variable with parameter 1 and define $\mathcal{G}_t = \sigma(E \wedge t, 1(E \leq t))$ for $t \geq 0$. Show that for any $t \geq 0$ and any measurable function $f : \mathbb{R} \to [0, \infty]$ we have

$$\mathbb{E}(f(E) \mid \mathcal{G}_t) = \mathbb{E}(f(E+t))\mathbf{1}(E > t) + f(E)\mathbf{1}(E \le t) \quad \text{a.s}$$

Submission of solutions. Hand in by 01/11/2021 5 p.m. (online) following the instructions on the course website

The exercise classes are listed below; the Zoom meeting details are given on the course website shown above.

\mathbf{Time}	Room	$\mathbf{Assistant}$
Tuesday 2 p.m. -3 p.m.	HG F 26.5	Matthis Lehmkuehler
Tuesday 2 p.m. -3 p.m.	$\rm ML~H~41.1$	Luca Pelizzari
Tuesday 3 p.m. – 4 p.m.	Zoom	Daniel Contreras Salinas
Tuesday 3 p.m. – 4 p.m.	$\rm ML~H~41.1$	Genc Kqiku