Ising Model: Exercise sheet 4

Let G = (V, E) be a finite graph and $\Omega = \{-1, 1\}^V$. Let $J = (J_e)_{e \in E}$ be a family of nonnegative coupling constants. For $A \subset V$ we consider the set of currents

$$\mathcal{F}_A = \{ \mathbf{n} \in \mathbb{N}^E : |C \cap A| \text{ is even for every cluster } C \text{ of } \mathbf{n} \}$$

Exercise 1. (\star)

- 1. Prove that if $\partial \mathbf{n} = A$ then $\mathbf{n} \in \mathcal{F}_A$.
- 2. Prove that if $\mathbf{m} \leq \mathbf{n}$ and $\mathbf{m} \in \mathcal{F}_A$ then $\mathbf{n} \in \mathcal{F}_A$.
- 3. Prove that for $\mathbf{n} \in \mathcal{F}_A$, there exists $\eta \in \{0,1\}^E$ such that $\eta \leq \mathbf{n}$ and $\partial \eta = A$.
- 4. Let $A, B, C \subset V$ and M, N two independent ppp(J), prove the following switching lemma

$$\mathbb{P}[\partial M = A, \, \partial N = B, \, M + N \in \mathcal{F}_C] = \mathbb{P}[\partial M = A\Delta C, \, \partial N = B\Delta C, \, M + N \in \mathcal{F}_C]$$

Exercise 2. For $S \subset V$ and $\mathbf{n} \in \mathbb{N}^E$ we define \mathbf{n}^S as follows

$$\forall e \qquad \mathbf{n}_e^S = \begin{cases} \mathbf{n}_e & \text{if } e \subset S \\ 0 & \text{otherwise.} \end{cases}$$

In this exercise, we aim to prove that if M, N are independent ppp(J), x, y, z are distinct points in V, we have

$$\mathbb{P}[\partial M^S = \emptyset, \, \partial N = xz, \, x \stackrel{M^S + N^S}{\longleftrightarrow} y] = \mathbb{P}[\partial M^S = xy, \, \partial N = yz]. \tag{1}$$

1. Prove that we have

$$\mathbb{P}[\partial M^S = \emptyset, \, \partial N = xz, \, x \stackrel{M^S + N^S}{\longleftrightarrow} y] = \sum_{\mathbf{k} \in \mathbb{N}^E} \mathbb{P}[\partial M^S = \emptyset, \, \partial N^S = \partial \mathbf{k} \Delta xz, \, x \stackrel{M^S + N^S}{\longleftrightarrow} y] \, \mathbb{P}[N - N^S = \mathbf{k}]$$

2. Using the switching lemma in the previous formula, prove that we have (1).