## Ising Model: Exercise sheet 7

We set $\Lambda_{n}=\{-n, \ldots, n\}^{2}$ and $E_{n}$ be the following set of edges

$$
E_{n}=\left\{x y: x, y \in \Lambda_{n}, x \sim y\right\} \cup\left\{x y: x \in \Lambda_{n}, y \notin \Lambda_{n}, x \sim y\right\}
$$

We define the dual graph of $\mathbb{Z}^{2}$ by associating to each edge $e \in E\left(\mathbb{Z}^{2}\right)$ the unique edge $e^{*}$ in $E\left((1 / 2,1 / 2)+\mathbb{Z}^{2}\right)$ that crosses $e$. We define

$$
\Omega_{\Lambda_{n}}^{+}=\left\{\sigma \in\{-1,1\}^{\Lambda_{n} \cup \partial \Lambda_{n}}: \forall x \in \partial \Lambda_{n} \quad \sigma_{x}=1\right\}
$$

We define $\left(\Lambda_{n}^{*}, E_{n}^{*}\right)$ the dual graph of $\left(\Lambda_{n}, E_{n}\right)$. We define

$$
\mathcal{E}^{*}=\left\{\mathbf{n} \in\{0,1\}^{E_{n}^{*}}: \mathbf{n} \text { is a sourceless current }\right\} .
$$

Exercise 1 (Low temperature expansion). We define the following map $\phi$ that associates to each $\sigma \in \Omega_{\Lambda_{n}}^{+}$the following current $\left(\mathbf{1}_{\sigma_{e}=-1}\right)_{e^{*} \in E_{n}^{*}}$. That is to say, to each edge $e^{*} \in E_{n}^{*}$ we associate the value 1 if the spins of $\sigma$ disagree on the dual edge $e$.

1. Prove that for any $\sigma \in \Omega_{\Lambda_{n}}^{+}$, the current $\phi(\sigma)$ is sourceless.
2. Prove that for $\sigma, \tau \in \Omega_{\Lambda_{n}}^{+}$such that $\sigma \neq \tau$, we have $\phi(\tau) \neq \phi(\sigma)$. Conclude that $\phi$ is injective.
3. In this question we aim to prove that $\phi$ is surjective. Let $\eta \in \mathcal{E}^{*}$. Let $x=\left(x_{1}, x_{2}\right) \in \Lambda_{n}$. We define $N_{x}^{1}$ (respectively $N_{x}^{2}$ ) be the number of edges in $e^{*}$ such that $\eta_{e^{*}}=1$, crossed by the line $\left[-n-1, x_{1}\right] \times\left\{x_{2}\right\}$ (respectively $\left\{x_{1}\right\} \times\left[-n-1, x_{2}\right]$ ).
(a) By summing the degrees of vertices in $\Lambda_{n}^{*} \cap\left[-n-1, x_{1}\right] \times\left[-n-1, x_{2}\right]$ prove that $N_{x}^{1}$ and $N_{x}^{2}$ have the same parity.
(b) Let $\sigma=\left((-1)^{N_{x}^{1}}\right)_{x \in \Lambda_{n} \cup \partial \Lambda_{n}}$. Prove that $\phi(\sigma)=\eta$.
(c) Let $\eta=\phi(\sigma)$. Prove that $\mu_{\Lambda_{n}, \beta}^{+}(\eta)=\exp (-2 \beta|\eta|) / Z$ where $Z=\sum_{\eta \in \mathcal{E}^{*}} \exp (-2 \beta|\eta|)$.

Exercise 2 (Peierls argument). We say that there exists a loop in $E_{n}^{*}$ for $\phi(\sigma)$ surrounding 0 if any path from 0 to $\partial \Lambda_{n}$ has an edge $e$ such that $\phi(\sigma)_{e^{*}}=1$.

1. Prove that for $\sigma \in \Omega_{\Lambda_{n}}^{+}$, if $\sigma_{0}=-1$ then there exists at least one loop surrounding 0 .
2. Let $\gamma$ be a loop of $E_{n}^{*}$ surrounding 0 . Prove using the low temperature expansion that

$$
\mu_{\Lambda_{n}, \beta}^{+}[\gamma \subset \phi(\sigma)] \leq \exp (-2 \beta|\gamma|)
$$

3. Prove that for $\beta$ large enough $\mu_{\Lambda_{n}, \beta}^{+}\left[\sigma_{0}=-1\right] \leq \frac{1}{4}$.
4. Conclude that $\beta_{c}(2)<\infty$.

Exercise 3 (High temperature expansion). ( $\star$ ) The aim of this exercise is to prove that $\beta_{c}(d)>0$. Let $\Lambda_{n}=\{-n, \ldots, n\}^{d}$ and $g$ be the ghost. Let $G=\left(\Lambda_{n} \cup\{g\}, E\right)$ and $J=\left(J_{e}\right)_{e \in E}$ where

$$
E=\left\{x y \subset \Lambda_{n}: x \sim y\right\} \cup\left\{x g: \exists y \in \mathbb{Z}^{d} \backslash \Lambda_{n} \quad x \sim y\right\}
$$

$J_{e}=\beta$ for $e \subset \Lambda_{n}$ and for $x \in \partial \Lambda_{n}, J_{x g}=\sum_{y \notin \Lambda_{n}: x \sim y} \beta$.

1. Prove that

$$
\left\langle\sigma_{0}\right\rangle_{\Lambda_{n}}^{+}=\frac{\mathbb{P}[\partial N=\{0, g\}]}{\mathbb{P}[\partial N=\emptyset]}
$$

where $N$ is a $\operatorname{ppp}(J)$.
2. Let $\mathbf{n} \in \mathbb{N}^{E}$ such that $\partial \mathbf{n}=\{0, g\}$. Prove that there exists a self-avoiding path $\gamma$ between 0 and $g$ in $G[\mathbf{n}>0]$. Deduce that we can write $\mathbf{n}=\mathbf{m}^{E \backslash \gamma}+\mathbf{m}^{\gamma}$ where $\partial \mathbf{m}^{E \backslash \gamma}=\emptyset$ and the current $\mathbf{m}^{E \backslash \gamma}$ is null on $\gamma$, the current $\mathbf{m}^{\gamma}$ has its support in $\gamma$ and $\partial \mathbf{m}^{\gamma}=\{0, g\}$.
3. Set $\Gamma_{m}$ be the set of self-avoiding path from 0 to $g$ of length $m$. Prove that

$$
\mathbb{P}[\partial N=\{0, g\}] \leq \sum_{m \geq n} \sum_{\gamma \in \Gamma_{m}} \mathbb{P}\left[\forall e \in \gamma N_{e} \text { odd }\right] \mathbb{P}\left[\partial N^{E \backslash \gamma}=\emptyset\right] .
$$

4. Let $\gamma \in \Gamma_{m}$. Prove that

$$
\mathbb{P}\left[\partial N^{E \backslash \gamma}=\emptyset\right] \prod_{e \in \gamma} \cosh \left(J_{e}\right) e^{-J_{e}} \leq \mathbb{P}[\partial N=\emptyset]
$$

5. Deduce that

$$
\left\langle\sigma_{0}\right\rangle_{\Lambda_{n}}^{+} \leq \sum_{m \geq n} \sum_{\gamma \in \Gamma_{m}} \tanh ^{m}(d \beta)
$$

6. Prove that for $\beta$ small enough we have

$$
\lim _{n \rightarrow \infty}\left\langle\sigma_{0}\right\rangle_{\Lambda_{n}}^{+}=0
$$

Conclude.

