Ising Model: Exercise sheet 5

Let G = (V, E) be a finite graph and $\Omega = \{-1, 1\}^V$. Let $J = (J_e)_{e \in E}$ be a family of non-negative coupling constants.

Exercise 1. Let $(\alpha_S)_{S \subset V}$ such that for all $S \subset V \alpha_S \ge 0$. Let $A \subset V$. Prove that

$$\left\langle \sinh(\sigma_A) \cdot \cosh(\sum_{S \subset V} \alpha_S \sigma_S) \right\rangle \ge \left\langle \sinh(\sigma_A) \right\rangle \left\langle \cosh(\sum_{S \subset V} \alpha_S \sigma_S) \right\rangle.$$

Exercise 2. (*) [Monotonicity in the weights, alternative proof] In this exercise, we aim to prove the monotonicity of the expectation with respect to the weights J. To avoid confusion, we will denote by $\langle \cdot \rangle_J$ the expectation for the Ising measure with weights J.

1. Let $e = xy \in E$. Prove that for any $A \subset V$ we have

$$\frac{\partial}{\partial J_e} \langle \sigma_A \rangle_J = \langle \sigma_A \sigma_{xy} \rangle_J - \langle \sigma_A \rangle_J \langle \sigma_{xy} \rangle_J.$$

2. Conclude that if $J \leq J'$ then for any $A \subset V$, $\langle \sigma_A \rangle_{J'} \geq \langle \sigma_A \rangle_J$.

Exercise 3. (*) Let $A \subset V$. Prove that $\mu_J[\forall x, y \in A \ \sigma_x = \sigma_y]$ is non-decreasing in J.

Exercise 4. In this exercise, we aim to find sufficient and necessary conditions on $x, y, z, t \in V$ with $x \neq y$ and $z \neq t$ to have

$$\langle \sigma_{xy}\sigma_{zt}\rangle - \langle \sigma_{xy}\rangle \langle \sigma_{zt}\rangle > 0. \tag{1}$$

Prove that (1) holds if and only if there exist two disjoint paths from $\{x, y\}$ and $\{z, t\}$ in G.