Ising Model: Exercise sheet 2

Let $G=(V, E)$ be a finite graph and $\Omega=\{-1,1\}^{V}$. Let $J=\left(J_{e}\right)_{e \in E}$ be a family of nonnegative weights. We recall that for $\sigma \in \Omega$

$$
H(\sigma)=-\sum_{x y \in E} J_{x y} \sigma_{x} \sigma_{y}
$$

Exercise 1. $\left(^{*}\right)$ Let $\beta>0$. Set $V=\{0,1\}^{2}$ and $E=\left\{x y: x, y \in V,\|x-y\|_{1}=1\right\}$. Set $J_{e}=\beta$ for all $e \in E$.

1. What are the possible values for H on Ω ?
2. For each of these values, how many different configurations take this value ?
3. For each $\sigma \in \Omega$, compute the measure μ_{β}.
4. Compute the probability $\mu_{\beta}\left(\sigma_{(0,0)}=\sigma_{(1,1)}\right)$.
5. Compute the limit of μ_{β} as β goes to 0 .
6. Compute the limit of μ_{β} as β goes to ∞.

Exercise 2. Let $d \geq 1$ and $n \geq 1$. Set $V=\{-n, \ldots, n\}^{d}$ and $E=\left\{x y: x, y \in V,\|x-y\|_{1}=1\right\}$. Compute the minimum and the maximum of H on Ω.

Exercise 3. Let $A \subset V$ and $\sigma \in \Omega$. We define σ^{\prime} as follows

$$
\forall x \in V \quad \sigma_{x}^{\prime}= \begin{cases}-\sigma_{x} & \text { if } x \in A \\ \sigma_{x} & \text { otherwise }\end{cases}
$$

Compute $H(\sigma)-H\left(\sigma^{\prime}\right)$.

Exercise 4. Let $\beta \geq 0$ and $h \geq 0$. Set $\Lambda=\{-n, \ldots, n\}^{d}, \Omega=\{-1,1\}^{\Lambda}$ and $E=\{x y: x, y \in$ $\left.\Lambda,\|x-y\|_{1}=1\right\}$. For every $\sigma \in \Omega$, define

$$
H^{+}(\sigma)=-\beta \sum_{x y \in E} \sigma_{x} \sigma_{y}-h \sum_{x:\|x\|_{\infty}=n} \sigma_{x}
$$

and

$$
Z^{+}=\sum_{\sigma \in \Omega} \exp \left(-H^{+}(\sigma)\right)
$$

We define the measure $\widetilde{\mu}$ on Ω as follows

$$
\forall \sigma \in \Omega \quad \widetilde{\mu}(\sigma)=\frac{1}{Z^{+}} \exp \left(-H^{+}(\sigma)\right)
$$

Let $g \notin \Lambda$ be a ghost point. Set $E^{\prime}=E \cup\left\{x g: x \in \Lambda,\|x\|_{\infty}=n\right\}$. Let μ be the Ising measure associated with the finite graph $\left(V \cup\{g\}, E^{\prime}\right)$ and the weights $J_{e}=\beta$ for every $e \in E$ and $J_{e}=h$ for $e \in E^{\prime} \backslash E$. Set $\mu^{+}=\mu\left[\cdot \mid \sigma_{g}=+1\right]$.

Let $\sigma \in \Omega$. Let $\bar{\sigma} \in\{-1,1\}^{\Lambda \cup\{g\}}$ be defined as follows

$$
\forall x \in \Lambda \cup\{g\} \quad \bar{\sigma}_{x}= \begin{cases}\sigma_{x} & \text { if } x \in \Lambda \\ 1 & \text { if } x=g\end{cases}
$$

Prove that $\widetilde{\mu}(\sigma)=\mu^{+}(\bar{\sigma})$.

