Ising Model: Exercise sheet 8

Exercise 1. (\star) For $x \in \mathbb{Z}^d$, we define

$$\langle \sigma_0 \sigma_x \rangle_{\beta}^+ = \lim_{n \to \infty} \langle \sigma_0 \sigma_x \rangle_{\Lambda_n,\beta}^+.$$
(1)

The aim of this exercise is to prove that the following quantity is finite for $\beta < \beta_c$

$$\chi(\beta) := \sum_{x \in \mathbb{Z}^d} \langle \sigma_0 \sigma_x \rangle_{\beta}^+.$$

- 1. Prove that the limit in (1) is well-defined.
- 2. Prove that for $\beta < \beta_c$, there exists c > 0 such that for any $x \in \mathbb{Z}^d$ we have $\langle \sigma_0 \sigma_x \rangle_{\beta}^+ \le e^{-c \|x\|}$.
- 3. Conclude that $\chi(\beta)$ is finite.

Exercise 2. Let G = (V, E) be a finite graph and J be some nonnegative weights on the edges. Let M, N be two independent ppp(J) on G. Let $x, y, z, t \in V$ be four distinct vertices. Prove that

$$\mathbb{P}[\partial M = xy, \partial N = zt, x \xrightarrow{M+N} z] \leq \mathbb{P}[\partial M = xy, \partial N = \emptyset, x \xleftarrow{M+N} z].$$

Hint: condition on the cluster of x *in* M + N