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Introduction

Initially introduced as a model for ferromagnetism, the Ising Model has become one of
the most fundamental model in statistical mechanics with applications in several areas of
science (thermodynamics, neuroscience, sociology,. . . ).

1 Statistical mechanics
General idea Give a mathematical description of physical systems involving a large
number of elements, such as:

• a glass of water (≫ 1023 molecules)

• a piece of Iron (≫ 1023 atoms)

• a population

• cars on a high way

• trees in a forest, . . .

Giving an exact description of such system is very hard. Let us take the example of a
glass made of N ≫ 1023 molecules of water: one needs to keep track of the positions and
speeds of all the molecules, which represent more than 1023 parameters! Instead, we give
a probabilistic description, where each element is assumed to have a random behaviour,
and the system is well described by very few parameters.

Modeling

Ω = �"possible states of the systems"�
Pβ1,...,βk

= probability measure on Ω, indexed by few parameters β1, . . . ,βk.

Typical questions We are interested in the large-scale behaviour of such system:

• Water: solid/liquid/gas

• Iron: paramagnetic/ferromagnetic

1



2

• population dyamic: survival/extinction?

For such systems, one often observes a sharp phase transition: a small change in the
parameters gives rise to different macroscopic behaviours (think of water at 0○C).

2 Para/ferromagnetic phase transition
Ising model was introduced by Wilhelm Lenz in 1920 in view of a theoretical understand-
ing of the para/ferromagnetic phase transition. The model was named after Ernst Ising
(Lenz’s student) who studied the one dimensional version of the model in his PhD the-
sis (1925). In this section we give a brief description of the para/ferromagnetic phase
transition.

Microscopic description Each atom of iron has a magnetic moment, and can be seen
as a small magnet. For simplicity, the moment is assumed to point in two possible and
opposite directions (spin up and spin down). These small magnets interact with each
other, and two neighbouring atoms prefer to have aligned spins. The strength of these
interactions is inverse proportional to the temperature.

Curie temperature The piece of Iron undergoes a phase transition at a critical tem-
perature

Tc = Tc(Fe) = 1034K,

called the Curie temperature (Pierre Curie 1859-1906).
At low temperature (T < Tc), the interaction is strong and a majority of spin point

towards the same direction (either up or down)
At high temperature (T > Tc) the interaction is weak and no spin is preferred globally.

Spins up and down coexist in equal proportion.

3 Modelization: Boltzman formalism
We present the formal definition of Ising model in a box of dimension d ≥ 1.

Λ = Λn = {−n, . . . , n}d
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Spin configuration: σ = (σx)x ∈ Λ ∈ {−1,+1}Λ
σx = +1 "spin up"
σx = +1 "spin down"

Goal Define a probability measure µβ on the state space {−1,+1}Λ which favors config-
urations with few disagreements between neighbours (A particle tries to have the same
spin as its neighbours).

disagreement

The underlying parameter β ≥ 0 correspond to the strength of the interaction.

Energy of a configuration For β ≥ 0 and σ ∈ {−1,+1}Λ, let

Hβ(σ) = −β �
x,y neighbours

σxσy

Remark 3.1. We have Hβ(σ) = β∑x,y neigh.(21σx≠σy − 1). The energy of σ is low when
the number of disagreement is low. In particular the lowest energy correspond to the two
constant states

σ = 1 and σ = −1
which are the only configurations with no disagreements. These two minimizers are called
the ground states associated to Hβ.

Probability of a configuration For β ≥ 0 and σ ∈ {−1,+1}Λ, let

µβ(σ) = 1

Zβ

e−Hβ(σ) where Zβ = �
σ∈{±1}Λ e

−Hβ(σ)

The constant Zβ is called the partition function. It is defined in such a way that µβ is
a probability measure.

Remark 3.2. If σ has a high energy Hβ(σ), then its probability µβ(σ) is small.

Effect of the parameter β

➜ For β = 0, we have

∀σ ∈ {−1,+1}∣Λ∣ µβ=0(σ) = 1

2∣Λ∣ .
When β = 0, all the configurations have the same probability. The spins behave
independently and there is no interaction.
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➜ When β →∞, we have

lim
β→∞µβ(σ) = ⎧⎪⎪⎨⎪⎪⎩

1
2 if σ = 1 or σ = −1
0 otherwise.

The Ising measure at β = ∞ concentrates on the two ground states: all the spins
are aligned.

As β varies continuously from 0 to infinity, the interaction between the spins increase,
which favors the alignment between them.

In physics, the Ising model is rather parametrized by the temperature T , which is
related to β by the formula

β = k

T
,

where k is the Boltzman constant. At low temperature, the spins are more aligned than
at high temperature, where the thermal agitation reduces the interactions between the
atoms.

4 Magnetization and phase transition
Write ⟨⋅⟩Λn,β for the expectation corresponding to the measure µβ introduced in the pre-
vious section. Under the Ising measure µβ, the expected spin at 0 is

⟨σ0⟩Λn,β = 0
because µβ(σ) = µβ(−σ) (spin-flip symmetry). In order to “break” this symmetry, we
consider the measure with + boundary conditions (which corresponds to conditioning all
spins equal to +1 at the boundary of the box).

⟨σ0⟩+Λn,β
= ⟨σ0 ∣ ∀x ∈ Λn+1�Λn σx = +1⟩Λn+1,β.

In the first part of the course we will prove the following properties.

Positive effect of the + boundary conditions The + boundary conditions may only
increase the chance for the spin σ0 to be positive: for every n ≥ 0 and every β ≥ 0, we have

⟨σ0⟩+Λn,β
≥ 0. (P1)

Pushing boundary conditions The effect of the boundary conditions is weaker when
they are pushed away: for every n ≥ 0 and every β ≥ 0, we have

⟨σ0⟩+Λn+1,β ≤ ⟨σ0⟩+Λn,β
. (P2)
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Monotonicity in the parameter β If the strength of the interaction β increases, then
the spins get more aligned, and the spin at 0 has more chance to be aligned to +1: for
every n ≥ 0 and every β′ ≥ β ≥ 0, we have

⟨σ0⟩+Λn,β′ ≥ ⟨σ0⟩+Λn,β
. (P3)

The property (P2) allows us to define the magnetization as a monotone limit as follows.

Definition 4.1 (Magnetization). For every β ≥ 0, define

m(β) ∶= lim
n→∞⟨σ0⟩+Λn,β

.

Properties (P1) and (P3) imply that the magnetization m(β) is nonnegative and
nondecreasing in the parameter β. A central question is whether we have m(β) > 0 (the
effect of the + boundary conditions pertains when they are pushed away to infinity) or
m(β) = 0 (the effect of the boundary conditions vanishes at infinity). The answer to this
question depends on the unerlying paprameter β, and lead to the definition of the phase
transition for Ising model.

Definition 4.2 (Critical parameter for Ising model).

βc ∶= sup{β ≥ 0 s.t. m(β) = 0}
βc0

m(β) = 0 m(β) > 0
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Figure 0.1: Illustration of the phase transition. For β < βc, the interaction is weak, the +
and - phases are mixed together. For β > βc, the interaction is strong, a mojority of spins
align to +1.

In the course we will prove that

• βc = +∞ in dimension d = 1 (no phase transition).

• 0 < βc <∞ in dimension d ≥ 2 (non trivial phase transition)



Chapter 1

Ising measure on a finite set

Goals:

➜ Define the Ising model in the abstract setting of finite weighted graphs with general
weights.

➜ Define and discuss the n-point function.

➜ Define the ghost versions of the model.

➜ Relate the abstract framework to the more standard version of the model (lattice
case, external field, Curie-Weiss model).

1 Graph theoretical framework
Definition 1.1. A finite graph with vertex set V and edge set E is a pair G = (V,E),
where V is a finite set, and E ⊂ {{x, y} ∶ x, y ∈ V,x ≠ y}.

We emphasize that in our convention, a finite graph has no self-loop, and no multiple
edges.

Notation: For x, y ∈ V , we write xy ∶= {x, y}.
Let G = (V,E) be a finite graph. Let x, y ∈ V . Let � ∈ N. A path of length � from x to

y is a sequence of distinct vertices γ = (γ0, . . . ,γ�) such that γiγi+1 ∈ E for every 1 ≤ i < �.
Given such a path, we write e ∈ γ if there exists i such that e = γiγi+1. When such a path
exists, we say that x and y are connected in G.

Definition 1.2. Let G = (V,E) be a finite graph. We call weights on G a collection of
real numbers J = (Je)e∈E satisfying Je ≥ 0 for every edge e. Given such weights, we write
G[J > 0] for the subgraph of G, with vertex set V , and edge set {e ∈ E ∶ Je > 0}.
Remark 1.3. In the physics literature, weights satisfying Je are said to be ferromagnetic
since they correspond to a positive interaction of the spins.
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From now on and until the end of the chapter, we fix

• a finite graph G = (V,E),
• some weights J = (Je)e∈E.

2 Probabilistic framework
Ising measure We call spin configuration an element σ of the product set

Ω ∶= {+1,−1}V .
To each spin configuration σ ∈ Ω we associate an energy defined by

H(σ) = − �
xy∈E Jxyσxσy .

Finally, the Ising measure on (G,J) is the probability measure µ on Ω defined by

∀σ ∈ Ω µ(σ) = 1

Z
e−H(σ),

where the normalizing constant Z = ∑σ∈Ω e−H(σ) is called the partition function.

Random variables and expectation We have now a probability space (Ω, µ), which
gives rise to the standard notion of probability, such as random variables, expectation,. . .

The expectation of a real random variable f ∶ Ω→ R is denoted by

⟨f⟩ = 1

Z
�
σ∈Ωf(σ)e−H(σ).

Occasionally it may also be convenient to consider the integral of f without normal-
ization, and we intoduce

Z[f] ∶= �
σ∈Ωf(σ)e−H(σ).

Spin-flip symmetry The measure µ satisfies the symmetry µ(σ) = µ(−σ). In other
words, σ and −σ have the same law under µ.

If f is an odd random variable (i.e. f(σ) = −f(−σ) for every configuration σ), then

⟨f⟩ = �
σ∈Ωf(σ)µ(σ) = �σ∈Ωf(−σ)µ(−σ) = �σ∈Ω−f(σ)µ(σ) = −⟨f⟩,

which implies that ⟨f⟩ = 0.
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3 Examples
Several examples fit in the general framework of Section 2.

Curie-Weiss model Let N ≥ 1. The Curie-Weiss model corresponds to an Ising model
on the complete graphs with N vertices. The coupling constant scaled in such a way the
limit of the model is non trivial as N tends to infinity. It is defined by choosing

V = {1, . . . ,N}
E = {xy ∶ x, y ∈ V }
Je = β

N
for every e ∈ E.

See [FV18, Chapter 2] for a detailed study of Curie-Weiss model.

Box in Zd The lattice version of Ising model (in Zd, d ≥ 1) discussed in the introduction
also fits in the framework. Given a box size n ≥ 1 and an inverse temperature β ≥ 0, it
corresponds to the weighted graph given by

V = {−n, . . . , n}d,
E = {xy ∶ ∥x − y∥1 = 1}
Je = β for every e ∈ E.

4 Multi-point functions
Definition 4.1. For every set A ⊂ V we set

σA =�
x∈Aσx

(identified with the random variable σ ↦ ∏x∈A σx).

For every k ≥ 2, the mapping A ↦ ⟨σA⟩, restricted to sets A of size k, is sometimes
called the k-point function.

Remark 4.2 (Odd sets). The spin-flip symmetry implies that

∀A ⊂ V odd ⟨σA⟩ = 0. (1.1)

Lemma 4.3. For every A,B ⊂ V , we have

1∣Ω∣ �σ∈ΩσAσB = ⎧⎪⎪⎨⎪⎪⎩
1 if A = B
0 if A ≠ B.
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Probabilistic proof. Let E be the expectation on Ω w.r.t. the uniform measure. Notice
that under the uniform measure all the individual spins σx are independent. Hence, for
every A,B ⊂ V , we have

E[σAσB] = E[σAΔB] = �
x∈AΔB

E[σx] = ⎧⎪⎪⎨⎪⎪⎩
0 if A ≠ B,

1 if A = B.

Combinatorics proof. Assume A ≠ B, and fix x ∈ AΔB. For every σ define

σ̃y = ⎧⎪⎪⎨⎪⎪⎩
σy if y ≠ x−σy if y = x.

Notice that σ ↦ σ̃ is a bijection of Ω to itself, and that σ̃Aσ̃B = −σAσB. Hence

�
σ∈ΩσAσB = �

σ∈Ω σ̃Aσ̃B = −�
σ∈ΩσAσB.

Proposition 4.4. (σA)A⊂V forms a basis of the space of real random variables RΩ.

Proof. First, observe that the family (σA)A⊂V as 2∣V ∣ = dim(RΩ) elements. Second, by
Lemma 4.3, it is orthonormal family with respect to the inner product defined

(f ; g) = 1∣Ω∣ �σ∈Ωf(σ)g(σ).
Therefore, the functions σA, A ⊂ V are linearly independent, which completes the proof.

Remark 4.5. The family (σA) appears naturally as the orthonormal basis of characters
when one studies Fourier analysis on the finite group {+1,−1}V , see e.g.[GS15].

A direct consequence of the proposition above is that any random variable f can
be decomposed as a linear sum f = ∑A⊂V fAσA, fA ∈ R. Therefore, the measure µ is
characterized by (⟨σA⟩)A⊂V .

5 Ising model with a ghost
Fix a vertex g ∈ V , called the ghost vertex. We define the + Ising measure on (V, J, g) by

µ+ ∶= µ[ ⋅ ∣σg = +1].
This measure allows us to “break” the spin-flip symmetry, and appears more often than the
unconditioned measure µ in applications: it will be particularly useful when we introduce+ boundary conditions or external fields, as in the examples below.
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Example 1: Box in Zd with + boundary conditions Let d ≥ 1, n ≥ 1, β ≥ 0. Write
Λ = {−n, . . . , n}d, and consider an abstract symbol g ∉ Λ.

The Ising model in a finite box with + boundary condition corresponds to the measure
µ+ with the choice:

V = Λ ∪ {g},
E = {xy ∶ x, y ∈ Λ, ∥x − y∥1 = 1} ∪ {xg ∶ x ∈ Λ, ∥x∥∞ = n},
Je = β for every e ∈ E.

Example 2: Box in Zd with external field As above, we consider d ≥ 1, n ≥ 1, β ≥ 0,
and g ∉ Λ. We also consider a nonnegative h ≥ 0. The Ising model in a finite box with
external magnetic field h corresponds to the measure µ+ with the choice:

V = Λ ∪ {g},
E = {xy ∶ x, y ∈ Λ, ∥x − y∥1 = 1} ∪ {xg ∶ x ∈ Λ},
Je = ⎧⎪⎪⎨⎪⎪⎩

β if g ∉ e,
h if g ∈ e.

Relation to the unconditioned measure. In general, conditioned measure are more
delicate to study than the original one. Here, µ+ is not really more complicated than µ,
and inherits several properties form µ, thanks to the spin-flip symmetry. For example, all
the multi-point functions for µ+ can be easily computed from those of µ.

Proposition 5.1 (multi-point functions for + Ising model). Write ⟨⋅⟩+ for the expectation
associated to the measure µ+. For every set A ⊂ V , we have

⟨σA⟩+ = ⎧⎪⎪⎨⎪⎪⎩
⟨σAΔ{g}⟩ if A is odd,⟨σA⟩ if A is even.

Proof. By spin-flip symmetry we have µ[σg = 1] = 1
2 . Therefore,

⟨σA⟩+ = 2⟨σA 1σg=1⟩ = ⟨σA (σg + 1)⟩ = ⟨σAΔ{g}⟩ + ⟨σA⟩.
We conclude the proof by using Eq. (1.1), which implies that either first or the second term
vanishes in the last sum, depending whether the set A is even or odd, respectively.



Chapter 2

Random current representation

Let x, y ∈ V . It is natural to expect that the two spins σx and σy are positively correlated,
i.e. ⟨σxσy⟩ ≥ 0. This does not follow from the definition of the expectation

⟨σxσy⟩ = �
σ∈Ωσxσye

−H(σ),

since the sum has positive and negative terms. In this chapter, we introduce the ran-
dom current representation, a powerful tool to study the multi-spin function, based on a
percolation-type interpretation of the model.

Goals:

➜ Introduce the concept of geometric representation

➜ Define the random current representation (RC)

➜ Express ⟨σA⟩ via the RC.

Framework

• (V, J) finite weighted graph with ferromagnetic coupling constants. E = {xy ∶ x, y ∈
V }.

• Ω = {−1,+1}V space of spin configurations, equipped with the (free) Ising measure
µ:

H(σ) = − �
xy∈E Jxyσxσy �→ µ[σ] = 1

Z
e−H(σ).

11



CHAPTER 2. RANDOM CURRENT REPRESENTATION 12

1 Currents and their sources
Definition 1.1. A current on G is a function

n ∶ E → N.

For every x ∈ V , we write degn(x) ∶= ∑e∋xne and define the sources of n as the subset of
vertices

∂n ∶= {x ∈ V ∶ degn(x) odd}.

0
2

0

1

4

2

1
1

x

y

Figure 2.1: A current with ∂n = {x, y}.
Remark 1.2. We have �

x∈V degn(x) = 2�
e

ne,

therefore the set of sources ∂n is always even.

We are particularly interested in the connectivity properties of a current. For x, y ∈ V ,
we write

x
n←�→ y

if x and y are connected in the graph G[n > 0]. In this case we say that x and y are
connected in n. The cluster of x in n is the subset of vertices defined by

Cx(n) ∶= {y ∈ V ∶ x n←�→ y}.
The following combinatorial property of currents will be used repeatedly.

Proposition 1.3 (connectivity of sources). Let n be a current on E . For every source
x ∈ ∂n, there exists another source y ∈ ∂n�{x} such that x n←�→ y.

Proof. Let x ∈ ∂n. Notice that all the edges e at the boundary of Cx(n) (i.e. the edges
with exactly one extremity on Cx(n)) satisfy ne = 0. Hence

�
y∈Cx(n)

degn(y) = 2 �
e⊂Cx(n)

ne.

Since degn(x) is odd, there must exist y ∈ Cx(n)�{x} such that degn(y) is odd.
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This has the following consequences:

Corollary 1.4. Let n ∈ NE be a current.

• If n has exactly two sources ∂n = {x, y} then we have x
n←�→ y.

• In general, if n has 2k sources, k ∈ None can always pair them n = {xi}1≤i≤k∪{yi}1≤i≤k
in such a way that xi

n←�→ yi for every i.

2 Poisson point process on the edges
Definition 2.1. We call Poisson point process on E with intensity J (ppp(J)) a sequence
of independent random variables (Ne)e∈E, where

Ne ∼ Poisson(Je).
The terminology “Poisson point process” comes from the interpretation of J as a

measure on E, where Je corresponds to the measure of the singleton {e}. And equivalently,
N can be seen as a random measure on E, which is exactly a Poisson point process on
E, with intensity measure J .

Proposition 2.2 (Thinning). Let K be a ppp(2J). Independently of K, Let Z =(Zi
e)e∈E,i∈N be a collection of iid Bernoulli(1/2) random variable. Then M and N defined

by

∀e ∈ E Me = Ke�
i=1Z

i
e and Ne =Ke −Me

are two independent ppp(J).

3 Random Current representation of the multi-spin
function

Lemma 3.1 (Expansion of products ). Let f ∶ E ×N→ R and assume that

∀e ∈ E �
n∈N ∣f(e, n)∣ <∞.

Then, we have �
e∈E � �n∈N f(e, n)� = �n∈NE

��
e∈E f(e,ne)�

and the sum on the right hand side is absolutely convergent.
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Proof. We may assume without loss of generality that E = {1, . . . , k}, and then we prove
the result by induction on k. For E = {1}, there is nothing to do. Let k ≥ 1 and assume
that the result holds for E = {1, . . . , k}. Now, consider

f ∶ {1, . . . , k + 1} ×N→ R

such that the k + 1 series ∑n f(i, n), i = 1, . . . , k + 1 are absolutely convergent. By first
applying the induction hypothesis, and then using Fubini’s theorem to combine the double
sum into one, we find

�
i≤k+1 � �n∈N f(i, n)� = � �(n1,...,nk)∈Nk

f(1, n1)⋯f(k,nk)���
n∈N f(k + 1, n)�

= �(n1,...,nk)∈Nk

� �
nk+1∈N

f(1, n1)⋯f(k + 1, nk+1)�
= �(n1,...,nk+1)∈Nk+1

f(1, n1)⋯f(k + 1, nk+1),
and the last sum is absolutely convergent by Fubini’s theorem.

Theorem 3.2 (Random-current representation of the multipoint functions). Let N be a
ppp(J) on E. For every A ⊂ V , we have

⟨σA⟩ = P[∂N = A]
P[∂N = ∅] (2.1)

Proof. We first fix σ ∈ Ω, and expand the weight e−H(σ) as a sum. To achieve this, we
first write this weight as a product of exponential terms over the edges, then we write the
exponential terms as series, and finally expand the product via Lemma 3.1. This gives

e−H(σ) = exp(�
e∈E Jeσe) =�

e∈E exp(Jeσe) =�
e∈E � �n∈N

1

n!
(Jeσe)n�

= �
n∈NE

��
e∈E

1

ne!
(Jeσe)ne� = �

n∈NE

��
e∈E

Jne
e

ne!
���

e∈E σ
ne
e �.

In the last equation the first product is equal to e∣J ∣ times the probability that a ppp(J)
is equal to n (where ∣J ∣ ∶= ∑e∈E Je). In the second product each factor σx, x ∈ V appears
raised to the power ∑e∋xne. Hence σx does not disappear only if x is a source of n, and
we have �

e∈E σ
ne
e = σ∂n.

Plugging this expression in the equation above, we obtain for every σ ∈ Ω
e−H(σ) = e∣J ∣ �

n∈NE

P[N = n] ⋅ σ∂n.



CHAPTER 2. RANDOM CURRENT REPRESENTATION 15

By using this expression of the weight, and permuting the sums, we obtain for every A ⊂ V
Z[σA] = �

σ∈ΩσA ⋅ e−H(σ) = e∣J ∣ �
n∈NE

P[N = n] ⋅ �
σ∈ΩσAσ∂n.

Therefore, by Lemma 4.3, we find

Z[σA] = e∣J ∣ ⋅ ∣Ω∣ ⋅ P[∂N = A].
Finally we conclude the proof by using that ⟨σA⟩ = Z[σA]

Z[1] .

Remark 3.3. The denominator is always positive since

P[∂N = ∅] ≥ P[∀e ∈ E Ne = 0] = e−∣J ∣ > 0.
In contrast, the numerator may vanish, for example when A is odd.

A direct consequence of random current representation is that the multipoint spin
function is always nonnegative, since it is the ratio of two probabilities..

Corollary 3.4 (First GKS inequality). For every A ⊂ V , we have

⟨σA⟩ ≥ 0.
This inequality is fundamental in the theory and has many consequences, some of

them will be discuss in chapter 4.

Exercise 3.5. Let A ⊂ V . When do we have ⟨σA⟩ > 0?
Remark 3.6. The left hand side in (2.1) is at most 1, and therefore the theorem implies
that P[∂N = A] ≤ P[∂N = ∅].
4 Application: exact computations in dimension 1
In the introduction, we defined the magnetization in Z as

m(β) = lim
n→∞⟨σ0 ∣ σ−n = σn = +1⟩+Λn

, (2.2)

where µ+Λn
is the Ising measure on Λn = {−n, . . . , n} with E = {xy ∶ ∣x − y∣ = 1} weights

Je = β.
Consider the graph Gn obtained from Λn by identifying the two vertices −n and +n into

a new vertex called g. The graph Gn corresponds to the cyclic weighted graph illustrated
below. As discussed in the previous chapter, on can reinterpret the term in the right hand
side of (2.2) as the expectation of σ0 wrt to the +-Ising measure on Gn, with a (single)
ghost at g. ⟨σ0 ∣ σ−n = σn = +1⟩Λn = ⟨σ0⟩+Gn

.
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By Proposition 5.1, we have

⟨σ0⟩+Gn
= ⟨σ0σg⟩Gn ,

where µGn is the (free) Ising measure on Gn. By using the random current representation,
we have ⟨σ0σg⟩Gn = P[∂N = 0g]

P[∂N = ∅] .
Notice that a Poisson random variable is even with probability

�
n∈2N e

−β βn

n!
= e−β coshβ,

and odd with probability e−β sinhβ. The random current N is sourceless if all the weights
Ne are of the same parity. By independence, we obtain

P[∂N = ∅] = e−2nβ(sinh2n β + cosh2n β).
Similarly, by examining the parity constraint imposed by sources at 0 and g, we find

P[∂N = 0g] = 2e−2nβ(sinhn β coshn β).
Finally, we obtain

lim
n→∞⟨σ0 ∣ σ−n = σn = +1⟩+Λn

= sinhn β coshn β

sinh2n β + cosh2n β
,

which is asymptotically equivalent to sinhn β as n tends to infinity. This concludes that
m(β) = 0 for every β ≥ 0, and therefore βc =∞ in dimension 1.



Chapter 3

Double random current

In the previous chapter, we express ⟨σA⟩ as the ratio

P[∂N = A]
P[∂N = ∅]

The two probabilities appearing in the ratio are “degenerated” in the sense that they are
exponentially small in ∣J ∣ (in general). Therefore, they do not give a “nice” probabilistic in-
terpretation of ⟨σA⟩. In this chapter, we will see that one can obtain a better probabilistic
interpretation of ⟨σA⟩2. We will use a duplication principle (use two independent currents
rather than one) and then a manipulation on currents, called the switching lemma, that
will allow us to switch the sources from one current to the other..

Goals:

➜ Introduce the duplication method in order to express products of the form ⟨σA⟩⟨σB⟩.
➜ Switching Lemma for sources in a double random current.

➜ Give a probabilistic interpretation of ⟨σA⟩2 in term of a double current.

➜ Prove the second GKS inequality, monotonicity in J , and Simon-Lieb inequality.

Framework

• G = (V,E) finite graph with (Je)e∈E nonnegative weights.

• Ω = {−1,+1}V space of spin configurations, equipped with the Ising measure µ:

H(σ) = − �
xy∈E Jxyσxσy �→ µ[σ] = 1

Z
e−H(σ).

17
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1 Switching lemma
Consider the set of current

FA = {n ∈ NE ∶ ∣C ∩A∣ is even for every cluster C of n}
Notice that the event FA is empty if A is odd.

Lemma 1.1. Let A ⊂ V . Let m,n ∈ NE be two currents

1. If ∂n = A then n ∈ FA.

2. If m ∈ FA and m ≤ n then n ∈ FA.

3. If n ∈ FA, there exists η = η(n) ∈ {0,1}E such that η ≤ n and ∂η = A.

Proof. The first item follows from Corollary 1.4. For the second item, consider a cluster
C of n. Since m ≤ n, this cluster can be decomposed as a disjoint union

C = C1 ∪⋯∪Ck,

where k ≥ 1 and C1, . . . , Ck are disjoint clusters of m. Therefore ∣C∩A∣ = ∣C1∩A∣+⋯+∣Ck∩A∣
is even. We now move the third item. Without loss of generality we may assume that∣A∣ = 2k for some integer k ≥ 0. Let n ∈ A. Since each cluster of n intersects A at an even
number of points, one can pair the elements of A as

A = {x1, . . . , xk} ∪ {y1, . . . , yk}
such that xi

n←�→ yi for every i. For every index i, fix a path γi from xi to yi (identified
with the current e↦ 1e∈γi) and define

η = γ1 +⋯ + γk mod 2.

We conclude the proof from the following facts. For every i, we have ∂γi = {xi, yi}, and for
every currents k,m, the set of sources of the current (k+m mod 2) is equal to ∂kΔ∂m.

Theorem 1.2 (Switching lemma). Let M,N be two independent ppp(J). For every
A,B,C ⊂ V , we have

P[∂M = A,∂N = B,M +N ∈ FC] = P[∂M = AΔC,∂N = BΔC,M +N ∈ FC].
Proof. We build a coupling between two pairs of independent ppp(J) (M,N) and (�M,Ñ)
such that

{∂M = A,∂N = B,M +N ∈ FC} = {∂�M = AΔC,∂Ñ = BΔC,�M + Ñ ∈ FC}. (3.1)

Let K be a ppp(2J) on E. Independently, let (Z i
e)e∈E,i≥1 be iid Bernoulli(1/2) random

variables.
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If K ∈ FC , define η = η(K) ∈ {0,1}E such that η ≤ K and ∂η = C (its existence is
guaranteed by the third item of Lemma 1.1). Otherwise, set η = ∅. Define

Z̃i
e ∶= ⎧⎪⎪⎨⎪⎪⎩

1 −Zi
e if ηe = 1 and i = 1,

Zi
e otherwise.

for every e ∈ E and i ≥ 1. One can check that (Z̃i
e)e∈E,i≥1 are also iid Bernoulli (1/2)

random variables, independent of K. By the thinning property of Poisson processes, M
and N defined by

∀e ∈ E Me = Ke�
i=1Z

i
e and Ne =Ke −Me

are two independent ppp(J). Equivalently, we define �M and Ñ by using Z̃ instead of Z.
Again �M and Ñ are two independent ppp(J), and they are related to M,N via

�Me =Me + ηe − 2ηeZ1
e Ñe =Me − ηe + 2ηeZ1

e .

Therefore, if K ∈ FC , ∂�Me = ∂MeΔ∂η and ∂Ñe = ∂NeΔ∂η. Hence, for every A,B ⊂ V ,
we have

{∂M = A,∂N = B,K ∈ FC} = {∂�M = AΔC,∂Ñ = BΔC,K ∈ FC}.
Since the K =M +N = �M + Ñ , this proves Equation (3.1), and completes the proof.

2 Probabilistic interpretation of the multi-point func-
tion

In this section, we intoduce a duplication method which, together with the switrching
lemma, provides us with a probabilistic interpretation of ⟨σA⟩2.
Duplication method The duplication method is a general idea to compute product of
expectations of the form E[f(X)]E[g(X)], where X is a general random variable, and
f, g are two measurable map. By considering an independent copy Y with the same law
as X, we can write

E[f(X)]E[g(X)] = E[f(X)]E[g(Y )] = E[f(X)g(Y )],
provided all the expectations are well defined. This way, we transform the computation
of a product of expectation into a single expectation.
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Duplication and switching Let us apply the duplication method to random currents.
Let A ⊂ V . Let M,N be two independent ppp(J) on E. We have

⟨σA⟩⟨σA⟩ = P[∂M = A]
P[∂M = ∅] ⋅ P[∂N = A]P[∂N = ∅] = P[∂M = A,∂N = A]

P[∂M = ∅,∂N = ∅] . (3.2)

This manipulation allows us to apply the switching lemma. First, we use Items 1 and
2 of Lemma 1.1 to introduce the event FA: on the event ∂N = A, we necessarily have
N ∈ FA and therefore M +N ∈ FA. Hence,

P[∂M = A,∂N = A] = P[∂M = A,∂N = A,M +N ∈ FA]= P[∂M = ∅,∂N = ∅,M +N ∈ FA],
where we apply the switching lemma (Theorem 1.2) to A = B = C. By plugging this
expression in (3.2), we finally obtain

⟨σA⟩2 = P[M +N ∈ FA ∣ ∂M = ∂N = ∅] .
In the particular case A = xy, we obtain

⟨σxσy⟩2 = P[x M+N←���→ y ∣ ∂M = ∂N = ∅] ,
which gives a neat interpretation of the two-point function as the connection probability
in the superposition of two independent sourceless currents.

3 Second GKS inequality
Theorem 3.1. For every A,B ⊂ V we have

⟨σAσB⟩ ≥ ⟨σA⟩⟨σB⟩
Remark 3.2. It implies the first GKS inequality. If A is even and non empty, consider
x ∈ A and apply the second GKS inequality to A�{x} and {x}.
Proof. We first use the duplication principle and express the product ⟨σA⟩⟨σB⟩ in terms
of two independent random currents M and N , and then compare the two expressions by
using the switching lemma.

⟨σA⟩⟨σB⟩ = P[∂M = A]
P[∂M = ∅] ⋅ P[∂N = B]P[∂N = ∅] = P[∂M = A,∂N = B]

P[∂M = ∅,∂N = ∅] . (3.3)

The quantity ⟨σAσB⟩ is not directly a product of two terms, but we can write it as⟨σAΔB⟩⟨σ∅⟩ to apply a duplication method and obtain the expression

⟨σAσB⟩ = P[∂M = AΔB,∂N = ∅]
P[∂M = ∅,∂N = ∅] . (3.4)
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In order to compare the numerators in Equations (3.3) and (3.4), we apply the switch-
ing lemma to switch the sources at B from one current to the other. To this aim, we first
use Items 1 and 2 of Lemma 1.1 to introduce the event FB: on the event ∂N = B, we
necessarily have N ∈ FB and therefore M +N ∈ FB. Hence,

P[∂M = A,∂N = B] = P[∂M = A,∂N = B,M +N ∈ FB]= P[∂M = AΔB,∂N = ∅,M +N ∈ FB],
where we used the switching lemma (Theorem 1.2) in the second line.

By plugging this expression in (3.3) and taking the difference with (3.4), we finally
obtain

⟨σAσB⟩ − ⟨σA⟩⟨σB⟩ = P[∂M = AΔB,∂N = ∅,M +N ∉ FB]
P[∂M = ∅,∂N = ∅] ,

which concludes the proof.

4 Monotonicity in the weights
In this section, we consider the Ising model with different weights. To avoid confusion,
write µJ for the Ising measure on G with weights J , ⟨⋅⟩J for the corresponding expectation
and ZJ for the partition function. Given some weights J and J ′ on G, write J ≤ J ′ if
Je ≤ J ′e for every e ∈ E.

Proposition 4.1 (monotonicity in J). Let J, J ′ be weights on G. For every A ⊂ V , we
have

J ≤ J ′ �⇒ ⟨σA⟩J ≤ ⟨σA⟩J ′
Proof. Defining g(σ) = exp �∑e∈E(J ′e − Je)σe�, we have

ZJ ′[σA] = �
σ∈ΩσA exp ��

e∈E J
′
eσe� = �

σ∈ΩσAg(σ) exp ��
e∈E Jeσe� = ZJ[σAg]

Hence,

⟨σA⟩J ′ = ZJ[σAg]
ZJ[g] = ⟨gσA⟩J⟨g⟩J . (3.5)

By writing the exponential as a series and expanding all the products, we can rewrite g
as

g(σ) =�
k∈N

1

k!
��
e∈E(J ′e − Je)σe�k = �

S⊂V αSσS,

with αS ≥ 0 for every S. Therefore, by GKS inequality and linearity, we have ⟨gσA⟩J ≥⟨g⟩J⟨σA⟩ which, together with Equation (3.5) concludes ⟨σA⟩J ′ ≥ ⟨σA⟩J .
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5 Simon-Lieb inequality
Notation Let S ⊂ V . We write µS the Ising measure on the graph induced by S (i.e.
the graph with vertex set S and edge set {e ∈ E ∶ e ⊂ S}), and ⟨⋅⟩S for the corresponding
expectation. For n ∈ NE we write nS for the current on G defined by

nS
e = ⎧⎪⎪⎨⎪⎪⎩

ne if e ⊂ S
0 otherwise.

Notice that with this notation we have

⟨σA⟩S = P[∂NS = A]
P[∂NS = ∅] .

for every A ⊂ S ⊂ V .
The switching lemma of Section 1 has several generalizations: for example the two

currents M and N may be defined on larger and possibly different graphs than the part
where we switch the sources. The lemma below allows us to switch sources between M
to NS, provided the sources are in S

Lemma 5.1. Let S ⊂ V . Let M,N be two independent ppp(J). For every x, y, z ∈ V
distinct, we have

P[∂MS = ∅,∂N = xz, x MS+NS←����→ y] = P[∂MS = xy,∂N = yz]
Proof. First decompose N = NS+N−NS, and notice that the two currents NS and N−NS

are independent (since they have disjoint supports). Therefore

P[∂MS = ∅,∂N = xz, x NS←��→ y] = �
k∈NE

P[∂MS = ∅,∂NS = ∂kΔxz, x
MS+NS←����→ y]P[N −NS = k]

= �
k∈NE

P[∂MS = xy,∂NS = ∂kΔyz]P[N −NS = k]
= P[∂MS = xy,∂N = yz],

where we apply the switching Lemma to (MS,NS) and A = ∅,B = ∂kΔxz,C = xy in the
second line.

Theorem 5.2 (Simon-Lieb inequality). Let S ⊂ V and consider its inner vertex boundary
∂inS, defined as the set of vertices of S with at least one neighbour outside S. For every
x ∈ S and z ∈ V �S, we have

⟨σxσz⟩ ≤ �
y∈∂inS

⟨σxσy⟩S⟨σyσz⟩
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Proof. Without loss of generality, we may assume x ∉ ∂inS (otherwise the inequality is
trivially satisfied). We first express the two point function using the random current
representation, and a duplication principle

⟨σxσz⟩ = P[∂N = xz]
P[∂N = ∅] = P[∂MS = ∅,∂N = xz]

P[∂MS = ∅,∂N = ∅] . (3.6)

Recall that if N has two sources x and z, there must exist a path of G[N > 0] from x ∈ S
to z ∈ V �S. By considering the first portion of such path, before the moment it exits
S, one can see that there must exist a vertex y ∈ ∂inS such that x is connected to y in
G[NS > 0], and therefore in G[MS +NS > 0] . Therefore, by the union bound, we have

P[∂MS = ∅,∂N = xz] ≤ �
y∈∂inS

P[∂MS = ∅,∂N = xz, x MS+NS←����→ y]
= �

y∈∂inS
P[∂MS = xy,∂N = yz],

where the last equality corresponds to Lemma 5.1. Plugging this inequality in the expres-
sion (3.6) concludes the proof.


