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1 Financial markets in finite discrete time

In this chapter, we introduce basic concepts in order to model trading in a frictionless

financial market in finite discrete time. We recall the required notions from probability

theory and stochastic processes and directly illustrate them by means of examples.

Standard concepts and results from (measure-theoretic) probability theory are as-

sumed to be known; Chapter 8 contains a brief (and non-comprehensive) summary, and

details can be found in Jacod/Protter [10] or Durrett [6].

1.1 Basic probabilistic concepts

Financial markets involve uncertainty , in particular about the future evolution of asset

prices. We therefore start from a probability space (⌦,F , P ). Time evolves in discrete

steps over a finite horizon; we label trading dates as k = 0, 1, . . . , T with T 2 IN .

The flow of information over time is described by a filtration IF = (Fk)k=0,1,...,T ; this

is a family of �-fields Fk ✓ F which is increasing in the sense that Fk ✓ F` for k  `.

The interpretation is that Fk contains all events that are observable up to and including

time k.

An (IRd-valued) stochastic process in this discrete-time setting is simply a family

X = (Xk)k=0,1,...,T of (IRd-valued) random variables which are all defined on the same

probability space (⌦,F , P ). This can be used to describe the random evolution over time

of d quantities, e.g. a bank account, asset prices, some liquidly traded options, or the

holdings in a portfolio of assets. A stochastic process X is called adapted (to IF ) if each

Xk is Fk-measurable, i.e. observable at time k; it is called predictable (with respect to IF )

if each Xk is even Fk�1-measurable, for k = 1, . . . , T . (For the predictable processes X

we use here, the value X0 at time 0 is usually irrelevant.)

Example. If we think of a market where assets can be traded once each day (so that

the time index k numbers days), then the price of a stock will usually be adapted because

date k prices are known at date k. But if one wants to invest by selling or buying shares,

one must make that decision before one knows where prices go in the next step; hence

trading strategies must be predictable, unless one allows insiders or prophets. For a more
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detailed discussion, see Section 1.2.

Example (multiplicative model). Suppose that we start with random variables

r1, . . . , rT and Y1, . . . , YT . Take a constant S1
0 > 0 and define

eS0
k
:=

kY

j=1

(1 + rj), eS1
k
:= S

1
0

kY

j=1

Yj

for k = 0, 1, . . . , T . Note that we use here and throughout the convention that an empty

product equals 1 and an empty sum equals 0. Suppose also that rk > �1 and Yk > 0

P -a.s. for k = 1, . . . , T . Then we have

eS0
k

eS0
k�1

= 1 + rk,

eS1
k

eS1
k�1

= Yk,

or equivalently

eS0
k
� eS0

k�1 = eS0
k�1rk,

eS1
k
� eS1

k�1 = eS1
k�1(Yk � 1),

with eS0
0 = 1, eS1

0 = S
1
0 .

Interpretation. rk describes the (simple) interest rate for the period (k � 1, k]; so eS0

models a bank account with that interest rate evolution, and rk > �1 ensures that eS0
> 0,

in the sense that eS0
k
> 0 P -a.s. for k = 0, 1, . . . , T . Similarly, eS1 models a stock , say, and

Yk is the growth factor for the time period (k � 1, k]. Of course, we could strengthen the

analogy by writing Yk = 1+Rk; then Rk > �1 would describe the (simple) return on the

stock for the period (k � 1, k].

How about the filtration in this example? For a general discussion, see Remark 1.1

below. The most usual choice for IF is the filtration generated by Y , i.e.,

Fk = �(Y1, . . . , Yk) = �(eS1
0 ,
eS1
1 , . . . ,

eS1
k
)

is the smallest �-field that makes all stock prices up to time k observable. Then eS1 is

obviously adapted to IF . The bank account is naturally less risky than a stock, and in
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particular the interest rate for the period (k � 1, k] is usually known at the beginning,

i.e. at time k�1. So each rk ought to be Fk�1-measurable, i.e. the process r = (rk)k=1,...,T

should be predictable. Then eS0 is also predictable (and vice versa). In particular, the

interest rate rk for the period (k� 1, k] then only depends on Y1, . . . , Yk�1 or equivalently

on the stock prices eS1
0 ,
eS1
1 , . . . ,

eS1
k�1, but not on other factors. This can be generalised.

Example (binomial model). Suppose all the rk are constant with a value r > �1;

this means that we have the same nonrandom interest rate over each period. Then the

bank account evolves as eS0
k
= (1 + r)k for k = 0, 1, . . . , T .

Suppose also that Y1, . . . , YT are independent and only take two values, 1 + u with

probability p, and 1 + d with probability 1� p. In particular, this means that all the Yk

have the same distribution; they are identically distributed (with a particular two-point

distribution). Usually, one also has u > 0 and �1 < d < 0 so that 1 + u > 1 and

0 < 1 + d < 1. Then the stock price at each step moves either up (by a factor 1 + u) or

down (by a factor 1 + d), because

eS1
k

eS1
k�1

= Yk =

8
<

:
1 + u with probability p

1 + d with probability 1� p.

This is the so-called Cox–Ross–Rubinstein (CRR) binomial model .

Remark. If in the general multiplicative model, the rk are all constant with the same

value and Y1, . . . , YT are i.i.d., we have the i.i.d. returns model. If in addition the Yk only

take finitely many values (two or more), we get the multinomial model . ⇧

Remark 1.1. (This remark is for mathematicians, but not only.) In the general multi-

plicative model, one could also start with the filtration

F
0
k
:= �(Y1, . . . , Yk, r1, . . . , rk) = �(eS1

0 ,
eS1
1 , . . . ,

eS1
k
, eS0

0 ,
eS0
1 , . . . ,

eS0
k
)

generated by both Y and r, or equivalently by both assets eS0 and eS1. In general, this

filtration IF
0 is bigger than IF , meaning that F 0

k
◆ Fk for all k. But if one also assumes
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that the process r (or, equivalently, the bank account eS0) is predictable, one can show by

induction that

F
0
k
= �(Y1, . . . , Yk) = Fk for all k.

This explains a posteriori why we have started above directly with IF generated by Y . ⇧
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1.2 Financial markets and trading

In this section, we present the basic model for a discrete-time financial market and explain

how to describe dynamic trading in a mathematical way. This involves stochastic processes

to describe asset prices and trading strategies, and gains or losses from trade are then

naturally described by (discrete-time) stochastic integrals.

As Dieter Sondermann, the founder and first editor of the journal “Finance and

Stochastics”, once said: “The financial engineer always starts from a filtered probabil-

ity space.” In all the sequel in this chapter, we work on a probability space (⌦,F , P )

with a filtration IF = (Fk)k=0,1,...,T for some T 2 IN , without repeating this explicitly.

We shall only be more specific when we want to exploit special properties of a particular

model (⌦,F , IF, P ). We sometimes assume that F0 is (P -)trivial , i.e. P [A] 2 {0, 1} for all

A 2 F0; this equivalently means that any F0-measurable random variable is P -a.s. con-

stant, and it represents a situation where we have no nontrivial information at time 0.

For notational convenience, we sometimes also assume that F = FT ; this means that any

event is observable by time T at the latest.

The basic asset prices in our financial market are specified by a strictly positive

adapted process eS0 = (eS0
k
)k=0,1,...,T and an IR

d-valued adapted process eS = (eSk)k=0,1,...,T .

The interpretation is that eS0 models a reference asset or numeraire; this explains why we

assume that eS0
0 = 1 and eS0 is strictly positive, i.e. eS0

k
> 0 P -a.s. for all k. In many cases,

we think of eS0 as a bank account and then in addition also assume that eS0 is predictable;

see Section 1.1. In contrast, eS = (eS1
, . . . , eSd) describes the prices of d genuinely risky

assets (often called stocks); so eSi

k
is the price of asset i at time k, and because this be-

comes known at time k, but usually not earlier, each eSi and hence also the vector process

eS is adapted. For financial reasons, one might want eSi

k
� 0 P -a.s. for all i and k, but

mathematically, this is not needed.

Prices (and values) are expressed in units of something, but it is economically not

relevant what that is; all prices (and values) are relative. To simplify notations, we

immediately switch to units of the reference asset eS0; this is sometimes called “discounting

with eS0 ” or “using eS0
as numeraire”. Mathematically, it basically amounts to dividing at

each time k every traded quantity by eS0
k
; so the discounted price of the reference asset is
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simply S
0
k
:= eS0

k
/eS0

k
= 1 at all times, and the discounted asset prices S = (Sk)k=0,1,...,T are

given by Sk := eSk/
eS0
k
. If eS0 is viewed as a bank account, then in terms of interest rates,

using discounted prices is equivalent to working with zero interest . We shall explain later

how to re-incorporate interest rates; but our basic (discounted) model always has S0
⌘ 1,

and we usually call asset 0 the bank account.

Remark 2.1. It is important for this simplification by discounting that the reference

asset 0 is also tradable. So while we have only d risky assets with discounted prices

S
1
, . . . , S

d, there are actually d + 1 assets available for trading. This is almost always

implicitly assumed in the literature, but not always stated explicitly.

2) Economically, it should not matter whether one works in original or in discounted

prices (except that one has of course di↵erent units and di↵erent numbers). Mathe-

matically, however, things are more subtle. In finite discrete time, there is indeed an

equivalence between undiscounted and discounted formulations, as discussed in Delbaen/

Schachermayer [4, Section 2.5]. But in models with infinitely many trading dates (whether

in infinite discrete time or in continuous time), one must be more careful because there

are pitfalls. ⇧

We assume that we have a frictionless financial market , which includes quite a lot of

assumptions. There are no transaction costs so that assets can be bought or sold at the

same price (at any given time); money (in the bank account) can be borrowed or lent at

the same (zero) interest rate; assets are available in arbitrarily small or large quantities;

there are no constraints on the numbers of assets one holds, and in particular, one may

decide to own a negative number of shares (so-called short selling); and investors are

small so that their trading activities have no e↵ect on asset prices (which means that S

is an exogenously and a priori given and fixed stochastic process). All this is of course

unrealistic; but for explaining and understanding basic concepts, one has to start with

the simplest case, and a frictionless financial market is in many cases at least a reasonable

first approximation.
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Definition. A trading strategy is an IR
d+1-valued stochastic process ' = ('0

,#), where

'
0 = ('0

k
)k=0,1,...,T is real-valued and adapted, and # = (#k)k=0,1,...,T with #0 = 0 is

IR
d-valued and predictable. The (discounted) value process of a strategy ' is the real-

valued adapted process V (') = (Vk('))k=0,1,...,T given by

(2.1) Vk(') := '
0
k
S
0
k
+ #

tr
k
Sk = '

0
k
+

dX

i=1

#
i

k
S
i

k
for k = 0, 1, . . . , T .

Interpretation. A trading strategy describes a dynamically evolving portfolio in the d+1

basic assets available for trade. At time k, we have '0
k
units of the bank account and

#
i

k
units (shares) of asset (stock) i, so that straightforward financial book-keeping gives

(2.1) as the time k value, in units of the bank account, of the time k portfolio holdings.

A little bit more precisely, 'k = ('0
k
,#k) is the portfolio with which we arrive at time

k. Because stock prices change at time k from Sk�1 to Sk and we arrive with holdings #k,

we could easily make profits if we could choose #k at time k. To avoid this and exclude

insiders and prophets, #k must therefore already be determined and chosen at time k� 1;

so #k is Fk�1-measurable, hence # is predictable, and #k are actually the holdings in risky

assets on [k� 1, k). In the same way, '0
k
are the bank account holdings on [k� 1, k); but

as the bank account is riskless (at least locally for each time step, by predictability), one

can allow '
0 to be adapted without giving investors any extra advantages. So '0

k
can be

Fk-measurable, which means that '0 is adapted..

With the above interpretation, we arrive at time k with the portfolio 'k = ('0
k
,#k)

and change this at time k to a new portfolio 'k+1 = ('0
k+1,#k+1) with which we then leave

for date k+1. Hence Vk(') in (2.1) is more precisely the pre-trade value of the strategy '

at time k. Note that we have not (yet) said anything about how investors get the money

to implement and update their chosen strategies.

Finally, as there are no activities before time 0, we demand via #0 = 0 that investors

start out without any shares. All they can do at time 0 is decide on their initial investment

V0(') = '
0
0 into the reference asset or bank account.

Remark. If the numeraire eS0 is just strictly positive and adapted, but not necessarily
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predictable, then also '0 must be predictable. We shall see later in Proposition 2.3 that

this is automatically satisfied if the strategy ' is self-financing. ⇧

Of course, investors must do book-keeping about their expenses (and income). To

work out the costs associated to a trading strategy ' = ('0
,#), we first observe that

apart from time 0, transactions only occur at the dates k when 'k is changed to 'k+1.

So the incremental cost for ' over the time interval (k, k + 1] occurs at time k when we

change from 'k to 'k+1 at the time-k prices Sk, and it is given by

�Ck+1(') := Ck+1(')� Ck(')(2.2)

= ('0
k+1 � '

0
k
)S0

k
+ (#k+1 � #k)

tr
Sk

= '
0
k+1 � '

0
k
+

dX

i=1

(#i

k+1 � #
i

k
)Si

k
.

Note that this is again in units of the bank account, hence discounted; and note also that

(2.2) is just a book-keeping identity with no room for alternative or artificial definitions.

Finally, the initial cost for ' at time 0 comes from putting '0
0 into the bank account; so

(2.3) C0(') = '
0
0 = V0(').

We also point out that it is to some extent arbitrary whether we associate the above cost

increment �Ck+1(') to the time interval (k, k + 1] or to [k, k + 1). The choice we have

made simplifies notations, but is not financially compelling.

Remark. '0, # and S are all stochastic processes, and so '0
k+1, '

0
k
, #k+1, #k and Sk are

all random variables, i.e., functions on ⌦ (to IR or IRd). In consequence, the equality in

(2.2) is really an equality between functions, and so (2.2) means that we have this equality

whenever we plug in an argument, i.e. for all !. In particular, what looks like one simple

equation is in fact an entire system of equations.

Of course, this comment applies not only to (2.2), but to all equalities or inequalities

between random variables. In addition, it is usually enough if the set of all ! for which

the relevant equality or inequality holds has probability 1; so e.g. (2.2) only needs to
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hold P -a.s., and a similar comment applies again in general. We often do not write

P -a.s. explicitly unless this becomes important for some reason. ⇧

Notation. For any stochastic process X = (Xk)k=0,1,...,T , we denote the increment of X

from k � 1 to k by

�Xk := Xk �Xk�1.

Elementary rewriting of (2.2) automatically brings up a new process as follows. By

adding and subtracting #tr
k+1Sk+1, we write

�Ck+1(') = '
0
k+1 � '

0
k
+ (#k+1 � #k)

tr
Sk(2.4)

= '
0
k+1 + #

tr
k+1Sk+1 � '

0
k
� #

tr
k
Sk � #

tr
k+1(Sk+1 � Sk)

= Vk+1(')� Vk(')� #
tr
k+1�Sk+1

= �Vk+1(')� #
tr
k+1�Sk+1.

But now we note that #k+1 is the share portfolio we have when arriving at time k + 1,

and �Sk+1 is the asset price change at time k + 1; hence #tr
k+1�Sk+1 is the (discounted)

incremental gain or loss arising over (k, k+ 1] from our trading strategy due to the price

fluctuations of S. (There is no such gain or loss from the bank account because its price

S
0
⌘ 1 does not change over time.) This justifies the following

Definition. Let ' = ('0
,#) be a trading strategy. The (discounted) gains process asso-

ciated to ' or to # is the real-valued adapted process G(#) = (Gk(#))k=0,1,...,T with

(2.5) Gk(#) :=
kX

j=1

#
tr
j
�Sj for k = 0, 1, . . . , T

(where G0(#) = 0 by the usual convention that a sum over an empty set is 0). The

(discounted) cost process of ' is defined by

(2.6) Ck(') := Vk(')�Gk(') for k = 0, 1, . . . , T ,

as justified by (2.3) and (2.4).
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Remark 2.2. If we think of a continuous-time model where successive trading dates are

infinitely close together, then the increment �S in (2.5) becomes a di↵erential dS and

the sum becomes an integral. This explains why the stochastic integral G(#) =
R
# dS

provides the natural description of gains from trade in a continuous-time financial market

model. As a mathematical aside, we also note that we should think of this stochastic

integral as “G(#) =
R P

d

i=1 #
i dSi ”, not as “

P
d

i=1

R
#
i dSi ”. It turns out in stochastic

calculus that this does make a di↵erence. ⇧

By construction, Ck(') = C0(')+
P

k

j=1 �Cj(') describes the cumulative (total) costs

for the strategy ' on the time interval [0, k]. If we do not want to worry about how to pay

these costs, we ideally try to make sure they never occur, by imposing this as a condition

on '. This motivates the next definition.

Definition. A trading strategy ' = ('0
,#) is called self-financing if its cost process C(')

is constant over time (and hence equal to C0(') = V0(') = '
0
0).

Due to (2.2), a strategy is self-financing if and only if it satisfies for each k

(2.7) '
0
k+1 � '

0
k
+ (#k+1 � #k)

tr
Sk = �Ck+1(') = 0 P -a.s.

As it should, from economic intuition, this means that changing the portfolio from 'k

to 'k+1 at time k can be done cost-neutrally, i.e. with zero gains or losses at that time.

In particular, all losses from the portfolio due to stock price changes must be fully com-

pensated by gains from the bank account holdings and vice versa, without infusing or

draining extra funds. Due to (2.6), another equivalent description of a self-financing

strategy ' = ('0
,#) is that it satisfies C(') = C0(') or

(2.8) V (') = V0(') +G(#) = '
0
0 +G(#)

(in the sense that Vk(') = V0(')+Gk(#) P -a.s. for each k). This gives the following very

useful result.
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Proposition 2.3. Any self-financing trading strategy ' = ('0
,#) is uniquely determined

by its initial wealth V0 and its “risky asset component” #. In particular, any pair (V0,#),

where V0 is an F0-measurable random variable and # is an IR
d-valued predictable process

with #0 = 0, specifies in a unique way a self-financing strategy. We sometimes write

' b= (V0,#) for the resulting strategy '.

Moreover, if ' = ('0
,#) is self-financing, then ('0

k
)k=1,...,T is automatically predictable.

The important feature of Proposition 2.3 is that it allows us to describe self-financing

strategies in a very simple way. We just have to specify the initial wealth V0 and the

strategy # we use for the risky assets; then the self-financing condition automatically

tells us how the bank account component '0 must evolve. The proof simply makes that

intuition precise, and so we give the short argument to get some practice.

Proof of Proposition 2.3. By (2.8) (or directly from the definitions of self-financing

and of C(') in (2.6), a strategy ' is self-financing if and only if for each k,

Vk(') = V0(') +Gk(#) P -a.s.

Because Vk(') = '
0
k
+#tr

k
Sk by definition, we can rewrite the above equation for '0

k
to get

'
0
k
= V0(') +Gk(#)� #

tr
k
Sk,

which already shows that '0 is determined from V0 and # by the self-financing condition.

To see that '0 is predictable, we note that

Gk(#)�Gk�1(#) = �Gk(#) = #
tr
k
�Sk = #

tr
k
(Sk � Sk�1).

Therefore

'
0
k
= V0(') +Gk�1(#) +�Gk(#)� #

tr
k
Sk

= V0(') +Gk�1(#)� #
tr
k
Sk�1

is directly seen to be Fk�1-measurable, because G(#) and S are adapted and # is pre-

dictable. q.e.d.
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Remarks. 1) The notion of a strategy being self-financing is a kind of economic budget

constraint . Exactly like the cost process, this is formulated via basic financial book-

keeping requirements, and hence there cannot be any alternative (di↵erent) definitions

that make sense financially. This is a clear example where basic modelling sense must

override mathematical convenience. (In fact, there have been some attempts in continuous

time to use a di↵erent concept of stochastic integral, the so-called Wick integral, to define

the notion of a self-financing strategy. This has led to mathematical results which were

easier to derive; but the approach has subsequently been demonstrated to be economically

meaningless.)

2) We have expressed all prices and values in units of the bank account. However, as

basic intuition suggests, this has no e↵ect on whether or not a strategy is self-financing;

indeed, because eS0
k
> 0, (2.7) is equivalent to

(2.9) ('0
k+1 � '

0
k
)eS0

k
+ (#k+1 � #k)

tr eSk = 0

if we recall that S = eS/eS0. But (2.9) is clearly the self-financing condition expressed in

terms of the original units. The same argument shows that the notion of self-financing

is numeraire-invariant in the sense that it does not depend on the units in which we do

calculations. [! Exercise] Note that it also does not matter here whether eS0 is predictable

or only adapted. ⇧

Example (Stopping a process at a random time). Let ⌧ : ⌦ ! {0, 1, . . . , T} be

some mapping to be thought of as some random time; one specific example might be the

first time that stock i’s price exceeds that of stock j. We should like to use the “strategy”

to “buy and then hold until time ⌧”, because we believe for some reason that this might

be a good idea. For ease of notation, we take d = 1 so that there is just one risky asset.

Formally, let us take V0 := S0 and

#k(!) := I{k⌧(!)} =

8
<

:
1 for k = 1, . . . , ⌧(!)

0 for k = ⌧(!) + 1, . . . , T ,

which means exactly that we hold one unit of S up to and including time ⌧(!), but no

further. The value process of the corresponding self-financing “strategy” ' b= (V0,#) is
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then by (2.8) and (2.5) given by

Vk(') = V0 +Gk(#)

= S0 +
kX

j=1

#j�Sj

= S0 +
kX

j=1

I{j⌧}(Sj � Sj�1)

= S0 +

8
<

:
Sk � S0 if ⌧ > k

S⌧ � S0 if ⌧  k

= Sk^⌧ =

8
<

:
Sk if k < ⌧

S⌧ if k � ⌧ ,

where we use the standard notation a ^ b := min(a, b).

The “stochastic process” S
⌧ = (S⌧

k
)k=0,1,...,T defined by

S
⌧

k
(!) := Sk^⌧ (!) := Sk^⌧(!)(!)

is called the process S stopped at ⌧ , because it clearly behaves like S up to time ⌧ and

remains constant after time ⌧ . Of course, for every ! 2 ⌦, this operation and notation

per se make sense for any stochastic process and any “random time” ⌧ as above.

However, a closer look shows that one must be a little more careful. For one thing, S⌧

could fail to be a stochastic process because S⌧

k
= Sk^⌧ could fail to be a random variable,

i.e. could fail to be measurable. But (in discrete time like here) this is not a problem if

we assume that ⌧ is measurable, which is mild and reasonable enough.

While the measurability question is mainly technical, there is a second and financially

much more relevant issue. For ' to be a strategy, we need # to be predictable, and this

translates into the equivalent requirement that ⌧ should be a so-called stopping time,

meaning that ⌧ : ⌦ ! {0, 1, . . . , T} satisfies

(2.10) {⌧  j} 2 Fj for all j.

To see this, note that #k = I{k⌧} is Fk�1-measurable if and only if {⌧ � k} 2 Fk�1, and

to have this for all k is equivalent to (2.10) by passing to complements. By definition,
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(2.10) means that ⌧ is a stopping time (with respect to IF , to be accurate). Intuitively,

(2.10) says that at each time j, we can observe from the then available information Fj

whether or not ⌧ is already past, i.e., whether the event corresponding to ⌧ has already

occurred. Typical examples are the first (or, by induction, n-th) time that an adapted

process does something that only involves looking at the past, e.g.

⌧(!) := inf{k : Si

k
(!) > S

j

k
(!)} ^ T

(the first time that stock i’s price exceeds that of stock j) or

⌧
0(!) := inf

n
k : S1

k
(!) � 10 max

j=0,1,...,k�1
S
1
j
(!)
o
^ T

(the first time that stock 1’s price goes above ten times its past maximum value). On the

other hand, times looking at the future like

⌧
00(!) := sup{k : S`

k
(!) > 5} _ 0

(the last time that stock `’s price exceeds 5) are typically not stopping times; so they

cannot be used for constructing such buy-and-hold strategies. This makes intuitive sense.

Example (A doubling strategy). Suppose we have a model where the stock price can

in each step only go up or down. A well-known idea for a strategy to force winnings is

then to bet on a rise and keep on betting, doubling the stakes at each date, until the rise

occurs.

More formally, consider the binomial model with parameters u > 0, �1 < d < 0 and

r = 0; so the stock price Sk is either (1+u)Sk�1 or (1+d)Sk�1. To simplify computations,

suppose u = �d so that the growth factors Yk = Sk/Sk�1 are symmetric around 1. Note

that as seen earlier,

(2.11) �Sk = Sk � Sk�1 = Sk�1(Yk � 1).

Now denote by

(2.12) ⌧ := inf{k : Yk = 1 + u} ^ T



1 FINANCIAL MARKETS IN FINITE DISCRETE TIME 19

the (random) time of the first stock price rise and define

(2.13) #k :=
1

Sk�1
2k�1

I{k⌧}.

Then ⌧ is a stopping time, because

{⌧  j} = {max(Y1, . . . , Yj) � 1 + u} 2 Fj

for each j, and so # is predictable because each #k is Fk�1-measurable. Note that this

uses {k  ⌧} = {⌧ < k}
c = {⌧  k � 1}c. Moreover,

#k+1Sk = 2kI{⌧�k+1} = 2⇥ 2k�1(I{⌧�k} � I{⌧=k}) = 2#kSk�1 � 2kI{⌧=k}

shows that while we are not successful, the value of our stock holdings (not the amount

of shares of the strategy itself) indeed doubles from one step to the next.

For V0 := 0, we now take the self-financing strategy ' corresponding to (V0,#). Its

value process is by (2.8) and (2.5) given by

Vk(') = Gk(#) =
kX

j=1

#j�Sj =
kX

j=1

2j�1
I{j⌧}(Yj � 1),

using (2.11) and (2.13). By the definition (2.12) of ⌧ , we have Yj = 1 + d for j < ⌧ and

Yj = 1 + u for j = ⌧ ; so

Vk(') = I{⌧>k}

kX

j=1

2j�1
d+ I{⌧k}

✓ ⌧�1X

j=1

2j�1
d+ 2⌧�1

u

◆

= (2k � 1)d I{⌧>k} +
�
(2⌧�1

� 1)d+ 2⌧�1
u
�
I{⌧k}.

Because u = �d and d < 0, we can write this as

Vk(') = |d|I{⌧k} � |d|(2k � 1)I{⌧>k},

which says that we obtain a value, and hence net gain, of |d| in all the (usually many)

cases that S goes up at least once up to time k, and make a (big) loss of |d|(2k � 1) in

the (hopefully unlikely) event that S always goes down up to time k.
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One problem with the doubling strategy in the above example is that while it does

produce a gain in many cases, its value process goes very far below 0 in those cases where

“things go badly”. In continuous time or over an infinite time horizon, one obtains quite

pathological e↵ects if one does not forbid such strategies in some way. The next definition

aims at that.

Definition. For a � 0, a trading strategy ' is called a-admissible if its value process V (')

is uniformly bounded from below by �a, i.e. V (') � �a in the sense that Vk(') � �a

P -a.s. for all k. A trading strategy is admissible if it is a-admissible for some a � 0.

Interpretation. An admissible strategy has some credit line which imposes a lower bound

on the associated value process; so one may make debts, but only within clearly defined

limits. Note that while every admissible strategy has some credit line, the level of that

can be di↵erent for di↵erent strategies.

Remarks. 1) If ⌦ (or more generally F) is finite, any random variable can only take

finitely many values; for any model with finite discrete time, every trading strategy is

then admissible. But if F (or the time horizon) is infinite or time is continuous, imposing

admissibility is usually a genuine and important restriction. We return to this point later.

2) Note that all our prices and values are discounted and hence expressed in units of the

reference asset 0. Imposing a constant lower bound on a value process like admissibility

does is therefore obviously not invariant if we change to a di↵erent reference asset for

discounting. This is the root of the pitfalls mentioned earlier in Remark 2.1. ⇧
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1.3 Some important martingale results

Martingales are ubiquitous in mathematical finance, as we shall see very soon. This

section collects a number of important facts and results we shall use later on.

Let (⌦,F , Q) be a probability space with a filtration IF = (Fk)k=0,1,...,T . A (real-

valued) stochastic process X = (Xk)k=0,1,...,T is called a martingale (with respect to Q

and IF ) if it is adapted to IF , is Q-integrable in the sense that Xk 2 L
1(Q) for each k,

and satisfies the martingale property

(3.1) EQ[X` | Fk] = Xk Q-a.s. for k  `.

Intuitively, this means that the best prediction for the later value X` given the earlier

information Fk is just the current value Xk; so the changes in a martingale cannot be

predicted. If we have “” in (3.1) (a tendency to go down), X is called a supermartingale;

if we have “�”, then X is a submartingale. An IR
d-valued process X is a martingale if

each coordinate X
i is a martingale.

It is important to note that the property of being a martingale depends on the proba-

bility we use to look at a process. The same process can very well be a martingale under

some Q, but not a martingale under another Q0 or P .

Example. In the binomial model on (⌦,F , IF, P ) with parameters r, u, d, the discounted

stock price eS1
/eS0 is a P -martingale if and only if r = pu+ (1� p)d.

Indeed, eS1
/eS0 is obviously adapted and takes only finitely many values; so it is

bounded and hence integrable. Moreover, by induction, one easily sees that it is enough

to check (the one-step martingale property) that

EP

 eS1
k+1

eS0
k+1

����Fk

�
=
eS1
k

eS0
k

for each k

or equivalently that

1 = EP

 eS1
k+1

eS0
k+1

�eS1
k

eS0
k

����Fk

�
= EP


Yk+1

1 + r

����Fk

�
.
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But Yk+1 is independent of Fk and takes the values 1+u, 1+ d with probabilities p, 1� p.

Therefore

EP


Yk+1

1 + r

����Fk

�
=

1

1 + r
EP [Yk+1]

=
1

1 + r

�
p(1 + u) + (1� p)(1 + d)

�

=
1 + pu+ (1� p)d

1 + r
.

This equals 1 if and only if r = pu+ (1� p)d, which proves the assertion.

For mathematical reasons and arguments, the following generalisation of martingales

is extremely useful.

Definition. An adapted process X = (Xk)k=0,1,...,T null at 0 (i.e. with X0 = 0) is

called a local martingale (with respect to Q and IF ) if there exists a sequence of stop-

ping times (⌧n)n2IN increasing to T such that for each n 2 IN , the stopped process

X
⌧n = (Xk^⌧n)k=0,1,...,T is a (Q, IF )-martingale. We then call (⌧n)n2IN a localising sequence.

Remarks. 1) Especially in continuous time, local martingales can be substantially

di↵erent from (true) martingales; the concept is rather subtle.

2) In parts of the recent finance literature, local martingales have come up in studies

of price bubbles. ⇧

The next result gives a whole class of examples of local martingales.

Theorem 3.1. Suppose X = (Xk)k=0,1,...,T is an IR
d-valued martingale or local martingale

null at 0. For any IR
d-valued predictable process #, the stochastic integral process # X

defined by

# Xk :=
kX

j=1

#
tr
j
�Xj for k = 0, 1, . . . , T
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is then a (real-valued) local martingale null at 0. If X is a martingale and # is bounded,

then # X is even a martingale.

Note that if we think of X = S as discounted asset prices, then # S = G(#) is the

discounted gains process of the self-financing strategy ' b= (0,#).

Proof of Theorem 3.1. This result is important enough to deserve at least a partial

proof. So suppose X is a Q-martingale and # is bounded. Then # X is also Q-integrable,

it is always adapted, and

EQ[# Xk+1 � # Xk | Fk] = EQ[#
tr
k+1�Xk+1 | Fk]

=
dX

i=1

EQ[#
i

k+1�X
i

k+1 | Fk].

But #i

k+1 is bounded and Fk-measurable because # is predictable, and �X
i

k+1 is Q-inte-

grable because X is a Q-martingale; so

EQ[#
i

k+1�X
i

k+1 | Fk] = #
i

k+1EQ[�X
i

k+1 | Fk] = 0

again because X
i is a Q-martingale. So # X also has the martingale property.

For the mathematicians: Because # is predictable,

�n := inf{k : |#k+1| > n} ^ T

is a stopping time, and |#k|  n for k  �n by definition. So if (⌧n)n2IN is a localising

sequence for X, one can easily check with the above argument that ⌧ 0
n
:= ⌧n ^ �n yields a

localising sequence for # X. This gives the general result. q.e.d.

We have seen earlier that if ⌧ is any stopping time, then #k := I{k⌧} is predictable,

and of course bounded. So if we note that # X = X
⌧
�X0, an immediate consequence

of Theorem 3.1 is

Corollary 3.2. For any martingale X and any stopping time ⌧ , the stopped process X⌧

is again a martingale. In particular, EQ[Xk^⌧ ] = EQ[X0] for all k.
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Interpretation. A martingale describes a fair game in the sense that one cannot predict

where it goes next. Corollary 3.2 says that one cannot change this fundamental character

by cleverly stopping the game — and Theorem 3.1 says that as long as one can only use

information from the past, not even complicated clever betting (in the form of trading

strategies) will help.

Remark. Corollary 3.2 still holds if we replace “martingale” by either “supermartingale”

or “submartingale”. However, such a generalisation is not true in general for Theorem 3.1.

[! Exercise] ⇧

In general, the stochastic integral with respect to a local martingale is only a local

martingale — and in continuous time, it may fail to be even that in the most general

case. But there is one situation where things are very nice in discrete time, and this is

tailor-made for applications in mathematical finance, as one can see by looking at the

definition of self-financing and admissible strategies.

Theorem 3.3. Suppose that X is an IR
d-valued local Q-martingale null at 0 and # is

an IR
d-valued predictable process. If the stochastic integral process # X is uniformly

bounded below (i.e. # Xk � �b Q-a.s. for all k, with a constant b � 0), then # X is a

Q-martingale.

Proof. See Föllmer/Schied [9, Theorem 5.15]. A bit more generally, this relies on

the result that in discrete (possibly infinite) time, a local martingale that is uniformly

bounded below is a true martingale. More precisely: If L = (Lk)k2IN0 is a local Q-martin-

gale with EQ[|L0|] < 1 and T 2 IN is such that EQ[L
�
T
] < 1, then the stopped process

L
T = (Lk)k=0,1,...,T is a Q-martingale. q.e.d.

We shall see later that Theorem 3.3 is extremely useful.

Remark. We have formulated everything here for the setting k = 0, 1, . . . , T of finite
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discrete time. The same definitions and results also apply for the setting k 2 IN0 of

infinite discrete time; the only required change is that one must replace T by 1 in an

appropriate manner. ⇧
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1.4 An example: The multinomial model

In this section, we take a closer look at the multinomial model already introduced briefly

in Section 1.1. Recall that this is the multiplicative model with i.i.d. returns given by

eS0
k

eS0
k�1

= 1 + r > 0 for all k,

eS1
k

eS1
k�1

= Yk for all k,

where eS0
0 = 1, eS1

0 = S
1
0 > 0 is a constant, and Y1, . . . , YT are i.i.d. and take the finitely

many values 1 + y1, . . . , 1 + ym with respective probabilities p1, . . . , pm. To avoid degen-

eracies and fix the notation, we assume that all the probabilities pj are > 0 and that

ym > ym�1 > · · · > y1 > �1. This also ensures that eS1 remains strictly positive.

The interpretation for this model is very simple. At each step, the bank account

changes by a factor of 1+r, while the stock changes by a random factor that can only take

the m di↵erent values 1+yj, j = 1, . . . ,m. The choice of these factors happens randomly,

with the same mechanism (identically distributed) at each date, and independently across

dates. Intuition suggests that for a reasonable model, the sure factor 1 + r should lie

between the minimal and maximal values 1 + y1 and 1 + ym of the (uncertain) random

factor; we come back to this issue in the next chapter when we discuss absence of arbitrage.

The simplest and in fact canonical model for this setup is a path space. Let

⌦ = {1, . . . ,m}
T

=
�
! = (x1, . . . , xT ) : xk 2 {1, . . . ,m} for k = 1, . . . , T

 

be the set of all strings of length T formed by elements of {1, . . . ,m}. Take F = 2⌦, the

family of all subsets of ⌦, and define P by setting

(4.1) P [{!}] = px1px2 · · · pxT =
TY

k=1

pxk
.

Finally, define Y1, . . . , YT by

(4.2) Yk(!) := 1 + yxk



1 FINANCIAL MARKETS IN FINITE DISCRETE TIME 27

so that Yk(!) = 1 + yj if and only if xk = j. This mathematically formalises the idea

that at each step k, we choose the value 1 + yj for Yk with probability pj, and we do this

independently over k because P is obtained by multiplication. A nice way to graphically

illustrate the construction of this canonical model (⌦,F , P ) is to draw a (non-recombining)

tree of length T with m branches going out from each node. We then place the pj as

one-step transition probabilities into each branching, and the probability of each single

trajectory ! is obtained by multiplying the one-step transition probabilities along the

way. [A figure to illustrate this is very helpful.]

As usual, we take as filtration the one generated by eS1 (or, equivalently, by Y ) so that

Fk = �(Y1, . . . , Yk) for k = 0, 1, . . . , T .

Intuitively , this means that up to time k, we can observe the values of Y1, . . . , Yk and

hence the first k “bits” of the trajectory or string !. Formally , this translates as follows.

Recall that for a general probability space (⌦,F , P ), a set B is an atom of a �-field

G ✓ F if B 2 G, P [B] > 0 and any C 2 G with C ✓ B has either P [C] = 0 or

P [C] = P [B]. In that sense, atoms of a �-field G are minimal elements of G, where

minimal is measured with the help of P .

In the above path-space setting, the only set of probability zero is the empty set, and

so P [C] = 0 and P [C] = P [B| translate into C = ; and C = B, respectively. A set

A ✓ ⌦ is therefore an atom of Fk if and only if there exists a string (x̄1, . . . , x̄k) of length

k with elements x̄i 2 {1, . . . ,m} such that A consists of all those ! 2 ⌦ that start with

the substring (x̄1, . . . , x̄k), i.e.

A = Ax̄1,...,x̄k
:=
�
! = (x1, . . . , xT ) 2 {1, . . . ,m}

T : xi = x̄i for i = 1, . . . , k
 
.

This has the following consequences for our path-space model:

– Each Fk is parametrised by substrings of length k and therefore contains precisely

m
k atoms.

– When going from time k to time k + 1, each atom A = Ax̄1,...,x̄k
from Fk splits into

precisely m subsets A1 = Ax̄1,...,x̄k,1, . . . , Am = Ax̄1,...,x̄k,m
that are atoms of Fk+1. So
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we can see very precisely and graphically how information about the past, i.e. the

initial part of trajectories !, is growing and refining over time.

It is clear from the above description that for any k, the atoms of Fk are pairwise disjoint

and their union is ⌦; in other words, the atoms of Fk form a partition of ⌦ so that we

can write

⌦ =
[

(x̄1,...,x̄k)2{1,...,m}k
Ax̄1,...,x̄k

with the Ax̄1,...,x̄k
pairwise disjoint.

Finally, each set B in Fk is a union of atoms of Fk; so the family Fk of events observable

up to time k consists of 2m
k
sets (because for each of the mk atoms, we can either include

it or not when forming B).

Remark. For many (but not all) purposes in the multinomial model, it is enough if one

looks at time k only at the current value eS1
k
of the stock. In graphical terms, this means

that one makes the underlying tree recombining by collapsing at each time k into one

(big) node all those nodes where eS1
k
has the same value. In terms of �-fields, this amounts

to looking at time k only at Gk = �(eS1
k
). It is clear that Gk (as a collection of subsets

of ⌦, i.e. Gk ✓ 2⌦) is substantially smaller than Fk and also that the recombining tree

is much less complicated. However, note that the family (Gk)k=0,1,...,T is in general not a

filtration; we do not have Gk ✓ G` for k  `. ⇧

With the help of the atoms introduced above, we can also give a very precise and

intuitive description of all probability measures Q on FT . First of all, we identify each atom

in Fk with a node at time k of the non-recombining tree, namely that node which is reached

via the substring (x̄1, . . . , x̄k) that parametrises the atom. For any atom A = Ax̄1,...,x̄k
of

Fk, we then look at its m successor atoms A1 = Ax̄1,...,x̄k,1, . . . , Am = Ax̄1,...,x̄k,m
of Fk+1,

and we define the one-step transition probabilities for Q at the node corresponding to A

by the conditional probabilities (note that Aj \ A = Aj as Aj ✓ A)

(4.3) Q[Aj |A] =
Q[Aj]

Q[A]
for j = 1, . . . ,m.
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Because A is the disjoint union of A1, . . . , Am, we have 0  Q[Aj |A]  1 for j = 1, . . . ,m

and
P

m

j=1 Q[Aj |A] = 1. (If Q[A] is zero, then so are all the Q[Aj] because Aj ✓ A, and

we can for instance define the ratios to be 1
m
, to make sure they are � 0 and sum to 1.)

By attaching all these one-step transition probabilities to each branch from each node, we

then have by construction a decomposition or factorisation of Q in such a way that for

every trajectory ! 2 ⌦, its probability Q[{!}] is the product of the successive one-step

transition probabilities along !. This follows in an elementary way from the definition of

conditional probabilities, Q[C \D] = Q[C]Q[D |C], and by iteration. In more detail, we

can write, for !̄ = (x̄1, . . . , x̄T ),

Q[{!̄}] = Q[Ax̄1,...,x̄T ]

= Q[Ax̄1,...,x̄T |Ax̄1,...,x̄T�1 ]Q[Ax̄1,...,x̄T�1 ]

= qx̄T (x̄1, . . . , x̄T�1)Q[Ax̄1,...,x̄T�1 ]

and iterate from here to obtain

Q[{!̄}] = qx̄1

T�1Y

j=1

qx̄j+1(x̄1, . . . , x̄j).

In the above procedure, we have factorised a given probability measure Q on (⌦,F)

into its one-step transition probabilities. However, this idea also works the other way

round. If we take for each node m numbers in [0, 1] that sum to 1 and attach them to the

branches from that node as “one-step transition probabilities”, then defining Q[{!}] for

each ! 2 ⌦ to be as in (4.1) the product of the numbers along ! defines a probability mea-

sure Q on FT whose one-step transition probabilities, defined as above in (4.3) via atoms,

coincide with the a priori chosen numbers at each node. Indeed, just using (4.1) gives in

(4.3) that Q[Aj |A] = Q[Ax̄1,...,x̄k,j
|Ax̄1,...,x̄k

] = qj(x̄1, . . . , x̄k). Hence we can describe Q

equivalently either via its global weights Q[{!}] or via its local transition behaviour. The

latter description is particularly useful when computing conditional expectations under

Q, as we shall see later in Sections 2.1, 2.3 or 3.3.

For a general Q, one can have di↵erent one-step transition probabilities at every node

in the tree. The (coordinate) variables Y1, . . . , YT from (4.2) are independent under Q if

and only if for each k, the one-step transition probabilities are the same for each node at
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time k (but they can still di↵er across dates k). Finally, Y1, . . . , YT are i.i.d. under Q if

and only if at each node throughout the tree, the one-step transition probabilities are the

same. Probability measures with this particular structure can therefore be described by

m � 1 parameters; recall that the m one-step transition probabilities at any given node

must sum to 1, which eliminates one degree of freedom.

Remark. We have discussed the path space formulation for the multinomial model where

each node in the tree has the same number of successor nodes and in that sense is homo-

geneous in time. But of course, the same considerations can be done for any model where

the final �-algebra FT is finite. The only di↵erence is that the corresponding event tree

is no longer nicely symmetric and homogeneous, which makes the notation (but not the

basic considerations) more complicated. ⇧
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2 Arbitrage and martingale measures

Our goal in this chapter is to formalise the idea that a reasonable financial market model

should not allow the construction of riskless yet profitable investment strategies, and to

characterise this by an equivalent mathematical property. Throughout the chapter,

we consider a discounted financial market in finite discrete time on (⌦,F , IF, P ) with

IF = (Fk)k=0,1,...,T , where discounted asset prices are given by the processes S0
⌘ 1 and

S = (Sk)k=0,1,...,T , the latter taking values in IR
d.

2.1 Arbitrage

Recall from Proposition 1.2.3 that any pair (V0,#) consisting of V0 2 L
0(F0) and an

IR
d-valued IF -predictable process # can be identified with a self-financing strategy ',

whose value process is then given by V (') = V0 + G(#) = V0 +
R
# dS = V (V0,#). We

shortly write ' b= (V0,#). (Of course, we work throughout in units of asset 0.) Hence

G(#) = V (0,#) describes the cumulative gains or losses one can generate from initial

capital 0 through self-financing trading via ' b= (0,#). We also recall that a strategy '

is a-admissible if V (') � �a, and admissible if it is a-admissible for some a � 0. Note

that these notions depend on the chosen accounting unit or numeraire (here S
0), except

for 0-admissibility.

Definition. An arbitrage opportunity is an admissible self-financing strategy ' b= (0,#)

with zero initial wealth, with VT (') � 0 P -a.s. and with P [VT (') > 0] > 0. The finan-

cial market (⌦,F , IF, P, S
0
⌘ 1, S) or shortly S is called arbitrage-free if there exist no

arbitrage opportunities. Sometimes one also says that S satisfies (NA).

Interpretation. An arbitrage opportunity produces something (nonnegative final wealth

VT (') � 0, with a genuine chance of having strictly positive final wealth) out of noth-

ing (zero initial capital) without any risk (because the strategy is self-financing). In a

well-functioning market, such “money pumps” cannot exist (for long) because they would

quickly be exploited and hence would vanish. So absence of arbitrage is a natural eco-
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nomic/financial requirement for a reasonable model of a financial market.

Remarks. 1) An arbitrage opportunity in the sense of the above definition is actually a

specific form of an arbitrage opportunity of the first kind. More generally, one can look

at self-financing strategies ' b= (V0,#) with VT (') = V0+GT (#) � 0 P -a.s. and V0(')  0

P -a.s. An arbitrage opportunity of the first kind then has in addition P [VT (') > 0] > 0,

while an arbitrage opportunity of the second kind has in addition P [V0(') < 0] > 0.

2) One can also introduce the condition (NA+) which says that it is impossible to

produce something out of nothing with 0-admissible self-financing strategies, or (NA0)

which does the same for all (not necessarily admissible) self-financing strategies. Then we

clearly have the implications (NA0) =) (NA) =) (NA+), and the distinction is important

in continuous time or with an infinite time horizon. But for finite discrete time, the three

concepts are all equivalent; see Proposition 1.1 below. ⇧

Example. If there exist an asset i0 and a date k0 such that S
i0
k0+1  S

i0
k0

P -a.s. and

P [Si0
k0+1 < S

i0
k0
] > 0, then S admits arbitrage.

Indeed, the price process Si0 can only go down from time k0 to k0 + 1 and does so in

some cases (i.e., with positive probability); so if we sell short that asset at time k0, we run

no risk and have the chance of a genuine profit. Formally, the strategy ' b= (0,#) with

#
i

k+1 := �I{i=i0}I{k+1=k0} for k = 0, 1, . . . , T � 1

gives an arbitrage opportunity, as one easily checks. [! Exercise] This also illustrates the

well-known wisdom that “bad news is better than no news” .

Let us introduce a useful notation. For any �-field G ✓ F , we denote by L
0
(+)(G)

the space of all (equivalence classes, for the relation of equality P -a.s., of) (nonnegative)

G-measurable random variables. Then for example, we can write VT (') � 0 P -a.s. and

P [VT (') > 0] > 0 more compactly as VT (') 2 L
0
+(FT ) \ {0}.

Proposition 1.1. For a discounted financial market in finite discrete time, the following

are equivalent:
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1) S is arbitrage-free.

2) There exists no self-financing strategy ' b= (0,#) with zero initial wealth and satis-

fying VT (') � 0 P -a.s. and P [VT (') > 0] > 0; in other words, S satisfies (NA0).

3) For every (not necessarily admissible) self-financing strategy ' with V0(') = 0 P -a.s.

and VT (') � 0 P -a.s., we have VT (') = 0 P -a.s.

4) For the space

G
0 := {GT (#) : # is IRd-valued and predictable}

of all final wealths that one can generate from zero initial wealth through some

self-financing trading ' b= (0,#), we have

G
0
\ L

0
+(FT ) = {0}.

Remarks. 1) Proposition 1.1 and its proof substantiate the above comment that all

three above formulations for absence of arbitrage are equivalent in finite discrete time.

2) The mathematical relevance of Proposition 1.1 is that it translates the no-arbitrage

condition (NA) into the formulation in 4) which has a very useful geometric interpretation.

We shall exploit this in the next section. ⇧

Proof of Proposition 1.1. “2) , 3)” is obvious, and “2) , 4)” is a direct consequence

of the parametrisation of self-financing strategies in Proposition 1.2.3. It is also clear that

(NA0) as in 2) implies (NA) as in 1). Finally, the argument for “1) ) 2)” is indirect

and even shows a bit more: We claim that if one has a self-financing strategy ' which

produces something out of nothing, one can construct from ' a 0-admissible self-financing

strategy '̃ which also produces something out of nothing. Indeed, if ' is not already

0-admissible itself, then the set Ak := {Vk(') < 0} has P [Ak] > 0 for some k. We take

as k0 the largest of these k and then define '̃ simply as the strategy ' on Ak0 after time

k0. In words, we wait until we can start on some set with a negative initial capital and

transform that via ' into something nonnegative. As this turns something nonpositive
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into something nonnegative and keeps wealth nonnegative by construction, it produces

the desired arbitrage opportunity.

(Writing out the above verbal argument in formal terms and checking all the details

is an excellent [! exercise] necessarily increase the financial understanding.) q.e.d.

Our next intermediate goal is to give a simple probabilistic condition that excludes

arbitrage opportunities. Recall that two probability measuresQ and P on F are equivalent

(on F), written as Q ⇡ P (on F), if they have the same nullsets (in F), i.e. if for each

set A (in F), we have P [A] = 0 if and only if Q[A] = 0. Intuitively, this means that while

P and Q may di↵er in their quantitative assessments, they qualitatively agree on what is

“possible or impossible”.

Example. If we construct the multinomial model as in Section 1.4 as an event tree on the

canonical path space ⌦ = {1, . . . ,m}
T with F = 2⌦, then we know that any probability

measure on (⌦,F) can be described by its collection of one-step transition probabilities,

which all lie between 0 and 1, i.e. in [0, 1].

Now consider two probability measures P and Q on (⌦,F). If some of the transition

probabilities pij of P are 0 (or 1), a characterisation of Q being equivalent to P is a bit

involved, and so we assume (as for example in the multinomial model) that P [{!}] > 0

for all ! 2 ⌦. This means that all one-step transition probabilities pij for P lie in the open

interval (0, 1), and then we have Q ⇡ P if and only if all one-step transition probabilities

qij for Q lie in (0, 1) as well.

Now we go back to the general case.

Lemma 1.2. If there exists a probability measure Q ⇡ P on FT such that S is a

Q-martingale, then S is arbitrage-free.

Proof. If S is a Q-martingale and ' b= (0,#) is an admissible self-financing strategy,

then V (') = G(#) = # S is a stochastic integral of S and uniformly bounded below (by
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some �a with a � 0). By Theorem 1.3.3, V (') is thus also a Q-martingale and so

EQ[VT (')] = EQ[V0(')] = 0.

Now suppose in addition that Q ⇡ P on FT , so that Q-a.s. and P -a.s. are the same thing

for all events in FT . If ' b= (0,#) is an admissible self-financing strategy with VT (') � 0

P -a.s., then also VT (') � 0 Q-a.s. But EQ[VT (')] = 0 by the above argument, and so

we must have VT (') = 0 Q-a.s., hence also VT (') = 0 P -a.s. By Proposition 1.1, S is

therefore arbitrage-free. q.e.d.

Remark 1.3. 1) It would be enough if S is only a local Q-martingale, because we could

still use Theorem 1.3.3.

2) An alternative proof of Lemma 1.2 goes as follows. This is attractive because

it proves a more general result, and the proof still works (with one reference changed)

in continuous or infinite discrete time. Suppose that Q ⇡ P on FT is such that S is

a local Q-martingale and take an admissible self-financing strategy ' b= (0,#). Then

V (') = G(#) = # S is a local Q-martingale by Theorem 1.3.1, with V0(') = 0, and V (')

is bounded below because ' is admissible. (In continuous time, the argument and reference

here are bit di↵erent.) But then V (') is a Q-supermartingale (this is easily argued via

localising and passing to the limit with the help of Fatou’s lemma [! exercise]), and so we

get EQ[VT (')]  EQ[V0(')] = 0. If in addition VT (') � 0 P -a.s., we also get VT (') � 0

Q-a.s., hence VT (') = 0 Q-a.s., and then also VT (') = 0 P -a.s. This allows us to conclude

as before.

3) We can also give a complete proof of Lemma 1.2 which relies only on proved

results. We still use that with ' b= (0,#), we have V (') = G(#) = # S. Now because

# is predictable, the process #(n) defined by #(n)
k

:= #kI{|#k|n} is again predictable and

bounded. So if S is a martingale under Q, then #(n)
S is again a Q-martingale by (the

simple and proved part of) Theorem 1.3.1. Moreover, the definition of #(n) yields

�(#(n)
k

)tr�Sk = �#
tr
k
�SkI{|#k|n}  �#

tr
k
�SkI{#tr

k �Sk0}I{|#k|n}  �#
tr
k
�SkI{#tr

k �Sk0}

so that ((#(n)
k

)tr�Sk)�  (#tr
k
�Sk)� for all k and hence (#(n)

S)�  (# S)�. But

V (') is bounded below by �a because ' is admissible, and therefore the entire sequence
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(G(#(n)))n2IN = (#(n)
S)n2IN is also bounded below by �a. This allows us to use Fatou’s

lemma and conclude from the martingale property of each G(#(n)) that V (') = # S is a

Q-supermartingale; indeed,

EQ[Gk(#) | Fk�1] = EQ

h
lim
n!1

Gk(#
(n))
���Fk�1

i
 lim inf

n!1
EQ[Gk(#

(n)) | Fk�1]

= lim inf
n!1

Gk�1(#
(n)) = Gk�1(#).

Then we can finish the proof as before in 2).

4) In continuous time, Theorem 1.3.3 no longer holds; then it is useful and important

to have for proofs the alternative route via 2). Also for discrete but infinite time, one

must be careful about the behaviour at 1. ⇧

Example. Consider themultinomial model on the canonical path space ⌦ = {1, . . . ,m}
T

and suppose as usual that P [{!}] > 0 for all ! 2 ⌦. (We can also assume that the returns

Y1, . . . , YT are i.i.d. under P , but this is actually not needed for the subsequent reasoning.)

To find Q ⇡ P such that S
1 = eS1

/eS0 is a Q-martingale (recall that we always work in

units of asset 0), we need to find one-step transition probabilities in the open interval

(0, 1) such that

EQ[eS1
k
/eS0

k
| Fk�1] = eS1

k�1/
eS0
k�1 for all k.

Because

eS1
k
/eS0

k

eS1
k�1/

eS0
k�1

=
eS1
k
/eS1

k�1

eS0
k
/eS0

k�1

=
Yk

1 + r
,

we equivalently need EQ[Yk/(1 + r) | Fk�1] = 1 for all k.

Now fix k and look at a node corresponding to an atom A
(k�1) = Ax̄1,...,x̄k�1

of Fk�1 at

time k�1 with corresponding one-step transition probabilities q1, . . . , qm. (We sometimes

omit to write the indices for qj = qj(A(k�1)) = qj(x̄1, . . . , x̄k�1), but of course the one-step

transition probabilities can depend on the atom A
(k�1) and hence on the time k.) For

the associated probability measure Q, the quantities qj(A(k�1)) = Q[Yk = 1 + yj |A
(k�1)]

for branch j = 1, . . . ,m then describe the (one-step) conditional distribution of Yk given
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Fk�1 at that node, and so

on the atom A
(k�1), EQ[Yk | Fk�1] = EQ[Yk |A

(k�1)]

=
mX

j=1

qj(A
(k�1))(1 + yj)

= 1 +
mX

j=1

qj(A
(k�1))yj

which implies that

EQ[Yk | Fk�1] =
X

atomsA(k�1)2Fk�1

I
A(k�1)EQ[Yk |A

(k�1)]

= 1 +
X

atomsA(k�1)2Fk�1

I
A(k�1)qj(A

(k�1))yj,

and we want this to equal 1+r. Note that although we have started with a particular time

k and atom A
(k�1), the resulting condition always looks the same; this is due to the ho-

mogeneity in the structure of the multinomial model. The above conditional expectation

equals 1 + r if and only if the equation

mX

j=1

qj(A
(k�1))yj = r

has a solution q1(A(k�1)), . . . , qm(A(k�1)). Because we want all the qj(A(k�1)) to lie in

(0, 1) and because we have ym > ym�1 > · · · > y1 > �1 by the assumed labelling, this

can clearly be achieved if and only if ym > r > y1, i.e. if and only if the riskless interest

rate r for the bank account lies strictly between the smallest and largest return values,

y1 and ym, for the stock. Moreover, we can then choose the qj(A(k�1)) independently of k

and A
(k�1), and if we do that, the corresponding probability measure Q has the property

that the returns Y1, . . . , YT are i.i.d. under Q. But we also see that there are clearly many

Q
0
⇡ P on FT such that eS1

/eS0 is a Q
0-martingale, but Y1, . . . , YT are not i.i.d. under Q0.

In summary, we obtain the following result.
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Corollary 1.4. In the multinomial model with parameters y1 < · · · < ym and r, there

exists a probability measure Q ⇡ P such that eS1
/eS0 is a Q-martingale if and only if

y1 < r < ym.

The interpretation of the condition y1 < r < ym is very intuitive. It says that in

comparison to the riskless bank account eS0, the stock eS1 has the potential for both

higher and lower growth than eS0. Hence eS1 is genuinely more risky than eS0. One has

the feeling that this should not only be su�cient to exclude arbitrage opportunities, but

necessary as well. That feeling is correct, as we shall see in the next section; alternatively,

one can also prove this directly. [! Exercise]

For the special case of the binomial model, we can even say a bit more.

Corollary 1.5. In the binomial model with parameters u > d and r, there exists a

probability measure Q ⇡ P such that eS1
/eS0 is a Q-martingale if and only if u > r > d.

In that case, Q is unique (on FT ) and characterised by the property that Y1, . . . , YT are

i.i.d. under Q with parameter

Q[Yk = 1 + u] = q
⇤ =

r � d

u� d
= 1�Q[Yk = 1 + d].

Proof. The martingale condition
P

m

j=1 qj(A
(k�1))yj = r reduces, with m = 2, y1 = d,

y2 = u and q := q2(A(k�1)), to the equation (1 � q)d + qu = r, which has the unique

solution q
⇤. Because the one-step transition probabilities for Q are thus the same in each

node throughout the tree, the i.i.d. description under Q follows as in Section 1.4 and in

the preceding discussion. q.e.d.
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2.2 The fundamental theorem of asset pricing

We have already seen in Lemma 1.2 a su�cient condition for S to be arbitrage-free.

Moreover, the multinomial model has led us to suspect that this condition might be

necessary as well. In this section, we shall prove that this is indeed so, for every financial

market model in finite discrete time. To give the result a crisp formulation, we first

introduce a new and very important concept.

Definition. An equivalent (local) martingale measure (E(L)MM) for S is a probability

measure Q equivalent to P on FT such that S is a (local) Q-martingale. We denote by

IPe(S) or simply IPe the set of all EMMs for S and by IPe,loc the set of all ELMMs for S.

Clearly, IPe ✓ IPe,loc.

Saying that IPe(,loc)(S) is non-empty is the same as saying that there exists an equiv-

alent (local) martingale measure Q for S. By Lemma 1.2 and the discussion around it,

both these properties imply that S is arbitrage-free or, equivalently, that S satisfies (NA).

It is very remarkable and important that the converse implication holds as well.

Theorem 2.1 (Dalang/Morton/Willinger). Consider a (discounted) financial market

model in finite discrete time. Then S is arbitrage-free if and only if there exists an

equivalent martingale measure for S. In brief:

(NA) () IPe(S) 6= ; () IPe,loc(S) 6= ;.

This result deserves a number of comments :

1) The crucial significance of Theorem 2.1 is that it translates the economic/financial

condition of absence of arbitrage into an equivalent, purely mathematical/probabilistic

condition. This opens the door for the use of martingale theory, with its many tools and

results, for the study of financial market models.

2) The classical theorems in martingale theory on gambling say that one cannot win in

a systematic way if one bets on a martingale (see the stopping theorem or Doob’s systems
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theorem). Theorem 2.1 can be viewed as a converse; it says that if one cannot win by

betting on a given process, then that process must be a martingale — at least after an

equivalent change of probability measure.

3) Note that we make no integrability assumptions about S (under P ); so it is also

noteworthy that S, being a Q-martingale, is automatically integrable under (some) Q.

(To put this into perspective, one should add that it is a minor point; one can always

easily construct [! exercise] a probability measure R equivalent to P such that S becomes

under R as nicely integrable as one wants. But of course such an R will in general not be

a martingale measure for S.)

Proving Theorem 2.1 is not elementary if one wants to allow models where the under-

lying probability space (⌦,F , P ) is infinite, or more precisely if one of the �-fields Fk,

k  T , is infinite. This level of generality is needed very quickly, for instance as soon as

we want to work with returns which take more than only a finite number of values; the

simplest example would be to have the Yk lognormal, and other typical examples come up

when one wants to study GARCH-type models. In that sense, the result in Theorem 2.1 is

really needed in full generality. However, we content ourselves here with an explanation of

the key geometric idea behind the proof, and with the exact argument for the case where

⌦ (or rather FT ) is finite (like for instance in the canonical setting for the multinomial

model).

Due to Lemma 1.2 (plus Remark 1.3) and IPe ✓ IPe,loc, we only need to prove that

absence of arbitrage implies the existence of an equivalent martingale measure for S. By

Proposition 1.1, (NA) is equivalent to G
0
\ L

0
+(FT ) = {0}, where

G
0 = {GT (#) : # is IRd-valued and predictable}

is the space of all final positions one can generate from initial wealth 0 by self-financing

(but not necessarily admissible) trading. In geometric terms, this means that the upper-

right quadrant of nonnegative random variables, L0
+(FT ), intersects the linear subspace

G
0 only in the point 0.
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Graphical illustration of the condition G
0
\ L

0
+(FT ) = {0}

As a consequence, the two sets L
0
+(FT ) and G

0 can be separated by a hyperplane, and

the normal vector defining that hyperplane then yields (after suitable normalisation) the

(density of the) desired EMM.

As one can see from the above scheme of proof, the existence of an EMM follows from

the existence of a separating hyperplane between two sets. In that sense, the proof is (not

surprisingly) not constructive, and it is also clear that we cannot expect uniqueness of an

EMM in general. The latter fact can also easily be seen directly: Because the set IPe(S)

is obviously convex [! exercise], it is either empty, or contains exactly one element, or

contains infinitely (uncountably) many elements.

Proof of Theorem 2.1 for ⌦ (or FT ) finite. If ⌦ (or FT ) is finite, then every random

variable on (⌦,FT ) can take only a finite number (n, say) of values, and so we can identify

L
0(FT ) with the finite-dimensional space IR

n and L
0
+(FT ) with IR

n

+. (More precisely, as

pointed out below, we must take n as the number of atoms of FT .) The set G 0
✓ L

0(FT ),

which is obviously linear, can then be identified with a linear subspace H of IRn, and so

(NA) translates into H \ IR
n

+ = {0} due to Proposition 1.1.

Recall that a set A 2 FT is an atom in FT if P [A] > 0 and if any B 2 FT with B ✓ A

has either P [B] = 0 or P [B] = P [A]. Then any FT -measurable random variable Z has
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the form Z =
P

A atom inFT
ZIA =

P
A atom inFT

zAIA with zA 2 IR. We consider the set of

all FT -measurable Z � 0 with
P

A atom inFT
zA = 1 and identify this with the subset

K =

⇢
z 2 IR

n

+ :
nX

i=1

zi = 1

�

of IRn

+, where n denotes the (finite, by assumption) number of atoms in FT . Then K ✓ IR
n

+

and K does not contain the vector 0, so that we must have H \ K = ;. Moreover,

K is convex and compact, and so a classical separation theorem for sets in IR
n (see

e.g. Lamberton/Lapeyre [12, Theorem A.3.2] implies that there exists a vector � 2 IR
n

with � 6= 0 such that

(2.1) �
tr
h = 0 for all h 2 H

(which says that � is a normal vector to the hyperplane separating H and K) and

(2.2) �
tr
z > 0 for all z 2 K

(which says that the hyperplane strictly separates H and K).

Now we normalise �. By the definition of K, choosing as z in turn all the unit

coordinate vectors in IR
n, the property (2.2) implies that all coordinates of � must be

strictly positive, and so the numbers

⇢i :=
�iP
n

i=1 �i

lie in (0, 1) and sum to 1 so that they define a probability measure Q on FT via

Q[Ai] := ⇢i for all atoms Ai of FT ;

recall that FT by assumption has only n atoms because it is finite, and any set in FT is

a union of atoms in FT . Because P [A] > 0 for all n atoms A 2 FT , it is clear that Q is

equivalent to P on FT ; and the property (2.1) that �trh = 0 for all h 2 H translates via

the identification of H and G
0 and the definition of G 0 into

EQ[GT (#)] = 0 for all IRd-valued predictable #.
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Choosing # := I{time = k}I{asset number = i}IA with A 2 Fk�1 gives GT (#) = IA(Si

k
� S

i

k�1).

But the fact that this has Q-expectation 0 for arbitrary A 2 Fk�1 simply means that

EQ[Si

k
� S

i

k�1 | Fk�1] = 0 for all k, and so S is clearly a Q-martingale. Note that integra-

bility is not an issue here because ⌦ (or FT ) is finite. q.e.d.

In continuous time or with an infinite time horizon, existence of an EMM still implies

(NA), but the converse is not true. One needs a sort of topological strengthening which

excludes not only arbitrage from each single strategy, but also the possibility of creating

“arbitrage in the limit by using a sequence of strategies”. The resulting condition is called

(NFLVR) for “no free lunch with vanishing risk”, and the corresponding equivalence the-

orem, due to Freddy Delbaen and Walter Schachermayer in its most general form, is called

the fundamental theorem of asset pricing (FTAP). (To be accurate, we should mention

that also the concept of EMM must be generalised a little to obtain that theorem.) The

basic idea for proving the FTAP is still the same as in our above proof, but the techniques

and arguments are much more advanced. One reason is that for infinite Fk, k  T , already

the proof of Theorem 2.1 needs separation arguments for infinite-dimensional spaces . The

second, more important reason is that the continuous-time formulation also needs the full

arsenal and machinery of general stochastic calculus for semimartingales. This is rather

di�cult. For a detailed treatment, we refer to Delbaen/Schachermayer [4, Chapters 8, 9,

14]

Remark. While Theorem 2.1 is a very nice result, one should also be aware of its as-

sumptions and in consequence its limitations. The most important of these assumptions

are frictionless markets and small investors — and if one tries to relax these to have more

realism, the theory even in finite discrete time becomes considerably more complicated

and partly does not even exist yet. The same of course applies to continuous-time models

and theorems. ⇧

In some specific models, we have already studied when there exists a probability

measure Q ⇡ P such that eS1
/eS0 is a Q-martingale; see Corollaries 1.4 and 1.5. Combining
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this with Theorem 2.1 now immediately gives the following results.

Corollary 2.2. The multinomial model with parameters y1 < · · · < ym and r is arbitrage-

free if and only if y1 < r < ym.

Note that this confirms the intuition stated after Corollary 1.4.

Corollary 2.3. The binomial model with parameters u > d and r is arbitrage-free if and

only if u > r > d. In that case, the EMM Q
⇤ for eS1

/eS0 is unique (on FT ) and is given as

in Corollary 1.5.



2 ARBITRAGE AND MARTINGALE MEASURES 45

2.3 Equivalent (martingale) measures

We can already see from the FTAP in its simplest form in Theorem 2.1 that EMMs play

an important role in mathematical finance. This becomes even more pronounced when

we turn to questions of option pricing or hedging, as we shall see in later chapters. In this

section, we therefore start to study how one can relate computations and probabilistic

properties under Q and under P to each other if Q ⇡ P , and we also have a look at how

one might actually construct an EMM for a given process S in certain situations.

We begin with (⌦,F) and a filtration IF = (Fk)k=0,1,...,T in finite discrete time. On

F , we have two probability measures Q and P , and we assume that Q ⇡ P . Then the

Radon–Nikodým theorem tells us that there exists a density
dQ
dP =: D; this is a random

variable D > 0 P -a.s. (because Q ⇡ P ) such that Q[A] = EP [DIA] for all A 2 F , or more

generally

(3.1) EQ[Y ] = EP [YD] for all random variables Y � 0.

In particular, EP [D] = EQ[1] = 1. One sometimes writes (3.1) in integral form as

Z

⌦

Y dQ =

Z

⌦

YD dP,

which explains the notation to some extent. The point of these formulae is that they tell

us how to compute Q-expectations in terms of P -expectations and vice versa. Sometimes

one also writes D = dQ
dP |F to emphasise that we have Q[A] = EP [DIA] for all A 2 F , and

one sometimes explicitly calls D the density of Q with respect to P on F .

To get similar transformation rules for conditional expectations, we introduce the

P -martingale Z (sometimes denoted more explicitly by Z
Q or ZQ;P ) by

Zk := EP [D |Fk] = EP


dQ

dP

����Fk

�
for k = 0, 1, . . . , T .

Because D > 0 P -a.s., the process Z = (Zk)k=0,1,...,T is strictly positive in the sense that

Zk > 0 P -a.s. for each k, or also P [Zk > 0 for all k] = 1. Z is called the density process

(of Q, with respect to P ); the next result makes it clear why.
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Lemma 3.1. 1) For every k 2 {0, 1, . . . , T} and any A 2 Fk or any Fk-measurable

random variable Y � 0 or Y 2 L
1(Q), we have

Q[A] = EP [ZkIA] and EQ[Y ] = EP [ZkY ],

respectively. This means that Zk is the density of Q with respect to P on Fk, and we also

write sometimes Zk =
dQ
dP |Fk

.

2) If j  k and Uk is Fk-measurable and either � 0 or in L
1(Q), then we have the

Bayes formula

(3.2) EQ[Uk | Fj] =
1

Zj

EP [ZkUk | Fj] Q-a.s.

This tells us how conditional expectations under Q and P are related to each other.

3) A process N = (Nk)k=0,1,...,T which is adapted to IF is a Q-martingale if and only

if the product ZN is a P -martingale. This tells us how martingale properties under P

and Q are related to each other.

The proof of Lemma 3.1 is a standard exercise from probability theory in the use of

conditional expectations. We do not give it here, but strongly recommend to do this as

an [! exercise]. Note that if FT is smaller than F , we have ZT 6= D in general.

Because Z is strictly positive, we can define

Dk :=
Zk

Zk�1
for k = 1, . . . , T .

The process D = (Dk)k=1,...,T is adapted, strictly positive and satisfies by its definition

EP [Dk | Fk�1] = 1,

because Z is a P -martingale. Again because Z is a martingale and by Lemma 3.1,

EP [Z0] = EP [ZT ] = EP [ZT I⌦] = Q[⌦] = 1,
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and we can of course recover Z from Z0 and D via

Zk = Z0

kY

j=1

Dj for k = 0, 1, . . . , T .

So every Q ⇡ P induces via Z a pair (Z0, D). If we conversely start with a pair (Z0, D)

with the above properties (i.e. Z0 is F0-measurable, Z0 > 0 P -a.s. with EP [Z0] = 1, and

D is adapted and strictly positive with EP [Dk | Fk�1] = 1 for all k), we can define a

probability measure Q ⇡ P via

dQ

dP
:= Z0

TY

j=1

Dj.

Written in terms of D, the Bayes formula (3.2) for j = k � 1 becomes

(3.3) EQ[Uk | Fk�1] = EP [DkUk | Fk�1].

This shows that the ratios Dk play the role of “one-step conditional densities” of Q with

respect to P .

The above parametrisation is very simple and yet very useful when we want to con-

struct an equivalent martingale measure for a given process S. All we need to find are

an F0-measurable random variable Z0 > 0 P -a.s. with EP [Z0] = 1 and an adapted

strictly positive process D = (Dk)k=1,...,T satisfying EP [Dk | Fk�1] = 1 for all k (these

are the properties required to get an equivalent probability measure Q), and in addition

EP [Dk(Sk � Sk�1) | Fk�1] = 0 for all k. Indeed, the latter condition is, in view of (3.3),

simply the martingale property of S under the measure Q determined by (Z0, D). (To be

accurate, we also need to make sure that S is Q-integrable, meaning that EQ[|Sk|] < 1

for all k; this amounts to the integrability requirement that EP [Zk|Sk|] < 1 for all k,

where Zk = Z0

Q
k

j=1 Dj.)

The simplest choice for Z0 is clearly the constant Z0 ⌘ 1; this amounts to saying that

Q and P should coincide on F0. If F0 is P -trivial (i.e. P [A] 2 {0, 1} for all A 2 F0) as

is often the case, then every F0-measurable random variable is P -a.s. constant, and then

Z0 ⌘ 1 is actually the only possible choice (because we must have EP [Z0] = 1).
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Concerning the Dk, not much can be said in this generality because we do not have

any specific structure for our model. To get more explicit results, we therefore specialise

and consider a setting with i.i.d. returns under P ; this means that

eS1
k
= S

1
0

kY

j=1

Yj,
eS0
k
= (1 + r)k,

where Y1, . . . , YT are > 0 and i.i.d. under P . The filtration we use is generated by (eS0
, eS1)

or equivalently by eS1 or by Y ; so F0 is P -trivial and Yk is under P independent of Fk�1

for each k. The Q-martingale condition for S1 = eS1
/eS0 in multiplicative form is then by

(3.3) given by

1 = EQ


S
1
k

S
1
k�1

����Fk�1

�
= EQ

 eS1
k
/eS0

k

eS1
k�1/

eS0
k�1

����Fk�1

�
= EP


DkYk

1 + r

����Fk�1

�
.

Because S1
> 0, this also implies by iteration that EQ[|S1

k
|] = EQ[S1

k
] = EQ[S1

0 ] = S
1
0 < 1

so that Q-integrability is automatically included in the martingale condition.

To keep things as simple as possible, we now might try to chooseDk like Yk independent

of Fk�1. Then [one can prove that] we must have Dk = gk(Yk) for some measurable

function gk, and we have to choose gk in such a way that we get

1 = EP [Dk | Fk�1] = EP [gk(Yk)]

and

1 + r = EP [DkYk | Fk�1] = EP [Ykgk(Yk)].

(Note that these calculations both exploit the P -independence of Yk from Fk�1.) If this

choice is possible, we can then choose all the gk ⌘ g1, because the Yk are (assumed)

i.i.d. under P and so the distribution of Yk under P is the same as that of Y1. To ensure

that Dk > 0, we can impose gk > 0.

If we find such a function g1 > 0 with EP [g1(Y1)] = 1 and EP [Y1g1(Y1)] = 1+r, setting

dP

dQ
:=

TY

j=1

g1(Yj)
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defines an EMM Q for S1 = eS1
/eS0. Moreover, [one can show that] the returns Y1, . . . , YT

are again i.i.d. under Q (but of course not necessarily under an arbitrary EMM Q
0 for S1).

Example. We still assume that we have i.i.d. returns under P . If the Yk are discrete

random variables taking values (1 + yj)j2IN with probabilities P [Yk = 1 + yj] = pj, then

g1 is (for our purposes) determined by its values g1(1 + yj), and Q ⇡ P means that we

need qj := Q[Yk = 1 + yj] > 0 for all those j with pj > 0. If we set

qj := pjg1(1 + yj),

we are thus in more abstract terms looking for qj having qj > 0 whenever pj > 0 and

satisfying

1 = EP [g1(Y1)] =
X

j2IN

pjg1(1 + yj) =
X

j2IN

qj

and

1 + r = EP [Y1g1(Y1)] =
X

j2IN

pj(1 + yj)g1(1 + yj) =
X

j2IN

qj(1 + yj) = 1 +
X

j2IN

qjyj,

or equivalently
X

j2IN

qjyj = r.

Note that the actual values of the pj are not relevant here; it only matters which of them

are strictly positive.

Example. In the multinomial model with parameters y1, . . . , ym and r, the above recipe

boils down to finding q1, . . . , qm > 0 with
P

m

j=1 qj = 1 and
P

m

j=1 qjyj = r. If m > 2 and

the yj are as usual all distinct, there is clearly an infinite number of solutions (provided

of course that there is at least one).

Example. If we have i.i.d. lognormal returns , then Yi = e
�Ui+b with random variables

U1, . . . , UT i.i.d. ⇠ N (0, 1) under P . Instead of Di = g1(Yi), we here try (equivalently)

with Di = g̃1(Ui), and more specifically with Di = e
↵Ui+�. Then we have

EP [Di] = e
�+ 1

2↵
2
= 1 for � = �

1
2↵

2,
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and we get

EP [DiYi] = EP [e
b+�+(↵+�)Ui ] = e

b+�+ 1
2 (↵+�)2 = 1 + r

for

log(1 + r) = b+ � +
1

2
(↵ + �)2 = b+

1

2
�
2 + ↵�,

hence

↵ =
1

�

✓
log(1 + r)� b�

1

2
�
2

◆
.

So we could for instance take

Dk = exp

✓
��Uk �

1

2
�
2

◆

with

� = �↵ =
b+ 1

2�
2
� log(1 + r)

�
.
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3 Valuation and hedging in complete markets

In Chapter 2, we have characterised those financial market models in finite discrete time

that are reasonable in the sense that they do not allow arbitrage. More precisely, we have

studied when it is impossible to create money pumps by cleverly combining the basic

traded assets (stocks and bank account).

If we now introduce into that market a new financial instrument (e.g. an option) and

stipulate that this should not create arbitrage opportunities, what can then be said about

the price of that new instrument? Note that “absence of arbitrage” now takes a di↵erent

meaning because we consider a di↵erent market than before — the basic instruments are

now the old stocks, the old bank account, and the new option. Depending on the structure

of the stock price process S as well as the structure of the option under consideration,

the restrictions on the possible price of the new option can be more or less severe; in the

extreme, it can happen that the price of the option is uniquely determined. While this

makes things nice and transparent, we should say that this is the exception rather than

the rule.

Throughout this chapter, we consider as usual a (discounted) financial market in

finite discrete time on (⌦,F , P ) with IF = (Fk)k=0,1,...,T , where discounted asset prices are

given by S
0
⌘ 1 and S = (Sk)k=0,1,...,T with values in IR

d. Note that we again express all

(discounted) quantities in terms or units of asset 0, and we think of asset 0 as representing

money.

3.1 Attainable payo↵s

Let us first introduce a general financial instrument of European type.

Definition. A general European option or payo↵ or contingent claim is a random variable

H 2 L
0
+(FT ).

The interpretation is that H describes the net payo↵ (in units of asset 0) that the

owner of this instrument obtains at time T ; so having H � 0 is natural and also avoids

integrability issues. (A bit more generally, one could instead impose that H is bounded
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below P -a.s. by some constant.) As H is FT -measurable, the payo↵ can depend on the

entire information up to time T ; and “European” means that the time for the payo↵ is

fixed at the end T .

Remark. We could also deal with an Fk-measurable payo↵made at time k; but as S0
⌘ 1,

it is financially equivalent whether such a payo↵ is made at k or at T , because we can use

the bank account to transfer money over time without changing it or its value in any way.

By using linearity, we could then also deal with payo↵ streams having a payo↵ at every

date k (with, of course, the time k payo↵ being Fk-measurable, i.e. the payo↵ stream being

an adapted process). However, we do not consider here American-type payo↵s where the

owner of the financial instrument has some additional freedom in choosing the time of the

payo↵; the theory for that is a bit more complicated. ⇧

Example. A European call option on asset i with maturity T and strike K gives its

owner the right, but not the obligation, to buy at time T one unit of asset i for the price

K, irrespective of what the actual asset price S
i

T
then is. Any rational person will make

use of (exercise) that right if and only if Si

T
(!) > K, because it is in that, and only in

that, situation that the right is more valuable than the asset itself. In that case, in purely

monetary terms, the net payo↵ is then S
i

T
(!) �K, and this is obtained by buying asset

i at the low price K and immediately selling it on the market at the high price S
i

T
(!).

In the other case S
i

T
(!)  K, the option is clearly worthless — it makes no monetary

sense to pay K for one unit of asset i if one can get this on the market for less, namely

for Si

T
(!). So here we have for the option a net payo↵, in monetary terms, of

H(!) = max
�
0, Si

T
(!)�K

�
=
�
S
i

T
(!)�K

�+
.

As a random variable, this is clearly nonnegative and FT -measurable because S
i is

adapted. Actually, H here is even simpler because it only depends on the terminal asset

price S
i

T
; we can write H = h(Si

T
) with the function h(x) = (x�K)+.

Remark. In the above example, and more generally by identifying an option with its

net payo↵ in units of S0, we are implicitly restricting ourselves to so-called cash delivery
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of options. However, there might be other contractual agreements. For instance, with a

call option with physical delivery , one actually obtains at time T in case of exercise the

shares or units of the specified asset and has to pay in cash the agreed amount K. If the

underlying asset is some commodity like e.g. oil or grain, this distinction becomes quite

important. However, we do not discuss this here any further. ⇧

Example. If we want to bet on a reasonably stable asset price evolution, we might be

interested in a payo↵ of the form H = IB with

B =
n
a  min

i=1,...,d
min

k=0,1,...,T
S
i

k
< max

i=1,...,d
max

k=0,1,...,T
S
i

k
 b

o
.

In words, this option pays at time T one unit of money if and only if all stocks remain

between the levels a and b up to time T . This H is also FT -measurable, but now depends

on the asset price evolution over the whole time range k = 0, 1, . . . , T ; it cannot be written

as a function of the final stock price ST alone.

Example. A payo↵ of the form

H = IA g

✓
1

T

TX

k=1

S
i

k

◆
with A 2 FT and a function g � 0

gives a payo↵ which depends on the average price (over time) of asset i, but which is only

due in case that a certain event A occurs. In insurance, the set A could for instance be

the event of the death up to time T of an insured person; then H would describe the

payo↵ from an index-linked insurance policy . This is an example where H depends on

more than only the basic asset prices. To get interesting examples of this type, we need

the filtration IF to be strictly larger than the filtration IF
S generated by asset prices.

The basic question studied in this chapter is the following: Given a contingent claim

H 2 L
0
+(FT ), how can we assign to H a value at any time k < T in such a way that

this creates no arbitrage opportunities (if the claim is made available for trading at these

values)? And having sold H, what can one do to insure oneself against the risk involved

in having to pay the random, uncertain amount H at time T?
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The key idea for answering both questions is very simple. With the help of the basic

traded assets S
0 and S, we try to construct an artificial product that looks as similar

to H as possible. The value of this product is then known because the product is con-

structed from the given assets; and this value should by absence of arbitrage be a good

approximation for the value of H.

Let us first look at the ideal case. Suppose that we can find a self-financing strategy

' b= (V0,#) such that VT (') = H P -a.s. Then both the strategy ' and just holding H

have costs of 0 at all intermediate times k = 1, . . . , T � 1 because ' is self-financing, and

both have at time T a value of H. To avoid arbitrage, the values of both structures must

therefore coincide at time 0 as well, because we can otherwise buy the cheaper and sell

the more expensive product to make a riskless profit. (Note that this argument crucially

exploits that in finite discrete time, (NA) and (NA0) are equivalent, so that we need not

worry about any admissibility condition for the “strategy”, in the extended market, of

combining two products.) In consequence, the value or price of H at time 0 must be V0.

An analogous argument and conclusion are valid for any time k, where the value or price

of H must then be Vk(').

Definition. A payo↵ H 2 L
0
+(FT ) is called attainable if there exists an admissible self-

financing strategy ' b= (V0,#) with VT (') = H P -a.s. The strategy ' is then said to

replicate H and is called a replicating strategy for H.

Remark. Even in finite discrete time, it is important (and exploited below) that a repli-

cating strategy should be admissible. In continuous or infinite discrete time, this becomes

indispensable. ⇧

The next result formalises the key idea explained just before the above definition. In

addition, it also provides an e�cient way of computing the resulting option price.

Theorem 1.1 (Arbitrage-free valuation of attainable payo↵s). Consider a dis-
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counted financial market in finite discrete time and suppose that S is arbitrage-free and F0

is trivial. Then every attainable payo↵ H has a unique price process V H = (V H

k
)k=0,1,...,T

which admits no arbitrage (in the extended market consisting of 1, S and V
H). It is given

by

V
H

k
= EQ[H | Fk] = Vk(V0,#) for k = 0, 1, . . . , T ,

for any equivalent martingale measure Q for S and for any replicating strategy ' b= (V0,#)

for H.

Proof. By the DMW theorem in Theorem 2.2.1, IPe(S) is nonempty because S is

arbitrage-free; so there is at least one EMM Q. By assumption, H is attainable; so there

is at least one replicating strategy '. Because ' and H provide the same payo↵ structures,

they must by absence of arbitrage in the extended market have the same value processes;

so V
H = V ('), and this holds for any replicating '. Because any such ' b= (V0,#) is

admissible by definition, V (') = V0+# S = V (V0,#) is a Q-martingale by Theorem 1.3.3,

for any Q 2 IPe(S), and as its final value is VT (') = H (P -a.s., hence also Q-a.s.), we get

V
H

k
= Vk(') = EQ[H | Fk] for all k.

More precisely, V0 is a constant because F0 is trivial, and ' is admissible so that V (') is

bounded from below. So # S = V (') � V0 is also bounded from below, which justifies

the use of Theorem 1.3.3. q.e.d.

In terms of e�ciency , Theorem 1.1 is a substantial achievement. In a first step, we

ought to check in any case whether or not the basic model we use for S is arbitrage-free,

and that is most easily done by exhibiting or constructing an EMM Q for S. If we then

have any attainable payo↵, we very simply compute its price process by taking conditional

expectations under Q, without having to spend any e↵ort on finding a replication strategy.

However, the above statement is a bit misleading . First of all, for hedging purposes,

we very often are interested in actually knowing and then also using a replicating strat-

egy. But more fundamentally, how can we decide for a given payo↵ whether or not it is

attainable, without exhibiting or constructing a replicating strategy? Is there a di↵erent

and maybe simpler way to show the existence of a replicating strategy?
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The next result shows how the last question can be answered by again using E(L)MMs

for S.

Theorem 1.2 (Characterisation of attainable payo↵s). Consider a discounted fi-

nancial market in finite discrete time and suppose that S is arbitrage-free and F0 is trivial.

For any payo↵ H 2 L
0
+(FT ), the following are equivalent:

1) H is attainable.

2) sup
Q2IPe,loc(S) EQ[H] < 1 is attained in some Q

⇤
2 IPe,loc(S), i.e. the supremum is

finite and a maximum; in other words, we have sup
Q2IPe,loc(S) EQ[H] = EQ⇤ [H] < 1

for some Q
⇤
2 IPe,loc(S).

3) The mapping IPe(S) ! IR, Q 7! EQ[H] is constant, i.e. H has the same and finite

expectation under all EMMs Q for S.

Proof. While some of the implications are rather straightforward, the full proof,

and in particular the implication “2) ) 1)”, is di�cult because it relies on the so-

called optional decomposition theorem. For the case where prices S are nonnegative,

see Föllmer/Schied [9, Remark 7.17 and Theorem 5.32]. The general case is more deli-

cate; the simplification for S � 0 is due to the fact that the sets IPe(S) and IPe,loc(S) then

coincide. A full proof is for instance given in the lecture “Introduction to Mathematical

Finance”. q.e.d.

Remark. For models with continuous or infinite discrete time, the equivalence between

1) and 2) in Theorem 1.2 still holds (with a slightly stronger definition of attainability),

but the equivalence between 2) and 3) may (surprisingly!) fail. More precisely, “3) ) 2)”

remains valid if we replace IPe by IPe,loc in 3), but “2) ) 3)” in general only holds if H is

bounded; see Delbaen/Schachermayer [4, Chapter 10] for a counterexample. ⇧

In summary , the approach to valuing and hedging a given payo↵ H in a financial

market in finite discrete time (with F0 trivial) looks quite simple:
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1) Check if S is arbitrage-free by finding at least one ELMM Q for S.

2) Find all ELMMs Q for S.

3) Compute EQ[H] for all ELMMs Q for S and determine the supremum of EQ[H]

over Q.

4a) If the supremum is finite and a maximum, i.e. attained in some Q⇤
2 IPe,loc(S), then

H is attainable and its price process can be computed as V H

k
= EQ[H | Fk], for any

Q 2 IPe(S).

4b) If the supremum is not attained (or, equivalently for finite discrete time, there is a

pair of EMMs Q1, Q2 with EQ1 [H] 6= EQ2 [H]), then H is not attainable.

In case 4a), Theorem 1.1 tells us how to value H; but if we also want to find a

replicating strategy , then more work is required.

In case 4b), we are faced with a genuine problem: It is impossible to replicate H, so our

whole conceptual approach up to here breaks down. We then have the di�cult problem of

valuation and hedging for a non-attainable payo↵ , and there are in the literature several

competing approaches to that, all involving in some way the specification of preferences

or subjective views of the option seller.

Remark. Because it involves no preferences, but only the assumption of absence of

arbitrage, the valuation from Theorem 1.1 is often also called risk-neutral valuation, and

an EMM Q for S is called a risk-neutral measure. ⇧

Warning: In large parts of the literature, the terminology “risk-neutral valuation” is

used for computing conditional expectations of a given payo↵ H under some EMM Q.

This is potentially problematic for two reasons:

1) V
H,Q

k
:= EQ[H | Fk] typically depends on Q if H is not attainable. So when following

that approach, one should at the very least think carefully about which Q 2 IPe(S)

one uses, and why.
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2) If H is not attainable, it is at best not clear how to hedge H in any reasonably safe

way, and at worst, this may be impossible to achieve.

Both of these issues are often ignored in the literature; whether this happens intentionally

or through ignorance is not always clear. One area where this used to be particularly

prominent is credit risk. One can of course argue that having some approach to obtain

a valuation is better than nothing; but a value which has substantial arbitrariness and

perhaps no clear risk management outlook should certainly be treated with care and

respect.
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3.2 Complete markets

As we have seen in Theorem 1.1, absence of arbitrage is already enough to value or price

any attainable payo↵.

Definition. A financial market model (in finite discrete time) is called complete if every

payo↵ H 2 L
0
+(FT ) is attainable. Otherwise it is called incomplete.

An obvious corollary of Theorem 1.1 is then

Theorem 2.1 (Valuation and hedging in complete markets). Consider a discounted

financial market model in finite discrete time and suppose that F0 is trivial and S is

arbitrage-free and complete. Then for every payo↵ H 2 L
0
+(FT ), there is a unique price

process V H = (V H

k
)k=0,1,...,T which admits no arbitrage. It is given by

V
H

k
= EQ[H | Fk] = Vk(V0,#) for k = 0, 1, . . . , T

for any EMM Q for S and any replicating strategy ' b= (V0,#) for H.

While Theorem 2.1 looks very nice, it raises the important question of how to recognise

a complete market, because completeness is a statement about all payo↵s H 2 L
0
+(FT ).

But very fortunately, there is a very simple criterion — and it should be no surprise by

now that this again involves EMMs Q.

Theorem 2.2. Consider a discounted financial market model in finite discrete time and

assume that S is arbitrage-free, F0 is trivial and FT = F . Then S is complete if and only

if there is a unique equivalent martingale measure for S. In brief:

(NA) + completeness () #
�
IPe(S)

�
= 1, i.e. IPe(S) is a singleton.

Proof. “(=”: If IPe(S) contains only one element, then Q 7! EQ[H] is of course constant

over Q 2 IPe(S) for any H 2 L
0
+(FT ). Hence H is attainable by Theorem 1.2.
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[To be accurate and avoid the case that Q 7! EQ[H] ⌘ +1, one also needs to check a

priori some integrability issues, namely that EQ[H] < 1 for at least one Q 2 IPe(S); see

Föllmer/Schied [9, Theorems 5.30 and 5.26] for details.]

“=)”: For any A 2 FT , the payo↵ H := IA is attainable; so by Theorem 1.1, we have

for any pair of EMMs Q1, Q2 for S that

Q1[A] = EQ1 [H] = V
H

0 = EQ2 [H] = Q2[A].

So Q1 and Q2 coincide on FT = F , which means that there can be at most one EMM

for S. By the DMW theorem in Theorem 2.2.1, there is at least one EMM because S is

arbitrage-free, and so the proof is complete. q.e.d.

Theorem 2.2 is sometimes called the second fundamental theorem of asset pricing .

Combining it with the first FTAP in Theorem 2.2.1, we have a very simple and beautiful

description of discounted financial market models in finite discrete time:

– Existence of an EMM is equivalent to the market being arbitrage-free.

– Uniqueness of the EMM is equivalent to completeness of the market.

For continuous or infinite discrete time, such statements become more subtle to formulate

and more di�cult to prove.

Remarks. 1) We can see from the proof of Theorem 2.2 where the assumption FT = F

is used. But it is also clear from looking at the statement why it is needed; after all,

completeness is only an assertion about FT -measurable quantities.

2) One can show that if a financial market in finite discrete time is complete, then FT

must be finite; see Föllmer/Schied [9, Theorem 5.38]. In e↵ect, finiteness of FT means

that ⌦ can also be taken finite. This shows that while it makes the theory nice and

simple, completeness is also a very restrictive property — complete financial markets in

finite discrete time are e↵ectively given by finite tree models. ⇧

Example. The multinomial model with a bank account and one stock (d = 1) is

incomplete whenever m > 2, i.e. as soon as there is some node in the tree which allows
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more than two possible stock price evolutions. This follows from Theorem 2.2 because in

that situation, there are infinitely many EMMs; see Section 2.3.

Example. Consider any model with d = 1 (one risky asset) and i.i.d. returns Y1, . . . , YT

under P . If Y1 has a density (e.g. if we have lognormal returns), then S is incomplete. This

is because F1 (and hence also FT ) must be infinite for Y1 to have a density. Alternatively,

one can easily construct di↵erent EMMs if there is at least one. [! Exercise]
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3.3 Example: The binomial model

In this section, we briefly illustrate how the preceding theory works out in the binomial

or Cox–Ross–Rubinstein model . We recall that this model is described by parameters

p 2 (0, 1) and u > r > d > �1; then we have eS0
k
= (1 + r)k and eS1

k
= S

1
0

Q
k

j=1 Yj with

S
1
0 > 0 and Y1, . . . , YT i.i.d. under P taking values 1 + u or 1 + d with probability p or

1 � p, respectively. The filtration IF is generated by eS = (eS0
, eS1) or equivalently by eS1

or by Y . Note that F0 is then trivial because eS0
0 = 1 and eS1

0 = S
1
0 is a constant. We

also take F = FT ; this is even an automatic conclusion if we construct the model on the

canonical path space as in Section 1.4.

We already know from Corollary 2.2.3 that this model is arbitrage-free and has a unique

EMM for S1 = eS1
/eS0. Hence S

1 is complete by Theorem 2.2, and so every H 2 L
0
+(FT )

is attainable, with a price process given by

V
H

k
= EQ⇤ [H | Fk] for k = 0, 1, . . . , T ,

where Q
⇤ is the unique EMM for S1. We also recall from Corollary 2.2.3 that the Yj are

under Q⇤ again i.i.d., but with

Q
⇤[Y1 = 1 + u] = q

⇤ :=
r � d

u� d
2 (0, 1).

All the above quantities S
1
, H, V

H are discounted with eS0, i.e. expressed in units of

asset 0. The undiscounted quantities are the stock price eS1 = S
1 eS0, the payo↵ eH := H eS0

T

and its price process Ṽ eH with Ṽ
eH

k
:= V

H

k
eS0
k
for k = 0, 1, . . . , T . Putting together all we

know then yields

Corollary 3.1. In the binomial model with u > r > d, the undiscounted arbitrage-free

price process of any undiscounted payo↵ eH 2 L
0
+(FT ) is given by

Ṽ
eH

k
= eS0

k
EQ⇤

 eH
eS0
T

����Fk

�
= EQ⇤


eH
eS0
k

eS0
T

����Fk

�
=
eS0
k

eS0
T

EQ⇤ [ eH | Fk] for k = 0, 1, . . . , T .

Example. For a European call option on eS1 with maturity T and undiscounted strike
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eK, we have

eH = (eS1
T
� eK)+ = (eS1

T
� eK)I{eS1

T> eK}.

Now

{eS1
T
> eK} =

⇢
eS1
k

TY

j=k+1

Yj >
eK
�

=

⇢ TX

j=k+1

log Yj > log( eK/eS1
k
)

�
.

If we define

Wj := I{Yj=1+u} =

8
<

:
1 if Yj = 1 + u,

0 if Yj = 1 + d,

then W1, . . . ,WT are under Q⇤ independent 0-1 experiments with success parameter q⇤,

so that their sum has under Q
⇤ a binomial distribution. Moreover, using the fact that

log Yj = Wj log(1 + u) + (1�Wj) log(1 + d) = Wj log
1+u

1+d
+ log(1 + d) gives

TX

j=k+1

log Yj = Wk,T log
1 + u

1 + d
+ (T � k) log(1 + d),

where Wk,T :=
P

T

j=k+1 Wj ⇠ Bin(T � k, q
⇤) is independent of Fk under Q⇤. So we get

{eS1
T
> eK} =

⇢
Wk,T log

1 + u

1 + d
> log

eK
eS1
k

� (T � k) log(1 + d)

�

and therefore

Q
⇤[eS1

T
> eK | Fk] = Q

⇤

Wk,T >

log
eK
s
� (T � k) log(1 + d)

log 1+u

1+d

�����
s=eS1

k

,

because Wk,T is independent of Fk under Q⇤ and eS1
k
is Fk-measurable. The above prob-

ability can be computed explicitly because Wk,T has a binomial distribution; and as

EQ⇤ [ eH | Fk] = EQ⇤
⇥eS1

T
I{eS1

T> eK}

��Fk

⇤
� eKQ

⇤[eS1
T
> eK | Fk],

we already have the second half of the so-called binomial call pricing formula.
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For the first term, one can either use explicit (and lengthy) computations or more

elegantly a so-called change of numeraire to obtain that

EQ⇤
⇥eS1

T
I{eS1

T> eK}

��Fk

⇤
= eS1

k

eS0
T

eS0
k

eS0
k

eS1
k

EQ⇤

 eS1
T

eS0
T

I{eS1
T> eK}

����Fk

�
(3.1)

= eS1
k

eS0
T

eS0
k

Q
⇤⇤[eS1

T
> eK | Fk]

= eS1
k

eS0
T

eS0
k

Q
⇤⇤

Wk,T >

log
eK
s
� (T � k) log(1 + d)

log 1+u

1+d

�����
s=eS1

k

,

where Wk,T under Q⇤⇤ is Bin(T � k, q
⇤⇤)-distributed with

q
⇤⇤ := q

⇤1 + u

1 + r
, hence 1� q

⇤⇤ = (1� q
⇤)
1 + d

1 + r
.

Indeed, because eS1
/eS0 = S

1 is under Q⇤ a positive martingale, one can use it to define

via dQ⇤⇤
/ dQ⇤ := S

1
T
/S

1
0 a probability measure Q

⇤⇤
⇡ Q

⇤ on FT ; then the Q
⇤-martingale

S
1
/S

1
0 starting at 1 is by construction the density process ZQ

⇤⇤;Q⇤
of Q⇤⇤ with respect to

Q
⇤, and the second equality in (3.1) is due to the Bayes formula (2.3.2) in Lemma 2.3.1.

One then easily verifies [! exercise] that Q⇤⇤ is the unique probability measure equivalent

to P on FT such that eS0
/eS1 = 1/S1 becomes a Q

⇤⇤-martingale, and one can also check

that Y1, . . . , YT are under Q
⇤⇤ i.i.d. with Q

⇤⇤[Y1 = 1 + u] = q
⇤⇤. Indeed, this is not

really surprising — by Lemma 2.3.1, 3), the process 1/S1 is a Q
⇤⇤-martingale because the

product ZQ
⇤⇤;Q⇤

(1/S1) = (S1
/S

1
0)(1/S

1) ⌘ 1/S1
0 is obviously a Q

⇤-martingale, and 1/S1

has a binomial structure exactly like S
1 itself. The measure Q

⇤⇤ is sometimes called dual

martingale measure.

So all in all, we obtain the fairly simple formula

(3.2) Ṽ
eH

k
= eS1

k
Q

⇤⇤[Wk,T > x]� eK
eS0
k

eS0
T

Q
⇤[Wk,T > x]

with

(3.3) x =
log

eK
s
� (T � k) log(1 + d)

log 1+u

1+d

, for s = eS1
k
,



3 VALUATION AND HEDGING IN COMPLETE MARKETS 65

and where Wk,T has a binomial distribution with parameter T � k and with q
⇤ under

Q
⇤, respectively with q

⇤⇤ under Q
⇤⇤. This binomial call pricing formula is the discrete

analogue of the famous Black–Scholes formula.

For a general payo↵ eH, the discounted price process V
H is by its construction a

Q
⇤-martingale with final value H, so that V H

T
= H and

V
H

k�1 = EQ⇤ [V H

k
| Fk�1] for k = 1, . . . , T .

This provides a very simple recursive algorithm by using that the filtration IF in the

binomial model has the structure of a (binary) tree. Indeed, if we fix some node (corre-

sponding to some atom) at time k�1 (respectively of Fk�1) and denote by vk�1 the value

of V H

k�1 there (on that atom), then there are only two possible successor nodes (atoms of

Fk) and V
H

k
can only take two values there, say v

u

k
and v

d

k
. The Q

⇤-martingale property

then says that

vk�1 = q
⇤
v
u

k
+ (1� q

⇤)vd
k
,

because the one-step transition probabilities of Q⇤ are the same throughout the tree and

given by q
⇤
, 1� q

⇤. In undiscounted terms, we have

Ṽ
eH

k�1

eS0
k�1

= EQ⇤


Ṽ

eH
k

eS0
k

����Fk�1

�

or

Ṽ
eH

k�1 =
1

1 + r
EQ⇤ [Ṽ

eH
k

| Fk�1],

which translates at the level of node values to the recursion

(3.4) ṽk�1 =
1

1 + r

�
q
⇤
ṽ
u

k
+ (1� q

⇤)ṽd
k

�
.

The terminal condition V
H

T
= H or Ṽ

eH
T

= eH means that the values vT or ṽT at the

terminal nodes are given by the values of eH there. Note that for a general (hence typically

path-dependent) payo↵ eH, we have to work with the full, non-recombining tree and all

its 2T terminal nodes.
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To work out the replicating strategy , also for a general payo↵ H, we recall from The-

orem 1.1 that

V
H

k
= Vk(V0,#) = V0 +

kX

j=1

#j�S
1
j

for k = 0, 1, . . . , T .

For the increments , this means that

(3.5) �V
H

k
= V

H

k
� V

H

k�1 = #k�S
1
k
= #k(S

1
k
� S

1
k�1).

Now let us look again at some fixed node at time k � 1 (atom of Fk�1). Because # is

predictable, #k is Fk�1-measurable and so the value of #k is already known at time k� 1,

hence in that node (on that atom), and it cannot change as we move forward to time k.

If we denote as before by vk�1 the value of V H

k�1 in the chosen node (on the chosen atom)

at time k� 1 and by sk�1 the value of S1
k�1 there, we know that vk�1 evolves to either vu

k

or v
d

k
, and sk�1 evolves to s

u

k
= sk�1

1+u

1+r
or s

d

k
= sk�1

1+d

1+r
, respectively, in the next step.

But the relation (3.5) between increments must hold in all nodes (on all atoms) and at

all times; so if ⇠k denotes the value of #k in the chosen node (on the chosen atom) at time

k � 1, we obtain the two equations

v
u

k
� vk�1 = ⇠k(s

u

k
� sk�1),

v
d

k
� vk�1 = ⇠k(s

d

k
� sk�1).

Note that we have the same ⇠k in both equations because the value of #k cannot change

as we go from time k � 1 to time k. The above two equations are readily solved to give

(3.6) ⇠k =
v
u

k
� v

d

k

s
u

k
� s

d

k

=
v
u

k
� v

d

k

u�d

1+r
sk�1

.

Again, the right-hand side is known at time k = T because we know that V H

T
= H. So

both the price process V H and the hedging strategy # can be computed in parallel while

working backward through the tree.

If the payo↵ eH is like the call option of the simple path-independent form eH = h̃(eS1
T
) for

some function h̃, then the above formulas and computation scheme simplify considerably.
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Indeed one can show by backward induction that

Ṽ
eH

k
= ṽ(k, eS1

k
) for k = 0, 1, . . . , T

and

#k = ⇠̃(k, eS1
k�1) for k = 1, . . . , T

with functions ṽ(k, s) and ⇠̃(k, s) that are given by the recursion (compare (3.4))

ṽ(k � 1, s) =
1

1 + r

⇣
q
⇤
ṽ
�
k, s(1 + u)

�
+ (1� q

⇤)ṽ
�
k, s(1 + d)

�⌘

with terminal condition

ṽ(T, s) = h̃(s)

and, from (3.6) multiplied in both numerator and denominator by eS0
k
= (1 + r)k, by

(3.7) ⇠̃(k, s) =
ṽ(k, s(1 + u))� ṽ(k, s(1 + d))

(u� d)s
.

In particular, it is here enough to do all the computations in the simplified, recombining

tree because neither Ṽ
eH nor # have any path-dependence, but only depend on current

values of eS1. So instead of 2T terminal nodes for all the trajectories !, we need here only

T +1 terminal nodes, for all the possible values of eS1
T
. The corresponding tree is therefore

also massively smaller, and so are computation times and storage requirements.

[It is a very good [! exercise] to either derive the above relations for the path-independent

case directly or deduce them from the preceding general results. In both cases, one uses

a backward induction argument.]
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4 Basics about Brownian motion

The continuous-time analogue (and limit, in an appropriate sense) of the Cox–Ross–

Rubinstein binomial model is the Black–Scholes model of geometric Brownian motion.

To be able to study this later in Chapter 7, we collect in this chapter some basic facts and

results about Brownian motion. This is the stochastic process driving the Black–Scholes

model; but it is of fundamental importance in many other areas as well. Very loosely,

one can think of Brownian motion as a dynamic version of the normal distribution, with

a comparable status as an object of central significance.

Throughout this chapter, we work on a probability space (⌦,F , P ) which is tacitly

assumed to be big and rich enough for our purposes. In particular, ⌦ cannot be finite

or countable. We also work with a filtration IF = (Ft) in continuous time; this is like in

discrete time a family of �-fields Ft ✓ F with Fs ✓ Ft for s  t. The time parameter

runs either through t 2 [0, T ] with a fixed time horizon T 2 (0,1) or through t 2 [0,1).

In the latter case, we define

F1 :=
_

t�0

Ft := �

✓[

t�0

Ft

◆
.

For technical reasons, we should also assume (or make sure, if we construct the filtration

in some way) that IF satisfies the so-called usual conditions of being right-continuous and

P -complete, but we do not dwell on this technical mathematical issue in more detail.

4.1 Definition and first properties

Definition. A Brownian motion with respect to P and a filtration IF = (Ft)t�0 is a (real-

valued) stochastic process W = (Wt)t�0 which is adapted to IF , starts at 0 (i.e. W0 = 0

P -a.s.) and satisfies the following properties:

(BM1) For s  t, the increment Wt �Ws is independent (under P ) of Fs with (under

P ) a normal distribution N (0, t� s).

(BM2) W has continuous trajectories , meaning that for P -almost all ! 2 ⌦, the function

t 7! Wt(!) on [0,1) is continuous.
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Remarks. 1) One can prove that Brownian motion exists, but this is a nontrivial

mathematical result. See the course on “Brownian Motion and Stochastic Calculus” (in

short BMSC) for more details.

2) The letter W is used in honour of Norbert Wiener who gave the first rigorous

proof of the existence of Brownian motion in 1923. It is historically interesting to note,

however, that Brownian motion was already introduced and used considerably earlier in

both finance and physics — by Louis Bachelier in his PhD thesis in 1900 for finance and

by Albert Einstein in 1905 for physics.

3) Brownian motion in IR
m is simply an adapted IR

m-valued stochastic process null at

0 with (BM2) and such that (BM1) holds with N (0, t� s) replaced by N (0, (t� s)Im⇥m),

where Im⇥m denotes the m⇥m identity matrix. This is equivalent to saying that the m

components are all real-valued Brownian motions and independent (as processes). ⇧

There is also a definition of Brownian motion (BM for short) without any filtration IF .

This is a (real-valued) stochastic process W = (Wt)t�0 which starts at 0, satisfies (BM2)

and instead of (BM1) the following property:

(BM10) For any n 2 IN and any times 0 = t0 < t1 < · · · < tn < 1, the increments

Wti �Wti�1 , i = 1, . . . , n, are independent (under P ) and we have (under P ) that

Wti �Wti�1 ⇠ N (0, ti � ti�1), or ⇠ N (0, (ti � ti�1)Im⇥m) if W is IRm-valued.

Instead of (BM10), one also says (in words) that W has independent stationary increments

with a (specific) normal distribution.

The two definitions of BM are equivalent if one chooses as IF the filtration IF
W gen-

erated by W (and made right-continuous and P -complete). This (like many other subse-

quent results and facts) needs a proof, which we do not give. More details can be found

in the lecture notes on “Brownian Motion and Stochastic Calculus”.

There are several transformations that produce a new Brownian motion from a given

one, and this can in turn be used to prove results about BM. More precisely:

Proposition 1.1. Suppose W = (Wt)t�0 is a BM. Then:
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1) W
1 := �W is a BM.

2) W
2
t
:= Wt+T �WT , t � 0, is a BM for any T 2 (0,1) (restarting at a fixed time T ).

3) W
3
t
:= cW t

c2
, t � 0, is a BM for any c 2 IR, c 6= 0 (rescaling in space and time).

4) W
4
t
:= WT�t �WT , 0  t  T , is a BM on [0, T ] for any T 2 (0,1) (time-reversal).

5) The process W 5
t
, t � 0, defined by

W
5
t
:=

8
<

:
tW 1

t
for t > 0

0 for t = 0

is a BM (inversion of small and large times).

(Note that we always use here the definition of BM without an exogenous filtration.)

While parts 1)–4) of Proposition 1.1 are easy to prove, part 5) is a bit more tricky.

However, it is also very useful because it relates the asymptotic behaviour of BM as t ! 1

to the behaviour of BM close to time 0, and vice versa.

The next result gives some information about how trajectories of BM behave.

Proposition 1.2. Suppose W = (Wt)t�0 is a BM. Then:

1) Law of large numbers: lim
t!1

Wt

t
= 0 P -a.s., i.e. BM grows more slowly than linearly

as t ! 1.

2) (Global) Law of the iterated logarithm (LIL): With  glob(t) :=
p
2t log(log t), we

have

lim sup
t!1

lim inf
t!1

9
=

;
Wt

 glob(t)
=

⇢
+1

�1
P -a.s.,

i.e., for P -almost all !, the function t 7! Wt(!) for t ! 1 oscillates precisely

between t 7! ± glob(t).
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3) (Local) Law of the iterated logarithm (LIL): With  loc(h) :=
q
2h log(log 1

h
), we

have for every t � 0

lim sup
h&0

lim inf
h&0

9
=

;
Wt+h �Wt

 loc(h)
=

⇢
+1

�1
P -a.s.,

i.e., for P -almost all !, to the right of t, the trajectory u 7! Wu(!) around the level

Wt(!) oscillates precisely between h 7! ± loc(h).

One immediate consequence of 2) and 3) is that BM crosses the level 0 (or, with a

bit more e↵ort for the proof, any level a) infinitely many times — and once it is at that

level, it even manages to achieve infinitely many crossings in an arbitrarily short amount

of time. This is already a first indication of the amazingly strong activity of BM.

We remark that part 1) of Proposition 1.2 is easily proved by using part 5) of Propo-

sition 1.1. Moreover, part 2) follows directly from part 3) via part 5) of Proposition 1.1,

and for proving part 3), it is enough to take t = 0, by part 2) of Proposition 1.1, and to

prove the lim sup result, by part 1) of Proposition 1.1. But then the easy reductions stop

and the proof becomes di�cult.

The oscillation results in Proposition 1.2 already make it clear that the trajectories of

BM behave rather wildly. Another result in that direction is

Proposition 1.3. Suppose W = (Wt)t�0 is a BM. Then for P -almost all ! 2 ⌦, the

function t 7! Wt(!) from [0,1) to IR is continuous, but nowhere di↵erentiable.

The deeper reason behind the wild behaviour of Brownian trajectories, and the key to

understanding stochastic calculus and Itô’s formula for BM, is that Brownian trajectories

are continuous functions having a nonzero quadratic variation. Heuristically, this can be

seen as follows. By definition, Brownian motion increments Wt+h � Wt have a normal
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distribution N (0, h), which implies they are symmetric around 0 with variance h so that

roughly, “Wt+h �Wt ⇡ ±
p
h with probability 1

2 each”. In very loose and purely formal

terms, this means that infinitesimal increments “dWt = Wt � Wt�dt” of BM have the

property that

“(dWt)2 = dt”.

While this is very helpful for an intuitive understanding , we emphasise that it is purely

formal and must not be used for rigorous mathematical arguments. A more precise

description is as follows.

Call a partition of [0,1) any set ⇧ ✓ [0,1) of time points with 0 2 ⇧ and such that

⇧ \ [0, T ] is finite for all T 2 [0,1). This implies that ⇧ is at most countable and can

be ordered increasingly as ⇧ = {0 = t0 < t1 < · · · < tm < · · · < 1}. The mesh size of ⇧

is then defined as |⇧| := sup{ti � ti�1 : ti�1, ti 2 ⇧}, i.e. the size of the biggest time-step

in ⇧. For any partition ⇧ of [0,1), any function g : [0,1) ! IR and any p > 0, we first

define the p-variation of g on [0, T ] along ⇧ as

V
p

T
(g,⇧) :=

X

ti2⇧

|g(ti ^ T )� g(ti�1 ^ T )|p.

One can then define the p-variation of g on [0, T ] as

V
p

T
(g) := sup

⇧
V

p

T
(g,⇧),

where the supremum is taken over all partitions ⇧ of [0,1). For a sequence (⇧n)n2IN

of partitions of [0,1) with limn!1 |⇧n| = 0, one can also define the p-variation of g on

[0, T ] along (⇧n)n2IN as

lim
n!1

V
p

T
(g,⇧n),

provided that the limit exists.

With the above notations, a function g is of finite variation or has finite 1-variation

if V 1
T
(g) < 1 for every T 2 (0,1). The interpretation is that the graph of g has finite

length on any time interval. More precisely, if we define the arc length of (the graph of)

g on the interval [0, T ] as

sup
⇧

X

ti2⇧

q
(ti ^ T � ti�1 ^ T )2 +

�
g(ti ^ T )� g(ti�1 ^ T )

�2
,
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with the supremum again taken over all partitions ⇧ of [0,1), then g has finite variation

on [0, T ] if and only if it has finite arc length on [0, T ]. This can be checked by using the

inequality
p
a+ b 

p
a+

p
b for a, b � 0.

Any monotonic (increasing or decreasing) function is clearly of finite variation, because

the absolute values above disappear and we get a telescoping sum. Moreover, one can

show that any function of finite variation can be written as the di↵erence of two increasing

functions (and vice versa).

Now let us return to Brownian motion, taking p = 2 and as g one trajectory W.(!).

Then

Q
⇧
T
:=
X

ti2⇧

(Wti^T �Wti�1^T )
2 = V

2
T
(W.,⇧)

is the sum up to time T of the squared increments of BM along ⇧. With the above formal

intuition “(dWt)2 = dt”, we then expect, at least for |⇧| very small so that time points

are close together, that (Wti^T �Wti�1^T )
2
⇡ ti ^ T � ti�1 ^ T and hence

Q
⇧
T
⇡

X

ti2⇧

(ti ^ T � ti�1 ^ T ) = T for |⇧| small.

Even if the above reasoning is only heuristic, the result surprisingly is correct:

Theorem 1.4. Suppose W = (Wt)t�0 is a BM. For any sequence (⇧n)n2IN of partitions

of [0,1) which is refining (i.e. ⇧n ✓ ⇧n+1 for all n) and satisfies limn!1 |⇧n| = 0, we

have

P

h
lim
n!1

Q
⇧n
t

= t for every t � 0
i
= 1.

We express this by saying that along (⇧n)n2IN , the Brownian motion W has (with prob-

ability 1) quadratic variation t on [0, t] for every t � 0, and we write hW it = t. (We

sometimes also say, with a certain abuse of terminology, that P -almost all trajectories

W.(!) : [0,1) ! IR of BM have quadratic variation t on [0, t], for each t � 0.)

Remark 1.5. 1) It is a very nice and useful [! exercise] in analysis to prove that every

continuous function f which has nonzero quadratic variation along a sequence (⇧n) as
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above must have infinite variation, i.e. unbounded oscillations. (This will come up again

later in Section 6.1.) More generally, if limn!1 V
q

T
(f,⇧n) > 0 for some q > 0, then

limn!1 V
p

T
(f,⇧n) = +1 for any p with 0 < p < q, and if limn!1 V

p

T
(f,⇧n) < 1 for

some p > 0, then limn!1 V
q

T
(f,⇧n) = 0 for all q > p. We also recall that a classical

result due to Lebesgue says that any function of finite variation is almost everywhere

di↵erentiable. So Proposition 1.3 implies that Brownian trajectories must have infinite

variation, and Theorem 1.4 makes this even quantitative.

2) Caution: The comment in 1) is only true for continuous functions. With RCLL

functions, this breaks down in general.

3) It is important in Theorem 1.4 that the partitions ⇧n do not depend on the tra-

jectory W.(!), but are fixed a priori. One can show for P -almost all trajectories W.(!),

the (true) quadratic variation of W.(!) is +1.

4) There is an extension of Theorem 1.4 to general local martingales M instead of

Brownian motion W . But then the limit, called [M ]t, of the sequence (Q⇧n
t (M))n2IN

is not t, but some (Ft-measurable) random variable, and the convergence holds not P -

almost surely, but only in probability. (Alternatively, one can obtain P -a.s. convergence

along a sequence of partitions, but then this cannot be chosen, but is only shown to exist.)

Moreover, t 7! [M ]t(!) is then always increasing (for P -almost all !), but only continuous

if M itself has continuous trajectories. Finally, as for Brownian motion, the limit does

not depend on the sequence (⇧n)n2IN of partitions. ⇧
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4.2 Martingale properties and results

There are many martingales which are naturally associated to Brownian motion, and this

is useful in many di↵erent contexts. We present here just a small sample that will be used

or useful later.

As in discrete time, a martingale with respect to P and IF is a (real-valued) stochastic

process M = (Mt) such that M is adapted to IF , M is P -integrable in the sense that each

Mt is in L
1(P ), and the martingale property holds: for s  t, we have

(2.1) E[Mt | Fs] = Ms P -a.s.

If we have in (2.1) the inequality “” instead of “=”, then M is a supermartingale; if we

have “�”, then M is a submartingale. Of course, IF = (Ft) and M = (Mt) should have

the same time index set.

Remark 2.1. Because our filtration satisfies the usual conditions, a general result from

the theory of stochastic processes says that any martingale has a version with nice (RCLL,

i.e. right-continuous with left limits , to be precise) trajectories . We can and do therefore

always assume that our martingales have nice trajectories in that sense, and this is im-

portant for some of the subsequent results. We shall point this out more explicitly when

it is used. ⇧

Again exactly like in discrete time, a stopping time with respect to IF is a mapping

⌧ : ⌦ ! [0,1] such that {⌧  t} 2 Ft for all t � 0. One of the standard examples is the

first time that some adapted right-continuous process X (e.g. Brownian motion W ) hits

an open set B (e.g. (a,1)), i.e.

⌧ := inf{t � 0 : Xt 2 B}
�
= inf{t � 0 : Wt > a}, for X = W and B = (a,1)

�
.

We remark that checking the stopping time property above uses that the filtration is

right-continuous; and we mention that ⌧ above is still a stopping time if B is allowed to

be a Borel set, but the proof of this apparently minor extension is surprisingly di�cult.

One of the most useful properties of martingales is that the martingale property (2.1)

and its consequences very often extend to the case where the fixed times s  t are replaced
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by stopping times �  ⌧ . “Very often” means under additional conditions, as we shall see

presently. To make sense of (2.1) for � and ⌧ , we also first need to define, for a stopping

time �, the �-field of events observable up to time � as

F� :=
�
A 2 F : A \ {�  t} 2 Ft for all t � 0

 
.

(One must and can check that F� is a �-field, and that one has F� ✓ F⌧ for �  ⌧ .) We

also need to define M⌧ , the value of M at the stopping time ⌧ , by

(M⌧ )(!) := M⌧(!)(!).

Note that this implicitly assumes that we have a random variable M1, because ⌧ can

take the value +1. One can then also prove that if ⌧ is a stopping time and M is

an adapted process with RC trajectories, then M⌧ is F⌧ -measurable (as one intuitively

expects). Finally, we also recall the stopped process M ⌧ = (M ⌧

t
)t�0 which is defined by

M
⌧

t
:= Mt^⌧ for all t � 0. Again, if M is adapted with RC trajectories and ⌧ is a stopping

time, then also M
⌧ is adapted and has RC trajectories.

After the above preliminaries, we now have

Theorem 2.2 (Stopping theorem). Suppose that M = (Mt)t�0 is a (P, IF )-martingale

with RC trajectories, and �, ⌧ are IF -stopping times with �  ⌧ . If either ⌧ is bounded

by some T 2 (0,1) or M is uniformly integrable, then M⌧ ,M� are both in L
1(P ) and

(2.2) E[M⌧ | F�] = M� P -a.s.

Two frequent applications of Theorem 2.2 are the following:

1) For any RC martingale M and any stopping time ⌧ , we have E[M⌧^t | Fs] = M⌧^s

for s  t, i.e., the stopped process M ⌧ = (M ⌧

t
)t�0 = (Mt^⌧ )t�0 is again a martingale

(because we have E[M ⌧

t
| Fs] = M

⌧

s
).

[Because not necessarily s  ⌧ ^ t, this needs a little bit of extra work.]

2) If M is an RC martingale and ⌧ is any stopping time, then we always have for any

t � 0 that E[M⌧^t] = E[M0]. If either ⌧ is bounded or M is uniformly integrable,

then we also obtain E[M⌧ ] = E[M0].
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For future use, let us also recall the notion of a local martingale null at 0, now in

continuous time. An adapted process X = (Xt)t�0 null at 0 (i.e. with X0 = 0) is called

a local martingale null at 0 (with respect to P and IF ) if there exists a sequence of

stopping times (⌧n)n2IN increasing to 1 such that for each n 2 IN , the stopped process

X
⌧n = (Xt^⌧n)t�0 is a (P, IF )-martingale. We then call (⌧n)n2IN a localising sequence. (If

X is defined on [0, T ] for some T 2 (0,1), the requirement for a localising sequence is

that (⌧n) increases to T stationarily , i.e. ⌧n % T P -a.s. and P [⌧n < T ] ! 0 as n ! 1.)

The next result presents a number of martingales directly related to Brownian motion.

Proposition 2.3. Suppose W = (Wt)t�0 is a (P, IF )-Brownian motion. Then the follow-

ing processes are all (P, IF )-martingales:

1) W itself.

2) W
2
t
� t, t � 0.

3) e
↵Wt� 1

2↵
2
t, t � 0, for any ↵ 2 IR.

Proof. We do this argument (in part) because it illustrates how to work with the prop-

erties of BM. For each of the above processes, adaptedness is obvious, and integrability is

also clear because each Wt has a normal distribution and hence all exponential moments.

Finally, as Wt �Ws is independent of Fs and ⇠ N (0, t� s), we get 1) from

E[Wt �Ws | Fs] = E[Wt �Ws] = 0.

Using this with W
2
t
� W

2
s
= (Wt � Ws)2 + 2Ws(Wt � Ws) and Fs-measurability of Ws

then gives

E[W 2
t
�W

2
s
| Fs] = E[(Wt �Ws)

2
| Fs]

= E[(Wt �Ws)
2] = Var[Wt �Ws] = t� s,

hence 2). Finally, setting Mt := e
↵Wt� 1

2↵
2
t yields

E


Mt

Ms

����Fs

�
= E

⇥
e
↵(Wt�Ws)� 1

2↵
2(t�s)

��Fs

⇤

= e
� 1

2↵
2(t�s)

E[e↵(Wt�Ws)] = 1



4 BASICS ABOUT BROWNIAN MOTION 79

because E[eZ ] = e
µ+ 1

2�
2
for Z ⇠ N (µ, �2). So we have 3) as well. q.e.d.

Example. To illustrate that the conditions in Theorem 2.2 are really needed, consider

a Brownian motion W and the stopping time

⌧ := inf{t � 0 : Wt > 1}.

Due to the law of the iterated logarithm in part 2) of Proposition 1.2, we have ⌧ < 1

P -a.s., and because W has continuous trajectories, we get W⌧ = 1 P -a.s. For � = 0, if

(2.2) were valid for W and ⌧, �, we should get by taking expectations that

1 = E[W⌧ ] = E[W�] = E[W0] = 0,

which is clearly false. So ⌧ cannot be bounded by a constant (in fact, one can even show

that E[⌧ ] = +1), and W is a martingale, but not uniformly integrable. Finally, we also

see that (2.2) is not true in general (i.e. without assumptions on M and/or ⌧).

One useful application of the above martingale results is the computation of the

Laplace transforms of certain hitting times . More precisely, let W = (Wt)t�0 be a Brown-

ian motion and define for a > 0, b > 0 the stopping times

⌧a := inf{t � 0 : Wt > a},

�a,b := inf{t � 0 : Wt > a+ bt}.

Note that ⌧a < 1 P -a.s. by the (global) law of the iterated logarithm in part 2) of

Proposition 1.2, whereas �a,b can be +1 with positive probability (see below).

Proposition 2.4. Let W be a BM and a > 0, b > 0. Then for any � > 0, we have

(2.3) E[e��⌧a ] = e
�a

p
2�

and

(2.4) E[e���a,b ] = E
⇥
e
���a,bI{�a,b<1}

⇤
= e

�a(b+
p
b2+2�)

.
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Proof. We give this argument because it illustrates how to use the preceding martingale

results. First of all, take ↵ > 0 and define Mt := exp(↵Wt �
1
2↵

2
t), t � 0. Then M is

a martingale by part 3) of Proposition 2.3, and hence so is the stopped process M
⌧ by

(the first comment after) Theorem 2.2, for ⌧ 2 {⌧a, �a,b}. This implies (as in the second

comment after Theorem 2.2) that

1 = E[M0] = E[M⌧^t] = E
⇥
e
↵W⌧^t� 1

2↵
2(⌧^t)⇤

for all t, and we now want to let t ! 1.

For ⌧ = ⌧a, we have W⌧a^t  a and therefore M⌧a^t is bounded uniformly in t and !

(by e
↵a); so dominated convergence yields for t ! 1 that

1 = lim
t!1

E
⇥
e
↵W⌧a^t� 1

2↵
2(⌧a^t)

⇤

= E

h
lim
t!1

e
↵W⌧a^t� 1

2↵
2(⌧a^t)

i

= E
⇥
e
↵W⌧a� 1

2↵
2
⌧a
⇤

= e
↵a
E
⇥
e
� 1

2↵
2
⌧a
⇤

because ⌧a < 1 P -a.s., and so ↵ :=
p
2� gives (2.3).

For ⌧ = �a,b, we have W�a,b^t  a+ b(�a,b ^ t) so that

M�a,b^t  exp

✓
↵a+

⇣
↵b�

1

2
↵
2
⌘
(�a,b ^ t)

◆

is bounded uniformly in t and ! (by e
↵a) for ↵b <

1
2↵

2, i.e. for ↵ > 2b. Moreover,

↵b �
1
2↵

2
< 0 implies that on the set {�a,b = +1}, we have both M�a,b^t ! 0 as

t ! 1 and e
(↵b� 1

2↵
2)�a,b = 0. Therefore we get in the same way as above via dominated

convergence that

1 = e
↵a
E
⇥
e
(↵b� 1

2↵
2)�a,bI{�a,b<1}

⇤
= e

↵a
E
⇥
e
(↵b� 1

2↵
2)�a,b

⇤
.

Then (2.4) follows for ↵ := b +
p
b2 + 2�, which gives by a straightforward computation

that ↵b� 1
2↵

2 = ↵(b� 1
2↵) = �� < 0. q.e.d.

Remark. If we let � & 0 in (2.4), we obtain P [�a,b < 1] = e
�2ab so that indeed

P [�a,b = +1] = 1� e
�2ab

> 0. ⇧
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For a general random variable U � 0, the function � 7! E[e��U ] for � > 0 is called the

Laplace transform of U . Its general importance in probability theory is that it uniquely

determines the distribution of U .

In mathematical finance, both ⌧a and �a,b come up in connection with a number of

so-called exotic options . In particular, they are important for barrier options whose

payo↵ depends on whether or not a (upper or lower) level has been reached by a given

time. When computing prices of such options in the Black–Scholes model, one almost

immediately encounters the Laplace transforms from Proposition 2.4. For more details,

see for instance Dana/Jeanblanc [3, Chapter 9].



4 BASICS ABOUT BROWNIAN MOTION 82

4.3 Markovian properties

We have already seen in part 2) of Proposition 1.1 that for any fixed time T 2 (0,1),

the process

(3.1) Wt+T �WT , t � 0, is again a BM

if (Wt)t�0 is a Brownian motion. This means that if we restart a BM from level 0 at some

fixed time, it behaves exactly as if it had only just started. Moreover, one can show that

the independence of increments of BM implies that

(3.2) Wt+T �WT , t � 0, is independent of F0
T
,

where F
0
T

= �(Ws, s  T ) is the �-field generated by BM up to time T . Intuitively,

this means that BM at any fixed time T simply forgets its past up to time T (with the

only possible exception that it remembers its current position WT at time T ), and starts

afresh.

One consequence of (3.1) and (3.2) is the following. Suppose that at some fixed time

T , we are interested in the behaviour ofW after time T and try to predict this on the basis

of the past of W up to time T , where “prediction” is done in the sense of a conditional

expectation. Then we may as well forget about the past and look only at the current

value WT at time T . A bit more precisely, we can express this, for functions g � 0 applied

to the part of BM after time T , as

(3.3) E[g(Wu, u � T ) | �(Ws, s  T )] = E[g(Wu, u � T ) | �(WT )].

This is called the Markov property of BM, and it is already very useful in many situations.

Exactly as with martingales, we suspect that it might be interesting and helpful if one

could in (3.3) replace the fixed time T 2 (0,1) by a stopping time ⌧ . Note, however,

that quite apart from the di�culties of writing down an analogue of (3.3) for a random

time ⌧(!), it is even not clear whether this should then be true, because after all, ⌧ itself

can explicitly depend on the past behaviour of BM. Nevertheless, it turns out that such

a result is true; one says that BM even has the strong Markov property .
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Because a precise analogue of (3.3) for a stopping time becomes a bit technical, we

formulate things a bit di↵erently. If we denote almost as above by IF
W the filtration

generated by W (and made right-continuous, to be accurate), and if ⌧ is a stopping time

with respect to IF
W and such that ⌧ < 1 P -a.s., then

Wt+⌧ �W⌧ , t � 0, is again a BM and independent of FW

⌧
.

Of course, this includes (3.1) and (3.2) as special cases, and one can easily believe that it

is even more useful than (3.3). However, the proof is too di�cult to be given here.
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5 Stochastic integration

From the discrete-time theory developed in Chapters 1–3, we know that the trading gains

or losses from a self-financing strategy ' b= (V0,#) are described by the stochastic integral

G(#) = # S =

Z
# dS =

X

j

#
tr
j
�Sj =

X

j

#
tr
j
(Sj � Sj�1).

To be able to develop an analogous theory in continuous time, we therefore need to under-

stand how to define, and how to work with, a continuous-time stochastic integral process
R
# dS. From classical integration theory, the obvious idea is to start with approximating

Riemann sums of the form
P
#
tr
t̃i
(Sti+1 � Sti), with t̃i lying between ti and ti+1, and then

pass to the limit in a suitable sense. The simplest idea for that would be to fix !, look at

the trajectories t 7! St(!) and t 7! #t(!) and take limits of

X
#t̃i

(!)
�
Sti+1(!)� Sti(!)

�

like in courses on measure and integration theory. But unfortunately, this works well (i.e.,

for many integrands #) only if the function t 7! St(!) is of finite variation — and this

would immediately exclude as integrator a process like Brownian motion which does not

have this property. So one must use a di↵erent approach, and this will be explained in

this chapter. For an amplification (and proof) of the above point that “naive stochastic

integration is impossible”, we refer to Protter [13, Section I.8]; the idea originally goes

back to C. Stricker.

Remarks. 1) To avoid misunderstandings later, let us clarify that defining stochastic

integrals as above in a pathwise manner (i.e. ! by !) may well be possible if the integrator

S and the integrand # match up nicely enough, even if t 7! St(!) is not of finite variation.

We shall see this later in the context of Itô’s formula, where # has the form #t = g(St�)

for some C
1-function g. But if we want to fix S and allow many # without imposing

undue restrictions, an !-wise approach leads to problems.

2) In classical integration theory, it does not matter in which point t̃i 2 [ti, ti+1]

one evaluates the integrand when defining the Riemann approximation. For stochastic
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integrals, this is di↵erent — choosing the left endpoint t̃i = ti leads to the Itô integral , the

right endpoint t̃i = ti+1 yields the forward integral , and the midpoint choice t̃i =
1
2(ti+ti+1)

produces the Stratonovich integral . However, for applications in finance, it is clear that

one must choose t̃i = ti (and hence the Itô integral) because the strategy must be decided

before the price move. ⇧

5.1 The basic construction

Our goal in this section is to construct a stochastic integral process H M =
R
H dM

when M is a (real-valued) local martingale null at 0 and H is a (real-valued) predictable

process with a suitable integrability property (relative to M). In Section 5.3 below, we

also explain how to extend this from local martingales to semimartingales; but the key

step and the main work happen in the martingale case.

Remark. For simplicity, we take both M and H to be real-valued. It is reasonably

straightforward, although somewhat technical, to extend the theory from this section to

M and H that are both IR
d-valued, and we comment on the necessary changes a bit later.

We then also point out some of the pitfalls that one has to avoid in that context. ⇧

Throughout this chapter, we work on a probability space (⌦,F , P ) with a filtration

IF = (Ft)t�0 satisfying the usual conditions of right-continuity and P -completeness. If

needed, we define F1 :=
W
t�0

Ft. We also fix a (real-valued) local martingale M = (Mt)t�0

null at 0 (as defined before Proposition 4.2.3) and having RCLL (right-continuous with

left limits) trajectories. (The latter property, as pointed out earlier in Remark 4.2.1, is not

a restriction; we can always find an RCLL version of M thanks to the usual conditions

on IF .) Because we want to define stochastic integrals
R

b

a
H dM and these are always

over half-open intervals of the form (a, b] with 0  a < b  1, the value of M at 0 is

irrelevant and it is enough to look at processes H = (Ht) defined for t > 0. This will

simplify some definitions. For any process Y = (Yt)t�0 with RCLL trajectories, we denote

by �Yt := Yt � Yt� := Yt � lims!t,s<t Ys the jump of Y at time t > 0.
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The simplest example to be kept in mind is when M = W is a Brownian motion. From

Proposition 4.2.3, we know that both W itself and (W 2
t
� t)t�0 are then martingales, and

by Theorem 4.1.4, the quantity t we subtract from W
2
t
is the quadratic variation of W ,

which can be obtained as a pathwise limit of sums of squared increments ofW . As already

mentioned in Remark 4.1.5, a similar result is true for a general local martingale M , and

this is the key for constructing stochastic integrals.

Theorem 1.1. For any local martingale M = (Mt)t�0 null at 0, there exists a unique

adapted increasing RCLL process [M ] = ([M ]t)t�0 null at 0 with �[M ] = (�M)2 and

having the property that M2
� [M ] is also a local martingale. This process [M ] can be

obtained as the quadratic variation of M in the following sense: There exists a sequence

(⇧n)n2IN of partitions of [0,1) with |⇧n| ! 0 as n ! 1 such that

P


[M ]t(!) = lim

n!1

X

ti2⇧n

�
Mti^t(!)�Mti�1^t(!)

�2
for all t � 0

�
= 1.

We call [M ] the optional quadratic variation or square bracket process of M .

If M satisfies sup0sT
|Ms| 2 L

2 for some T > 0 (and hence is in particular a square-

integrable martingale on [0, T ]), then [M ] is integrable on [0, T ] (i.e. [M ]T 2 L
1) and

M
2
� [M ] is a martingale on [0, T ].

Proof. See Protter [13, Section II.6] or Dellacherie/Meyer [5, Theorem VII.42] or Ja-

cod/Shiryaev [11, Section I.4c].

Remarks. 1) Recall from Theorem 1.4 that Brownian motion W has [W ]t = t.

2) Note that [M ] has paths of finite variation. So one can easily define integrals
R
. . . d[M ] in a pathwise manner as usual Lebesgue–Stieltjes integrals. This does not

need any new theory.

3) The sequence (⇧n)n2IN of partitions in Theorem 1.4 of course depends on M . ⇧

For two local martingales M , N null at 0, we define the (optional) covariation process
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[M,N ] by polarisation, i.e.

[M,N ] :=
1

4
([M +N ]� [M �N ]).

From the characterisation of [M ] in Theorem 1.1, it follows easily that the operation [ · , · ]

is bilinear, and also that [M,N ] is the unique adapted RCLL process B null at 0, of finite

variation with �B = �M�N and such that the di↵erence MN � B is again a local

martingale.

Remark 1.2. 1) If M is a square-integrable martingale, then [M ] is integrable and

therefore, by the general theory of stochastic processes, admits a so-called (predictable)

compensator or dual predictable projection: There exists a unique increasing predictable

integrable process hMi = (hMit)t�0 null at 0 such that [M ] � hMi, and therefore also

M
2
�hMi = M

2
� [M ]+ [M ]�hMi, is a martingale. The process hMi is called the sharp

bracket (or sometimes the predictable variance) process of M . See Dellacherie/Meyer [5,

Theorem VI.65 and Definition VI.77] or Jacod/Shiryaev [11, Theorem I.3.17]. Note that

we still need to define what “predictable” means in continuous time.

2) Once we know what localisation means (see the end of this section for more details),

we can easily extend the results in 1). It is enough if M is a locally square-integrable local

martingale; then hMi is also locally integrable, and then both [M ]� hMi and M
2
� hMi

are local martingales.

3) We already point out here that any adapted process which is continuous is auto-

matically locally bounded (see later for the definition) and therefore also locally square-

integrable. Again, we refer to the end of this section for more details.

4) If M is continuous , then so is [M ], because �[M ] = (�M)2 = 0. This implies then

also that [M ] = hMi. In particular, for a Brownian motion W , we have [W ]t = hW it = t

for all t � 0.

5) If both M and N are locally square-integrable (e.g. if they are continuous), we also

get hM,Ni via polarisation.

6) If M is IR
d-valued, then [M ] becomes a d ⇥ d-matrix-valued process with entries

[M ]ik = [M i
,M

k]. To work with that, one needs to establish more properties. The same

applies to hMi, if it exists.
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7) The key di↵erence between [M ] and hMi is that [M ] exists for any local martingale

M null at 0, whereas the existence of hMi requires some extra local integrability of M . ⇧

Definition. We denote by bE the set of all bounded elementary processes of the form

H =
n�1X

i=0

hiI(ti,ti+1]

with n 2 IN , 0  t0 < t1 < · · · < tn < 1 and each hi a bounded (real-valued)

Fti-measurable random variable. For any stochastic process X = (Xt)t�0, we then define

the stochastic integral
R
H dX of H 2 bE by

Z
t

0

Hs dXs := H Xt :=
n�1X

i=0

hi(Xti+1^t �Xti^t) for t � 0.

Note that if X is RCLL, then so is
R
H dX = H X.

If X and H are both IR
d-valued, the integral is still real-valued, and we simply re-

place products by scalar products everywhere. But then Lemma 1.3 below looks more

complicated.

Lemma 1.3. Suppose that M is a square-integrable martingale (i.e., M is a martingale

with Mt 2 L
2 for all t � 0, or equivalently with sup0sT

|Ms| 2 L
2 for all T > 0). For

every H 2 bE , the stochastic integral process H M =
R
H dM is then also a square-

integrable martingale, and we have [H M ] =
R
H

2 d[M ] and the isometry property

E[(H M1)2] = E

✓Z 1

0

Hs dMs

◆2�
(1.1)

= E

 n�1X

i=0

h
2
i
([M ]ti+1 � [M ]ti)

�

= E

 Z 1

0

H
2
s
d[M ]s

�
.
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Note that the last d[M ]-integral can be defined ! by ! via classical measure and

integration theory, because t 7! [M ]t(!) is increasing and hence of finite variation. But

of course it is here also just a finite sum, because H has such a simple form.

Proof of Lemma 1.3. Adaptedness of H M is clear, and so is square-integrability

because H is bounded and each H Mt is just a finite sum. Moreover, H is identically 0

after tn so that both infinite integrals actually end at tn. We first argue the martingale

property, for simplicity only for s = ti, t = ti+1. [! Exercise: Prove this in detail for

arbitrary s  t.] Indeed, by first using that hi is Fti-measurable and bounded, and then

that M is a martingale, we get

E[H Mt �H Ms | Fs] = E[hi(Mti+1 �Mti) | Fti ] = hiE[Mti+1 �Mti | Fti ] = 0.

Next, it is easy to check [! exercise] for any square-integrable martingale N that

E[N2
t
�N

2
s
| Fs] = E[(Nt �Ns)

2
| Fs] for s  t.

Applying this once to H M and once to M yields

E[(H Mti+1)
2
� (H Mti)

2
| Fti ] = E[(H Mti+1 �H Mti)

2
| Fti ]

= E[h2
i
(Mti+1 �Mti)

2
| Fti ]

= h
2
i
E[M2

ti+1
�M

2
ti
| Fti ]

= h
2
i
E
⇥
[M ]ti+1 � [M ]ti

��Fti

⇤

= E
⇥
h
2
i
([M ]ti+1 � [M ]ti)

��Fti

⇤

= E
⇥
H

2 [M ]ti+1 �H
2 [M ]ti

��Fti

⇤
,

where we have used twice that hi is Fti-measurable and bounded, and in the fourth step

also that M2
� [M ] is a martingale. Summing up and taking expectations then gives (1.1).

Moreover, it is not very di�cult to argue that

�

✓Z
H

2 d[M ]

◆
= H

2�[M ] = H
2(�M)2 =

�
�(H M)

�2

for H 2 bE , by exploiting that H is piecewise constant and �[M ] = (�M)2. In view of

Theorem 1.1 and the uniqueness there, the combination of these two properties can also
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be formulated as saying that

[H M ] =

 Z
H dM

�
=

Z
H

2 d[M ] = H
2 [M ] for H 2 bE .

This completes the proof. q.e.d.

Remark. The argument in the proof of Lemma 1.3 actually shows that the process

(H M)2 �
R
H

2 d[M ] is a martingale. [! Exercise: Prove this in detail.] See also

Remark 1.2. ⇧

Our goal is now to extend the above results from H 2 bE to a larger class of integrands.

To that end, it is useful to view stochastic processes as random variables on the product

space ⌦ := ⌦⇥ (0,1). (Recall that the values at 0 are irrelevant for stochastic integrals.)

We define the predictable �-field P on ⌦ as the �-field generated by all adapted left-

continuous processes, and we call a stochastic process H = (Ht)t>0 predictable if it is

P-measurable when viewed as a mapping H : ⌦ ! IR. As a consequence, every H 2 bE is

then predictable as it is adapted and left-continuous. We also define the (possibly infinite)

measure PM := P ⌦ [M ] on (⌦,P) by setting

Z

⌦

Y dPM := EM [Y ] := E

 Z 1

0

Ys(!) d[M ]s(!)

�

for Y � 0 predictable; the inner integral is defined !-wise as a Lebesgue–Stieltjes integral

because t 7! [M ]t(!) is increasing, null at 0 and RCLL and so can be viewed as the

distribution function of a (possibly infinite) !-dependent measure on (0,1). (Actually,

one could even allow Y to be product-measurable here.) Note that PM = P ⌦ [M ] is not

a product measure in general because unlike hW it = t, the quadratic variation [M ] of a

general local martingale M depends on both t and !. Finally, we introduce the space

L
2(M) := L

2(M,P ) := L
2(⌦,P , PM)

=

⇢
all (equivalence classes of) predictable H = (Ht)t>0 such that

kHkL2(M) := (EM [H2])
1
2 =

✓
E

 Z 1

0

H
2
s
d[M ]s

�◆ 1
2

< 1

�
.
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(As usual, taking equivalence classes means that we identify H and H
0 if they agree

PM -a.e. on ⌦ or, equivalently, if E[
R1
0 (Hs �H

0
s
)2 d[M ]s] = 0.)

With the above notations, we can restate the first half of Lemma 1.3 as follows:

For a fixed square-integrable martingale M , the mapping H 7! H M is linear

and goes from bE to the space M
2
0 of all RCLL martingales N = (Nt)t�0 null at 0

which satisfy sup
t�0 E[N2

t
] < 1.

The last assertion is true because each H M remains constant after some tn given by

H 2 bE , and because Doob’s inequality gives for any martingale N and any t � 0 that

E

h
sup
0st

|Ns|
2
i
 4E[N2

t
].

Now the martingale convergence theorem implies that each N 2 M
2
0 admits a limit

N1 = limt!1 Nt P -a.s., and we have N1 2 L
2 by Fatou’s lemma, and the process

(Nt)0t1 defined up to 1, i.e. on the closed interval [0,1], is still a martingale. More-

over, Doob’s maximal inequality implies that two martingales N and N
0 which have the

same final value, i.e. N1 = N
0
1 P -a.s., must coincide. Therefore we can identify N 2 M

2
0

with its limit N1 2 L
2(F1, P ), and so M

2
0 becomes a Hilbert space with the norm

kNkM2
0
= kN1kL2 = (E[N2

1])
1
2

and the scalar product

(N,N
0)M2

0
= (N1, N

0
1)L2 = E[N1N

0
1].

Rephrasing Lemma 1.3 once again, we see that

the mapping H 7! H M from bE to M
2
0 is linear and an isometry
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because (1.1) says that for H 2 bE ,

(1.2) kH MkM2
0
=
�
E[(H M1)2]

� 1
2 =

✓
E

 Z 1

0

H
2
s
d[M ]s

�◆ 1
2

= kHkL2(M).

By general principles, this mapping can therefore be uniquely extended to the closure

of bE in L
2(M); in other words, we can define a stochastic integral process H M for

every H that can be approximated, with respect to the norm k · kL2(M), by processes

from bE , and the resulting H M is again a martingale in M
2
0 and still satisfies the

isometry property (1.2).

(The argument behind these general principles is quite standard. If (Hn)n2IN is a

sequence of predictable processes converging to H with respect to k · kL2(M), then (Hn)

is also a Cauchy sequence with respect to k · kL2(M). If all the H
n are in bE , then the

stochastic integral process H
n

M is well defined and in M
2
0 for each n by Lemma 1.3.

Moreover, by the isometry property in Lemma 1.3 for integrands in bE , the sequence

(Hn
M)n2IN is then also a Cauchy sequence in M

2
0, and because M

2
0 is a Hilbert space,

hence complete, that Cauchy sequence must have a limit which is again in M
2
0. This

limit is then defined to be the stochastic integral H M of H with respect to M . That

the isometry property extends to the limit is also standard.)

The crucial question now is of course how we can describe the closure of bE and

especially how big it is — the bigger the better, because we then have many integrands.

Proposition 1.4. Suppose that M is in M
2
0. Then:

1) bE is dense in L
2(M), i.e. the closure of bE in L

2(M) is L
2(M). In other words,

every H 2 L
2(M) can be written as a limit, with respect to the norm k · kL2(M), of

a sequence (Hn)n2IN in bE .

2) For every H 2 L
2(M), the stochastic integral process H M =

R
H dM is well

defined, in M
2
0 and satisfies (1.2).

Proof. Assertion 1) uses a martingale approximation argument on ⌦ which we do not
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give here. However, we point out that the assumption M 2 M
2
0 is used to ensure that

PM is a finite measure. Assertion 2) is then clear from the discussion above. q.e.d.

By definition, saying that M is in M
2
0 means that M is an RCLL martingale null

at 0 with sup
t�0 E[M2

t
] < 1. In particular, we then have E[M2

t
] < 1 for every t � 0

so that every M 2 M
2
0 is also a square-integrable martingale. However, the converse is

not true; Brownian motion W for example is a martingale and has E[W 2
t
] = t so that

sup
t�0 E[W 2

t
] = +1, which means that BM is not in M

2
0. This makes it clear that

we need to extend our approach to stochastic integration further. This can be done via

localisation.

Definition. We call a local martingale M null at 0 locally square-integrable and write

M 2 M
2
0, loc if there is a sequence of stopping times ⌧n % 1 P -a.s. such that M ⌧n 2 M

2
0

for each n. We say for a predictable process H that H 2 L
2
loc(M) if there exists a sequence

of stopping times ⌧n % 1 P -a.s. such that HI]]0,⌧n]] 2 L
2(M) for each n. Here we use the

stochastic interval notation ]]0, ⌧n]] := {(!, t) 2 ⌦ : 0 < t  ⌧n(!)}.

More generally, if we have a class C of stochastic processes, we define the localised

class Cloc by saying that a process X is in Cloc or that X is locally in C if there exists a

sequence of stopping times ⌧n % 1 P -a.s. such that X⌧n is in C for each n. If the process

we consider is an integrand H, then we have to require instead that HI]]0,⌧n]] is in C for

each n.

For M 2 M
2
0, loc and H 2 L

2
loc(M), defining the stochastic integral is straightforward;

we simply set

H M := (HI]]0,⌧n]]) M
⌧n on ]]0, ⌧n]]

which gives a definition on all of ⌦, because ⌧n % 1 so that ]]0, ⌧n]] increases to ⌦. The

only point we need to check is that this definition is consistent , i.e. that the definition on

]]0, ⌧n+1]] ◆ ]]0, ⌧n]] does not clash with the definition on ]]0, ⌧n]]. This can be done by using

the (subsequently listed) properties of stochastic integrals, but we do not go into details

here. Of course, H M is then in M
2
0, loc.
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Remarks. 1) A closer look at the developments so far shows that the definitions (but

not the preceding results and arguments) for PM and L
2(M) only need [M ]; hence one

can introduce and use them for any local martingale M , due to Theorem 1.1.

2) One can also define a stochastic integral process H M for H 2 L
2
loc(M) when M is

a general local martingale, but this requires substantially more theory. For more details,

see Dellacherie/Meyer [5, Theorem VIII.37].

3) If M is IRd-valued with components M i that all are local martingales null at 0, one

can also define the so-called vector stochastic integral H M for IR
d-valued predictable

processes in a suitable space L
2
loc(M); the result is then a real-valued process. Details

can be found in Jacod/Shiryaev [11, Sections III.4a and III.6a]. However, one warning is

indicated: L
2
loc(M) is not obtained by just asking that each component H i should be in

L
2
loc(M

i) and then setting H M =
P

i
H

i
M

i. In fact, it can happen that H M is well

defined whereas the individual H i
M

i are not. So the intuition for the multidimensional

case is that

“

Z
H dM =

Z X

i

H
i dM i

6=
X

i

Z
H

i dM i”,

as we have already pointed out in Remark 1.2.2.

4) One can extend the stochastic integral even further to more general integrands in a

space called L(M), but this becomes technical and also has a nontrivial pitfall : There are

(real-valued) local martingales M and predictable integrands H such that the stochastic

integral process
R
H dM is well defined, but not a local martingale (!). This is in marked

contrast to discrete time; see Theorem 1.3.1. We remark, however, that this can only

happen if M has jumps. ⇧

To end this section on a positive note, let us consider the case where M is a continuous

local martingale null at 0, briefly written as M 2 M
c

0,loc. This includes in particular the

case of a Brownian motion W . Then M is in M
2
0, loc because it is even locally bounded :

For the stopping times

⌧n := inf{t � 0 : |Mt| > n} % 1 P -a.s.,
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we have by continuity that |M ⌧n |  n for each n, because

��M ⌧n
t

�� = |Mt^⌧n | =

8
<

:
|Mt|  n if t < ⌧n,

|M⌧n | = n if t � ⌧n.

(Note that continuity of M is only used to obtain the equality |M⌧n | = n; everything else

works just as well if M is only assumed to be adapted and RCLL.) The set L
2
loc(M) of

nice integrands for M can here be explicitly described as

L
2
loc(M) =

⇢
all predictable processes H = (Ht)t>0 such that

Z
t

0

H
2
s
d[M ]s =

Z
t

0

H
2
s
dhMis < 1 P -a.s. for each t � 0

�
.

Finally, the resulting stochastic integral H M =
R
H dM is then (as we shall see from

the properties in Section 5.2 below) also a continuous local martingale, and of course null

at 0.
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5.2 Properties

As with usual integrals, one very rarely computes a stochastic integral by passing to the

limit from some approximation. One works with stochastic integrals by using a set of

rules and properties . These are listed in this section, without proofs.

• (Local) Martingale properties:

– If M is a local martingale and H 2 L
2
loc(M), then

R
H dM is a local martingale in

M
2
0, loc. If H 2 L

2(M), then
R
H dM is even a martingale in M

2
0.

– If M is a local martingale and H is predictable and locally bounded (which means

that there are stopping times ⌧n % 1 P -a.s. such that HI]]0,⌧n]] is bounded by a

constant cn, say, for each n 2 IN), then
R
H dM is a local martingale.

– If M is a martingale in M
2
0 and H is predictable and bounded, then

R
H dM is

again a martingale in M
2
0.

– Warning : If M is a martingale and H is predictable and bounded, then
R
H dM

need not be a martingale; this is in striking contrast to the situation in discrete

time.

• Linearity:

– If M is a local martingale and H,H
0 are in L

2
loc(M) and a, b 2 IR, then also aH+bH

0

is in L
2
loc(M) and

(aH + bH
0) M = (aH) M + (bH 0) M = a(H M) + b(H 0

M).

• Associativity:

– If M is a local martingale and H 2 L
2
loc(M), we already know that H M is again a

local martingale. Then a predictable process K is in L
2
loc(H M) if and only if the

product KH is in L
2
loc(M), and then

K (H M) = (KH) M,
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i.e. Z
K d

✓Z
H dM

◆
=

Z
KH dM.

• Behaviour under stopping:

– Suppose that M is a local martingale, H 2 L
2
loc(M) and ⌧ is a stopping time. Then

M
⌧ is a local martingale by the stopping theorem, H is in L

2
loc(M

⌧ ), HI]]0,⌧ ]] is in

L
2
loc(M), and we have

(H M)⌧ = H (M ⌧ ) = (HI]]0,⌧ ]]) M = (HI]]0,⌧ ]]) (M ⌧ ).

In words: A stopped stochastic integral is computed by either first stopping the

integrator and then integrating, or setting the integrand equal to 0 after the stopping

time and then integrating, or combining the two.

• Quadratic variation and covariation:

– Suppose that M,N are local martingales, H 2 L
2
loc(M) and K 2 L

2
loc(N). Then

 Z
H dM,N

�
=

Z
H d[M,N ]

and  Z
H dM,

Z
K dN

�
=

Z
HK d[M,N ].

In words: The covariation process of two stochastic integrals is obtained by inte-

grating the product of the integrands with respect to the covariation process of the

integrators.

– In particular, [
R
H dM ] =

R
H

2 d[M ]. (We have seen this already for H 2 bE in

Lemma 1.3.)
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• Jumps:

– Suppose M is a local martingale and H 2 L
2
loc(M). Then we already know that

H M is in M
2
0, loc and therefore RCLL. Its jumps are given by

�

✓Z
H dM

◆

t

= Ht �Mt for t > 0,

where �Yt := Yt � Yt� again denotes the jump at time t of a process Y with

trajectories which are RCLL (right-continuous and having left limits).

Example. To illustrate why the direct use of the definitions is complicated, let us

compute the stochastic integral
R
W dW for a Brownian motion W . This is well defined

because M := W is in M
2
0, loc (it is even continuous) and H := W is predictable and

locally bounded, because it is adapted and continuous.

Because

2Wti(Wti+1 �Wti) = W
2
ti+1

�W
2
ti
� (Wti+1 �Wti)

2

by elementary algebra, we obtain by summing up that

X

ti2⇧n

Wti^t(Wti+1^t �Wti^t) =
1

2
(W 2

t
�W

2
0 )�

1

2

X

ti2⇧n

(Wti+1^t �Wti^t)
2
.

If the mesh size |⇧n| of the partition sequence (⇧n) goes to 0, then the sum on the right-

hand side converges P -a.s. to t by Theorem 4.1.4, if the partitions are also refining. We

therefore expect to obtain
Z

t

0

Ws dWs =
1

2
W

2
t
�

1

2
t,

and we shall see later from Itô’s formula that this is indeed correct. Note that we should

expect the first term 1
2W

2
t
from classical calculus (where we have

R
x

0 y dy = 1
2x

2); the

second-order correction term 1
2t appears due to the quadratic variation of Brownian tra-

jectories.

Exercise: Prove directly (without using the above result) that the stochastic integral

process
R
W dW is a martingale, but not in M

2
0.
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Exercise: Compute the Stratonovich integral and the backward integral for
R
W dW , and

analyse their properties.

Exercise: Prove that if H is predictable and bounded, then
R
H dW is a square-integrable

martingale.

Exercise: For any local martingale M null at 0 and any stopping time ⌧ , prove that we

have [M ]⌧ = [M ⌧ ].
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5.3 Extension to semimartingales

So far, we have seen two ideas for constructing stochastic integrals
R
H dX of some process

H with respect to another process X:

a) In Section 5.1, we have taken for X = M a local martingale null at 0 and for H

a process in L
2
loc(M); this means that H must be predictable and possess some

integrability.

b) If X = A has trajectories t 7! At(!) that are of finite variation, we can classically

define
R
Hs(!) dAs(!) for each ! (pathwise) as a Lebesgue–Stieltjes integral. This

requires some measurability and integrability for s 7! Hs(!).

Because integration is a linear operation, the obvious and easy idea for an extension is

therefore to look at processes that are sums of the above two types, because we can then

define an integral with respect to the sum as the sum of the two integrals.

Definition. A semimartingale is a stochastic process X = (Xt)t�0 that can be decom-

posed as X = X0 +M +A, where M is a local martingale null at 0 and A is an adapted

RCLL process null at 0 and having trajectories of finite variation. A semimartingale X

is called special if there exists such a decomposition where A is in addition predictable.

Remark 3.1. 1) If X is a special semimartingale, the decomposition with A predictable

is unique and called the canonical decomposition. The uniqueness result is based on the

useful fact that any local martingale which is predictable and of finite variation must be

constant .

2) If X is a continuous semimartingale, both M and A can be chosen continuous as

well. ThereforeX is special because A is then predictable, as it is adapted and continuous.

3) If X is a semimartingale, we define its optional quadratic variation or square bracket

process [X] = ([X]t)t�0 via

[X] := [M ] + 2[M,A] + [A] := [M ] + 2
X

�M�A+
X

(�A)2.



5 STOCHASTIC INTEGRATION 102

One can show that this is well defined and does not depend on the chosen decomposition

of X. Moreover, [X] can also be obtained as a quadratic variation similarly as in Theo-

rem 1.1; see Section 6.1 below for more details. However, X2
� [X] is no longer a local

martingale, but only a semimartingale in general. ⇧

If X is a semimartingale, we can define a stochastic integral H X =
R
H dX at least

for any process H which is predictable and locally bounded. We simply set

H X := H M +H A,

whereH M is as in Section 5.1 andH A is defined !-wise as a Lebesgue–Stieltjes integral.

Of course one still needs to check that this is well defined (e.g. without ambiguity if X

has several decompositions), but this can be done; see for instance Dellacherie/Meyer [5,

Section VIII.1] or Jacod/Shiryaev [11, Section I.4d].

The resulting stochastic integral then has all the properties from Section 5.2 except

those that rest in an essential way on the (local) martingale property; so the isometry

property for example is of course lost. But we still have, for H predictable and locally

bounded:

– H X is a semimartingale.

– If X is special with canonical decomposition X = X0 +M + A, then H X is also

special, with canonical decomposition H X = H M +H A.

[This uses the non-obvious fact that if A is predictable and of finite variation and

H is predictable and locally bounded, the pathwise defined integral H A can be

chosen to be predictable again.]

– linearity: same formula as before.

– associativity: same formula as before.

– behaviour under stopping: same formula as before.

– quadratic variation and covariation: same formula as before.
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– jumps: same formula as before.

– If X is continuous , then so is H X; this is clear from �(H X) = H�X = 0.

In addition, there is also a sort of dominated convergence theorem: If Hn, n 2 IN ,

are predictable processes with H
n
! 0 pointwise on ⌦ and |H

n
|  |H| for some locally

bounded H, then H
n

X ! 0 uniformly on compacts in probability, which means that

(3.1) sup
0st

|H
n

Xs| �! 0 in probability as n ! 1, for every t � 0.

This can also be viewed as a continuity property of the stochastic integral operator

H 7! H X, because (pointwise and locally bounded) convergence of (Hn) implies con-

vergence of (Hn
X), in the ucp sense of (3.1).

From the whole approach above, the definition of a semimartingale looks completely

ad hoc and rather artificial. But it turns out that this concept is in fact very natural and

has a number of very good properties:

1) IfX is a semimartingale and f is a C2-function, then f(X) is again a semimartingale.

This will follow from Itô’s formula, which even gives an explicit expression for f(X).

2) If X is a semimartingale with respect to P and R is a probability measure equivalent

to P , then X is still a semimartingale with respect to R. This will follow from

Girsanov’s theorem, which even gives a decomposition of X under R.

3) If X is any adapted process with RC trajectories, we can always define the (ele-

mentary) stochastic integral H X for processes H in bE . If X is such that this

mapping on bE also has the continuity property (3.1) for any sequence (Hn)n2IN in

bE converging pointwise to 0 and with |H
n
|  1 for all n, then X must in fact be

a semimartingale. This deep result is due to Bichteler and Dellacherie and shows

that semimartingales are a natural class of integrators .

One direct consequence of 2) for finance is that semimartingales are the natural pro-

cesses to model discounted asset prices in financial markets. In fact, the fundamental
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theorem of asset pricing (in a suitably general version for continuous-time models) essen-

tially says that a suitably arbitrage-free model should be such that S is a local martingale

(or more generally a �-martingale) under some Q ⇡ P . But then S is a Q-semimartingale

and thus by 2) also a P -semimartingale.

Put di↵erently, the above result implies that if we start with any model where S is

not a semimartingale, there will be arbitrage of some kind. Things become di↵erent if

one includes transaction costs; but in frictionless markets, one must be careful about this

issue.

Remark. We have explained so far how to obtain a stochastic integral H X for semi-

martingales X and locally bounded predictable H. The Bichteler–Dellacherie result shows

that one cannot go beyond semimartingales without a serious loss; but because not every

predictable process is locally bounded, one can ask if, for a given semimartingale X, there

are more possible integrands H for X. This leads to the notion and definition of the class

L(X) of X-integrable processes; but the development of this requires rather advanced re-

sults and techniques from stochastic calculus, and so we cannot go into details here. See

Dellacherie/Meyer [5, Section VIII.3] or Jacod/Shiryaev [11, Section III.6]. Alternatively,

this is usually presented in the course “Mathematical Finance”. ⇧



6 STOCHASTIC CALCULUS 105

6 Stochastic calculus

Our goal in this chapter is to provide the basic tools, results and techniques for working

with stochastic processes and especially stochastic integrals in continuous time. This

will be used in the next chapter when we discuss continuous-time option pricing and in

particular the famous Black–Scholes formula.

Throughout this chapter, we work on a probability space (⌦,F , P ) with a filtration

IF = (Ft) satisfying the usual conditions of right-continuity and P -completeness. For all

local martingales, we then can and tacitly do choose a version with RCLL trajectories.

For the time parameter t, we have either t 2 [0, T ] with a fixed time horizon T 2 (0,1)

or t � 0. In the latter case, we set

F1 :=
_

t�0

Ft := �

✓[

t�0

Ft

◆
.

6.1 Itô’s formula

The question to be addressed in this section is very simple. If X is a semimartingale and

f is some (suitable) function, what can we say about the stochastic process f(X)? What

kind of process is it, and what does it look like in more detail?

In the simplest case, let x : [0,1) ! IR be a function t 7! x(t) and think of x as a

typical trajectory t 7! Xt(!) of X. The classical chain rule from analysis then says that

if x is in C
1 (i.e. continuously di↵erentiable) and f : IR ! IR is in C

1, the composition

f � x : [0,1) ! IR, t 7! f(x(t)) is again in C
1 and its derivative is given by

d

dt
(f � x)(t) =

df

dx

�
x(t)

� dx
dt

(t),

or more compactly

(f � x). (t) = f
0�
x(t)

�
ẋ(t),

where the dot ˙ denotes the derivative with respect to t and the prime 0 is the derivative

with respect to x. In formal di↵erential notation, we can rewrite this as

(1.1) d(f � x)(t) = f
0�
x(t)

�
dx(t),
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or in integral form

(1.2) f
�
x(t)

�
� f

�
x(0)

�
=

Z
t

0

f
0�
x(s)

�
dx(s).

In this last form, the chain rule can be extended to the case where f is in C
1 and x is

continuous and of finite variation.

Unfortunately, this classical result does not help us a lot. For one thing, X might have

only RCLL instead of continuous trajectories. This is still solvable if X has trajectories

of finite variation. But even if X is continuous, we cannot hope that its trajectories are of

finite variation, as the example of X being a Brownian motion clearly demonstrates. So

we need a di↵erent result, namely a chain rule for functions having a nonzero quadratic

variation.

Let us now connect the above idea to semimartingales. Recall that a semimartingale

is a stochastic process of the form X = X0 +M + A, where M is a local martingale null

at 0 and A is an adapted process null at 0 with RCLL trajectories of finite variation. For

any such A and any fixed, i.e. nonrandom, sequence (⇧n)n2IN of partitions of [0,1) with

limn!1 |⇧n| = 0, the quadratic variation of A along (⇧n)n2IN is given by the sum of the

squared jumps of A, i.e.

[A]t = lim
n!1

X

ti2⇧n

(Ati+1^t � Ati^t)
2 =

X

0<st

(�As)
2 =

X

0<st

(As � As�)
2 for t � 0.

By polarisation, we then obtain for any semimartingale Y that

[A, Y ]t =
X

0<st

�As�Ys for t � 0.

So the quadratic variation of a general semimartingale X = X0 +M + A has the form

[X] = [M + A] = [M ] + [A] + 2[M,A] = [M ] +
X

0<s.
(�As)

2 + 2
X

0<s.
�Ms�As.

This partly repeats Remark 5.3.1. If A is continuous, we obtain that [X] = [M ], even if

X (hence M) is only RCLL.
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Now suppose that X is a continuous semimartingale. As already pointed out in

Remark 5.3.1, the processes M and A can then also be chosen continuous. A simple

result from analysis [! exercise] says that

any continuous function of finite variation has zero quadratic variation

along any sequence (⇧n)n2IN of partitions of [0,1) whose mesh size |⇧n|

goes to 0 as n ! 1.

(1.3)

(Note that this is a variant of the result already mentioned in Remark 4.1.5 in Chapter 4.)

So if the semimartingale X is continuous, then its (unique) finite variation part A has

zero quadratic variation, and its (unique) local martingale part M has quadratic variation

[M ] = hMi; see Remark 5.1.2 in Chapter 5. The covariation of M and A is thus also

zero by Cauchy–Schwarz. A continuous semimartingale X with canonical decomposition

X = X0 +M +A therefore has the quadratic variation [X] = hXi = [M ] = hMi which is

again continuous.

Now let us return to the transformation f(X) of a semimartingale X by a function f .

In the simplest case, the answer to our basic question in this section looks as follows.

Theorem 1.1 (Itô’s formula I). Suppose X = (Xt)t�0 is a continuous real-valued

semimartingale and f : IR ! IR is in C
2. Then f(X) = (f(Xt))t�0 is again a continuous

(real-valued) semimartingale, and we explicitly have P -a.s.

(1.4) f(Xt) = f(X0) +

Z
t

0

f
0(Xs) dXs +

1

2

Z
t

0

f
00(Xs) dhXis

for all t � 0.

Remarks. 1) Not only the result is important, but also the basic idea for its proof.

2) The dX-integral in (1.4) is a stochastic integral; it is well defined because X is

a semimartingale and f
0(X) is adapted and continuous, hence predictable and locally

bounded. The dhXi-integral is a classical Lebesgue–Stieltjes integral because hXi has
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increasing trajectories; it is also well defined because f 00(X) is also predictable and locally

bounded.

3) In purely formal di↵erential notation, (1.4) is usually written more compactly as

(1.5) df(Xt) = f
0(Xt) dXt +

1

2
f
00(Xt) dhXit = f

0(Xt) dXt +
1

2
f
00(Xt) dhMit,

using that hXi = hMi.

4) Comparing (1.1), (1.2) to (1.5), (1.4) shows that we have in comparison to the

classical chain rule an extra second-order term coming from the quadratic variation of

X (or here more precisely from the quadratic variation of the martingale part M of X).

This is the important point to remember, and it also shows up in the proof.

5) One can view Itô’s formula and its proof as a purely analytical result which provides

an extension of the chain rule for f � x to functions x that have a nonzero quadratic

variation. This has been pointed out and developed by Hans Föllmer [8]. Not surprisingly,

relaxing the assumptions on x then requires stronger assumptions on f than in the classical

case (C2 instead of C1).

6) To see the financial relevance of Itô’s formula, think of X as some underlying

financial asset and of Y = f(X) as a new product obtained from the underlying by a

possibly nonlinear transformation f . Then (1.4) or (1.5) show us how the product reacts

to changes in the underlying. The important message of Theorem 1.1 is then that when

using stochastic models (for X), a simple linear approximation is not good enough; one

must also account for the second-order behaviour of X. ⇧

Proof of Theorem 1.1. The easiest way to remember both the result and its proof for

the case where X is continuous is via the following quick and dirty argument: “A Taylor

expansion at the infinitesimal level gives

df(Xt) = f(Xt)� f(Xt�dt) = f
0(Xt) dXt +

1

2
f
00(Xt)( dXt)

2
,

and (dXt)2 = (Xt � Xt�dt)2 = hXit � hXit�dt = dhXit.” Note, however, that this

reasoning is purely formal and does not constitute a correct proof. (For example, it does

not explain why we stop at the second and not at another higher order in the expansion.)
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To make the above idea rigorous, we write for non-infinitesimal increments

f(Xti+1^t)� f(Xti) = f
0(Xti)(Xti+1^t �Xti) +

1

2
f
00(Xti)(Xti+1^t �Xti)

2 +Ri,

where Ri stands for the error term in the Taylor expansion and the ti come from a partition

⇧n of [0,1). Now we sum over the ti  t and obtain on the left-hand side a telescoping

sum which equals f(Xt) � f(X0). When we study the terms on the right-hand side, we

first recall the convergence

Q
⇧n
t

:=
X

ti2⇧n, tit

(Xti+1^t �Xti)
2
�! hXit as |⇧n| ! 0

from Theorem 5.1.1; see also Remark 5.3.1. This implies firstly by a weak convergence

argument that

1

2

X

ti2⇧n, tit

f
00(Xti)(Xti+1^t �Xti)

2
�!

1

2

Z
t

0

f
00(Xs) dhXis,

and secondly by a careful estimate that

X

ti2⇧n, tit

|Ri| �! 0.

(This is exactly the point where the mathematical analysis shows why the second order

is the correct order of expansion.) As a consequence, the sums

X

ti2⇧n, tit

f
0(Xti)(Xti+1^t �Xti)

must also converge, and the dominated convergence theorem for stochastic integrals then

implies that the limit is
R

t

0 f
0(Xs) dXs. q.e.d.

Example. For X = W a Brownian motion and f(x) = x
2, we obtain f

0(x) = 2x,

f
00(x) ⌘ 2 and therefore

W
2
t
= W

2
0 +

Z
t

0

2Ws dWs +
1

2

Z
t

0

2 dhW is.
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Using W0 = 0 and the fact that BM has quadratic variation hW it = t, hence dhW is = ds,

gives

W
2
t
= 2

Z
t

0

Ws dWs +

Z
t

0

ds = 2

Z
t

0

Ws dWs + t

or rewritten
Z

t

0

Ws dWs =
1

2
W

2
t
�

1

2
t.

This ties up with the example we have seen in Section 5.2.

Before moving on to more examples, we need an extension of Theorem 1.1.

Theorem 1.2 (Itô’s formula II). Suppose X = (Xt)t�0 is a general IRd-valued semi-

martingale and f : IRd
! IR is in C

2. Then f(X) = (f(Xt))t�0 is again a (real-valued)

semimartingale, and we explicitly have P -a.s. for all t � 0

1) if X has continuous trajectories:

f(Xt) = f(X0) +
dX

i=1

Z
t

0

@f

@xi
(Xs) dX

i

s
+

1

2

dX

i,j=1

Z
t

0

@
2
f

@xi@xj
(Xs) dhX

i
, X

j
is,(1.6)

or in more compact notation, using subscripts to denote partial derivatives,

df(Xt) =
dX

i=1

fxi(Xt) dX
i

t
+

1

2

dX

i,j=1

fxixj(Xt) dhX
i
, X

j
it.

2) if d = 1 (so that X is real-valued, but not necessarily continuous):

f(Xt) = f(X0) +

Z
t

0

f
0(Xs�) dXs +

1

2

Z
t

0

f
00(Xs�) d[X]s(1.7)

+
X

0<st

✓
f(Xs)� f(Xs�)� f

0(Xs�)�Xs �
1

2
f
00(Xs�)(�Xs)

2

◆
.

Proof. See Protter [13, Section II.7]. q.e.d.
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Remark. There is of course also a version of Itô’s formula for general IRd-valued semi-

martingales (which contains both 1) and 2) as special cases). It looks similar to part 2)

of Theorem 1.2, but has in addition sums like in part 1), with h · , · i replaced by [ · , · ].

And of course one could also write (1.7) in di↵erential form. ⇧

If X is continuous, one frequently useful simplification of (1.6) arises if one or several

of the components of X are of finite variation. If Xk, say, is of finite variation, then we

know from (1.3) that hXk
i ⌘ 0 and hence also hX

i
, X

k
i ⌘ 0 for all i by Cauchy–Schwarz.

(Recall that we have already used such an argument before Theorem 1.1.) This implies

that all the second-order terms containing X
k will vanish; hence we do not need all the

corresponding partial derivatives, and so we can also relax the assumptions on f in that

regard.

Example 1.3. The CRR binomial model can be written as

eS0
k
� eS0

k�1

eS0
k�1

= r,

eS1
k
� eS1

k�1

eS1
k�1

= Yk � 1 =: Rk = E[Rk] + (Rk � E[Rk]).

Note that the terms in brackets above has expectation 0 and a variance which depends

on the distribution of the Rk. Passing from time steps of size 1 to dt and noting that

Brownian increments have expectation 0 like the term Rk � E[Rk], a continuous-time

analogue would be of the form

deS0
t

eS0
t

= r dt,(1.8)

deS1
t

eS1
t

= µ dt+ � dWt.(1.9)

(More accurately, we should put deS0
t
/eS0

t� and deS1
t
/eS1

t�. But as both eS0 and eS1 turn out

to be continuous, the di↵erence does not matter.)

Of course, the equation (1.8) for eS0 is just a very simple ordinary di↵erential equation

(ODE), whose solution for the starting value eS0
0 = 1 is eS0

t
= e

rt. The equation (1.9) for
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eS1 is a stochastic di↵erential equation (SDE), and its solution is given by the geometric

Brownian motion (GBM)

(1.10) eS1
t
= eS1

0 exp

✓
�Wt +

⇣
µ�

1

2
�
2
⌘
t

◆
for t � 0.

Note the possibly surprising term �
1
2�

2. To see that this is indeed a solution, we write

eS1
t
= f(Wt, t) with f(x, t) = eS1

0 e
�x+(µ� 1

2�
2)t.

We now apply Itô’s formula (1.6) for d = 2 to Xt = (Wt, t). As the second component

X
(2)
t = t is continuous and increasing, it has finite variation; so (1.6) simplifies and we

only need the derivatives

fx =
@f

@x
= �f,

ft =
@f

@t
=

✓
µ�

1

2
�
2

◆
f,

fxx =
@
2
f

@x2
= �

2
f.

Then we get, by using that hW it = t and f(Wt, t) = eS1
t
, that

deS1
t
= fx(Wt, t) dWt + ft(Wt, t) dt+

1

2
fxx(Wt, t) dhW it

= � eS1
t
dWt +

✓
µ�

1

2
�
2

◆
eS1
t
dt+

1

2
�
2 eS1

t
dt

= eS1
t
(� dWt + µ dt),

exactly as claimed. Note that we did not argue (as one should and can) that the above

explicit process in (1.10) is the only solution of (1.9).

Example. If X = (Xt)t�0 is a continuous real-valued semimartingale null at 0, then

(1.11) Zt := e
Xt� 1

2 hXit for t � 0

is the unique solution of the SDE

dZt = Zt dXt, Z0 = 1.
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Put di↵erently, this means that Z satisfies

Zt = 1 +

Z
t

0

Zs dXs for all t � 0, P -a.s.

Checking that the above Z does satisfy the above SDE, as well as proving uniqueness of

the solution, is a good [! exercise] in the use of Itô’s formula.

Definition. For a general real-valued semimartingale X null at 0, the stochastic expo-

nential of X is defined as the unique solution Z of the SDE

dZt = Zt� dXt, Z0 = 1,

i.e.,

Zt = 1 +

Z
t

0

Zs� dXs for all t � 0, P -a.s.,

and it is denoted by E(X) := Z.

From the preceding example, we have the explicit formula E(X) = exp(X �
1
2hXi)

when X is continuous and null at 0. For general X, an explicit formula is given in

Protter [13, Theorem II.37]. Note that Z = E(X) can become 0 or negative when X has

jumps; in fact, the properties of jumps of stochastic integrals yield

Zt � Zt� = �Zt = �

✓
1 +

Z
Zs� dXs

◆
= Zt��Xt,

and this shows that Zt = Zt�(1 +�Xt) so that Z = E(X) changes sign between t� and

t whenever 1 +�Xt < 0, i.e. when X has a jump �Xt < �1.

Example 1.4. Suppose W is a Brownian motion, T 2 (0,1) is fixed and h : IR ! IR is

a measurable function with h(WT ) 2 L
1. Then clearly

Mt := E[h(WT ) | Ft] for 0  t  T

is a martingale. But writing

Mt = E[h(Wt +WT �Wt) | Ft]
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and using that Wt is Ft-measurable and WT �Wt is independent of Ft and ⇠ N (0, T � t)

shows that we also have

Mt = E[h(x+WT �Wt)]
��
x=Wt

= f(Wt, t)

with

f(x, t) = E[h(x+WT �Wt)] =

Z 1

�1
h(x+ y)

1p
2⇡(T � t)

e
� y2

2(T�t) dy.

So f( · , t), as a function of x for fixed t < T , is the convolution of h with a function in

C
1 and therefore also C

1 with respect to x, and f(x, · ) is clearly in C
1 with respect to

t as long as t < T . Therefore Itô’s formula may be applied and gives

(1.12) Mt = M0 +

Z
t

0

fx(Ws, s) dWs +

Z
t

0

✓
ft +

1

2
fxx

◆
(Ws, s) ds for 0  t < T .

Now one can check by laborious analysis that the function f(x, t) satisfies the partial

di↵erential equation (PDE) ft +
1
2fxx = 0; or one can use the fact that the canonical

decomposition of a special semimartingale (like the martingale M) is unique. (Alterna-

tively, one can use that any continuous local martingale of finite variation is constant.)

Any of these leads to the conclusion that the ds-integral in (1.12) must vanish identically

because it is continuous and adapted, hence predictable, and of finite variation like any

ds-integral. By letting t % T in (1.12), we therefore obtain the representation

h(WT ) = MT = M0 +

Z
T

0

fx(Ws, s) dWs

of the random variable h(WT ) as an initial value M0 plus a stochastic integral with respect

to the Brownian motion W . A more general result in that direction is given in Section 6.3.

Example. An Itô process is a stochastic process of the form

Xt = X0 +

Z
t

0

µs ds+

Z
t

0

�s dWs for t � 0

for some Brownian motion W , where µ and � are predictable processes satisfying ap-

propriate integrability conditions (e.g.
R

T

0 (|µs| + |�s|
2) ds < 1 P -a.s. for every T < 1).
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More generally, X,µ,W could be vector-valued and � could be matrix-valued, of course

all with appropriate dimensions. For any C
2-function f , the process f(X) is then again

an Itô process, and Itô’s formula gives

f(Xt) = f(X0) +

Z
t

0

✓
f
0(Xs)µs +

1

2
f
00(Xs)�

2
s

◆
ds+

Z
t

0

f
0(Xs)�s dWs.

This is another good [! exercise] for using Itô’s formula.

Example. For any two real-valued (RCLL) semimartingales X and Y , the product rule

is obtained by applying Itô’s formula with the function f(x, y) = xy. The result says that

XtYt = X0Y0 +

Z
t

0

Ys� dXs +

Z
t

0

Xs� dYs + [X, Y ]t

or compactly in di↵erential notation

d(XY ) = Y� dX +X� dY + d[X, Y ].

If both X and Y are continuous, this yields

d(XY ) = Y dX +X dY + dhX, Y i.

Example. Let W = (Wt)t�0 be a Brownian motion, a < 0 < b and

⌧a,b := inf
�
t � 0 : Wt > b or Wt < a

 

the first time that BM leaves the interval [a, b] around 0. Then classical results about the

ruin problem for Brownian motion say that

E[⌧a,b] = |a| b (so that ⌧a,b < 1 P -a.s.)

and

(1.13) P [W⌧a,b
= b] =

|a|

b� a
= 1� P [W⌧a,b

= a].

It is also known, or can be computed from (1.13), that E[W⌧a,b
] = 0.
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In order to compute the covariance of ⌧a,b and W⌧a,b
, we start with the function

f(x, t) = �
1
3x

3 + tx. Then clearly ft +
1
2fxx ⌘ 0 so that Itô’s formula shows that

Mt := f(Wt, t) = 0 +

Z
t

0

fx(Ws, s) dWs

is like W a continuous local martingale, and so is then the stopped process M ⌧a,b . But

M
⌧a,b

t = Mt^⌧a,b = �
1

3

�
W

⌧a,b

t

�3
+ (t ^ ⌧a,b)W

⌧a,b

t

is bounded by a constant for t  T as |W ⌧a,b |  max(|a|, b), and so M
⌧a,b is a martingale

on [0, T ] for each T < 1. This directly implies that

0 = E
⇥
M

⌧a,b

0

⇤
= E

⇥
M

⌧a,b

T

⇤
= �

1

3
E
⇥
W

3
⌧a,b^T

⇤
+ E

⇥
(⌧a,b ^ T )W⌧a,b^T

⇤
,

and letting T ! 1 yields by dominated convergence, also using ⌧a,b 2 L
1, that

0 = �
1

3
E
⇥
W

3
⌧a,b

⇤
+ E

⇥
⌧a,bW⌧a,b

⇤
.

Hence we find

Cov
�
⌧a,b,W⌧a,b

�
= E

⇥
⌧a,bW⌧a,b

⇤
=

1

3
E
⇥
W

3
⌧a,b

⇤
=

1

3
|a|b(b� |a|),

where the last equality is obtained by computing with the known (two-point) distribution

of W⌧a,b
given in (1.13).



6 STOCHASTIC CALCULUS 117

6.2 Girsanov’s theorem

In Section 6.1, we have seen that the family of semimartingales is invariant under a trans-

formation by a C2-function, i.e., f(X) is a semimartingale wheneverX is a semimartingale

and f 2 C
2. In this section, our goal is to show that the class of semimartingales is also

invariant under a change to an equivalent probability measure.

Suppose we have P and a filtration IF = (Ft)t�0. Assuming that Q ⇡ P on F (or

F1) can be too restrictive; so we fix T 2 (0,1) and assume only that Q ⇡ P on FT . If

we have this for every T < 1, we call Q and P locally equivalent and write Q
loc
⇡ P . For

an infinite horizon, this is usually strictly weaker than Q ⇡ P . (Also, one must be careful

with the filtration and the usual conditions, but we do not discuss these technical issues.)

To start, fix T 2 (0,1) for simplicity and suppose that Q ⇡ P on FT . Denote by

(2.1) Zt := Z
Q;P
t := EP


dQ|FT

dP |FT

����Ft

�
for 0  t  T

the density process of Q with respect to P on [0, T ], choosing an RCLL version of this

P -martingale on [0, T ]. Because Q ⇡ P on FT , we have Z > 0 on [0, T ], meaning

that P [Zt > 0, 8t 2 [0, T ]] = 1, and because Z is a P -(super)martingale, we even have

inf0tT Zt > 0 P -a.s. by the so-called minimum principle for supermartingales ; see

Dellacherie/Meyer [5, Theorem VI.17]. This implies that also Z� > 0 on [0, T ] so that

1/Z� is well defined and adapted and left-continuous, hence also predictable and locally

bounded.

In perfect analogy to Lemma 2.3.1, we now have

Lemma 2.1. Suppose that Q ⇡ P on FT and define Z = Z
Q;P as in (2.1). Then:

1) For s  t  T and every Ut which is Ft-measurable and either � 0 or in L
1(Q), we

have the Bayes formula

EQ[Ut | Fs] =
1

Zs

EP [ZtUt | Fs] Q-a.s.

2) An adapted process Y = (Yt)0tT is a (local) Q-martingale on [0, T ] if and only if

the product ZY is a (local) P -martingale on [0, T ].
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Of course, if Q
loc
⇡ P , we can use Lemma 2.1 for any T < 1 and hence obtain a

statement for processes Y = (Yt)t�0 on [0,1). One consequence of part 2) of Lemma 2.1

(with Y := 1/Z) is also that 1
Z
is a Q-martingale, more precisely on [0, T ] if Q ⇡ P on

FT , or even on [0,1) if Q
loc
⇡ P . Furthermore, it is easy to check that 1

Z
is the density

process of P with respect to Q (again on [0, T ] or on [0,1), respectively).

The next result now proves the announced basic result.

Theorem 2.2 (Girsanov). Suppose that Q
loc
⇡ P with density process Z. If M is a local

P -martingale null at 0, then

fM := M �

Z
1

Z
d[Z,M ]

is a local Q-martingale null at 0. In particular, every P -semimartingale is also a Q-semi-

martingale (and vice versa, by symmetry).

Proof. The second assertion is very easy to prove from the first; we simply write

X = X0 +M + A = X0 + fM +

✓
A+

Z
1

Z
d[Z,M ]

◆
= X0 + fM + eA

and observe that eA := A +
R

1
Z
d[Z,M ] is of finite variation. Note that

R
1
Z
d[Z,M ]

is defined pathwise because [Z,M ] is of finite variation; so this requires no stochastic

integration, nor predictability of the integrand.

For proving the first assertion, note that the definition of the optional covariation

process implies that the di↵erence ZM � [Z,M ] is a local P -martingale like M and

Z. (To argue this in an alternative manner, we could use the product rule which gives

ZM � [Z,M ] =
R
Z� dM +

R
M� dZ, which is a local P -martingale like M and Z.) So

by Lemma 2.1,

M �
1

Z
[Z,M ] is a local Q-martingale.
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Using the product rule gives

(2.2)
1

Z
[Z,M ] =

Z
[Z,M ]� d

✓
1

Z

◆
+

Z
1

Z�
d[Z,M ] +


1

Z
, [Z,M ]

�
.

Because [Z,M ] is of finite variation, the last term equals


1

Z
, [Z,M ]

�
=
X

�

✓
1

Z

◆
�[Z,M ] =

Z
�

✓
1

Z

◆
d[Z,M ]

so that the last two terms in (2.2) add up to
R

1
Z
d[Z,M ]. Because 1

Z
is a local Q-martin-

gale, so is the stochastic integral
R
[Z,M ]� d

�
1
Z

�
because its integrand is locally bounded.

So we obtain

fM = M �

Z
1

Z
d[Z,M ] =

✓
M �

1

Z
[Z,M ]

◆
�

Z
[Z,M ]� d

✓
1

Z

◆
,

and we see that this is a local Q-martingale. q.e.d.

In many situations, it is more convenient to do computations not in terms of Z, but

rather with its so-called stochastic logarithm. Suppose in general that Y is a semimartin-

gale with Y� > 0 (on [0, T ] or [0,1), respectively). Then we can define a semimartingale

null at 0 by L :=
R

1
Y�

dY , we have dY = Y� dL by construction, and so we obtain

Y = Y0 E(L) > 0 with a semimartingale L null at 0.

It is also clear that L is continuous if and only if Y is continuous, and that L is a local

P -martingale if and only if Y is a local P -martingale. This L is called the stochastic

logarithm of Y . Note that because of the quadratic variation, we do not have L = log Y ,

not even if Y is continuous; see the explicit formula (1.11) in Section 6.1.

In the situation here, Z is a P -martingale > 0, hence has Z� > 0 as discussed above,

and so applying the above with Y := Z yields Z = Z0 E(L), where L is like Z a local

P -martingale.

Theorem 2.3 (Girsanov, continuous version). Suppose that Q
loc
⇡ P with a density

process Z which is continuous. Write Z = Z0 E(L). If M is a local P -martingale null at
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0, then

fM := M � [L,M ] = M � hL,Mi

is a local Q-martingale null at 0.

More specifically, if W is a P -Brownian motion, then fW is a Q-Brownian motion. In

particular, if L =
R
⌫ dW for some ⌫ 2 L

2
loc(W ), then

fW = W �

⌧Z
⌫ dW,W

�
= W �

Z
⌫s ds

so that the P -Brownian motion W = fW +
R
⌫s ds becomes under Q a Brownian motion

with (instantaneous) drift ⌫.

Proof. Because Z = Z0 E(L) satisfies dZ = Z� dL, we have [Z,M ] =
R
Z� d[L,M ]

and hence
R

1
Z
d[Z,M ] =

R
Z�
Z

d[L,M ] = [L,M ] by continuity of Z. So the first assertion

follows directly from Theorem 2.2, and [L,M ] = hL,Mi because L is continuous like Z.

The assertion for fW needs some extra work as it relies on the so-called Lévy charac-

terisation of Brownian motion that we have not discussed here. q.e.d.

In all the above discussions, we have assumed that Q is already given and have then

studied its e↵ect on given processes. But in mathematical finance, we often want to

proceed the other way round: We start with a process S = (St)0tT of discounted asset

prices and want to find or construct some Q ⇡ P on FT such that S becomes a local

Q-martingale. Let us now see how we can tackle this problem by reverse-engineering

the preceding theory. We begin very generally and successively become more specific.

Moreover, the goal here is not to remember a specific result, but rather to understand

how to approach the problem in a systematic way.

We start with a local P -martingale L null at 0 and define Z := E(L) so that Z is

like L a local P -martingale, with Z0 = 1. If we also have �L > �1 (and this holds of

course in particular if L is continuous), then we have in addition Z > 0. This uses that

�Z = Z��L so that Z = Z�(1 +�L), which implies that Z never changes sign as long

as �L > �1.
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Suppose now that Z is a true P -martingale on [0, T ]; this amounts to imposing suitable

extra conditions on L. Then we can define a probability measure Q ⇡ P on FT by

setting dQ := ZT dP , and the density process of Q with respect to P on [0, T ] is then by

construction the P -martingale Z. In particular, if L is continuous, also Z is continuous.

In a bit more detail, Z = E(L) is in the present situation a local P -martingale > 0 on

[0, T ] and therefore a P -supermartingale starting at 1. So t 7! E[Zt] is decreasing, and one

can easily check that Z is a P -martingale on [0, T ] if and only if t 7! E[Zt] is identically

1 on [0, T ], or also if and only if E[ZT ] = 1. However, expressing this directly in terms of

L is more tricky, and one has only su�cient conditions on L that ensure E[E(L)T ] = 1.

The most famous of these is the Novikov condition: If L is a continuous local martingale

null at 0 and E[e
1
2 hLiT ] < 1, then Z = E(L) is a martingale on [0, T ].

Now start with an IR
d-valued process S = (St)0tT and suppose that S is a P -semi-

martingale. For each i, the coordinate Si can then (in general non-uniquely) be written as

S
i = S

i

0 +M
i + A

i

with a local P -martingale M
i and an adapted process Ai of finite variation, both null at

0. By Theorem 2.2,

fM i = M
i
�

Z
1

Z
d[Z,M i]

is then a local Q-martingale, and of course we have

S
i = S

i

0 + fM i +

✓
A

i +

Z
1

Z
d[Z,M i]

◆
= S

i

0 + fM i + eAi
.

So S
i is a local Q-martingale (or, equivalently, Q is an ELMM for Si) if and only if

eAi = A
i +

Z
1

Z
d[Z,M i] is a local Q-martingale.

One su�cient condition is obviously that

(2.3) A
i +

Z
1

Z
d[Z,M i] ⌘ 0.
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This should be viewed as a condition on Z or, equivalently, on L. In general, because

dZ = Z� dL, we have

[Z,M i] =

Z
Z� d[L,M i]

and �Z = Z��L, hence

Z = Z� +�Z = Z�(1 +�L)

and so
Z�

Z
=

1

1 +�L
.

So in terms of L, the su�cient condition (2.3) can be written as

A
i +

Z
1

1 +�L
d[L,M i] ⌘ 0.

If L is continuous, this simplifies further to

A
i + hL,M

i
i ⌘ 0;

this could alternatively also be derived directly from Theorem 2.3. As a condition on

L in terms of M and A, this is fairly explicit. Note that this is actually a system of d

conditions (one for each S
i) imposed on a single process L.

In Chapter 7, we shall see how the above ideas can be used to construct explicitly an

equivalent martingale measure in the Black–Scholes model of geometric Brownian motion

for S. But before that, we study in the next section how local martingales L can (or

must) look if we impose more structure on the underlying filtration IF .

Remark. Instead of using Theorem 2.2, we could also argue more directly. Suppose

again that Z = E(L) is a true P -martingale > 0 on [0, T ], and define Q ⇡ P on FT by

dQ := ZT dP . By Lemma 2.1, S is then a local Q-martingale if and only if ZS is a local

P -martingale, and therefore we compute, using the product rule and dZ = Z� dL,

d(ZSi) = S
i

� dZ + Z� dSi + d[Z, Si] = S
i

� dZ + Z� dM i + Z�(dA
i + d[L, Si]).
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Because both Z and M
i, and hence also their stochastic integrals above, are local P -mar-

tingales, we see that Q is an ELMM for Si if and only if Ai+[L, Si] is a local P -martingale.

A su�cient condition for this is that

A
i + [L, Si] ⌘ 0.

If L is continuous or if Si is continuous, this again simplifies to

A
i + hL,M

i
i ⌘ 0,

because then [L,Ai] =
P

�L�A
i
⌘ 0. ⇧
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6.3 Itô’s representation theorem

Our goal in this section is to describe all martingales that can exist in a filtration IF under

the assumption that IF is generated by a Brownian motion W . This deep structural result

goes back to Kiyosi Itô and is the mathematical explanation for the completeness of the

Black–Scholes model that we shall see in the next chapter.

We start with a Brownian motion W = (Wt)t�0 in IR
m defined on a probability space

(⌦,F , P ) without an a priori filtration. We define

F
0
t
:= �(Ws, s  t) for t � 0,

F
0
1 := �(Ws, s � 0),

and construct the filtration IF
W = (FW

t
)0t1 by adding to each F

0
t
the class N of

all subsets of P -nullsets in F
0
1 to obtain F

W

t
= F

0
t
_ N . This so-called P -augmented

filtration IF
W is then P -complete (in (⌦,F0

1, P ), to be accurate) by construction, and

one can show, by using the strong Markov property of Brownian motion, that IFW is also

automatically right-continuous (so that it satisfies the usual conditions). We usually call

IF
W , slightly misleadingly, the filtration generated by W . One can show that W is also

a Brownian motion with respect to IF
W ; the key point is to argue that Wt �Ws is still

independent of FW

s
◆ F

0
s
, even though F

W

s
contains some sets from F

0
1. If one works

on [0, T ], one replaces 1 by T ; then F
0
1 is not needed separately because we use the

P -nullsets from the “last” �-field F
0
T
.

Theorem 3.1 (Itô’s representation theorem). Suppose thatW = (Wt)t�0 is a Brown-

ian motion in IR
m. Then every random variable H 2 L

1(FW

1 , P ) has a unique represen-

tation as

H = E[H] +

Z 1

0

 s dWs P -a.s.

for an IR
m-valued integrand  2 L

2
loc(W ) with the additional property that

R
 dW is a

(P, IFW )-martingale on the closed interval [0,1] (and therefore uniformly integrable).

Remark. The assumptions onH say thatH is integrable and F
W

1 -measurable. The latter
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means intuitively that H(!) can depend in a measurable way on the entire trajectory

W.(!) of Brownian motion, but not on any other source of randomness. ⇧

Corollary 3.2. Suppose the filtration IF = IF
W is generated by a Brownian motion W

in IR
m. Then:

1) Every (real-valued) local (P, IFW )-martingale L is of the form L = L0+
R
� dW for

some IR
m-valued process � 2 L

2
loc(W ).

2) Every local (P, IFW )-martingale is continuous.

Proof. For a localizing sequence (⌧k)k2IN , each (L � L0)⌧k is a uniformly integrable

martingale N
k, say, and therefore of the form

N
k

t
= E[Nk

1 | F
W

t
] for 0  t  1,

for some Nk

1 2 L
1(FW

1 , P ). So Theorem 3.1 and the martingale property of
R
 

k dW give

that N
k =

R
 

k dW (note that N
k

0 = 0). In particular, Nk = (L� L0)⌧k is continuous,

which means that L is continuous on [[0, ⌧k]]. As ⌧k % 1, L is continuous, and � is

obtained by piecing together the  k via � :=  
k on [[0, ⌧k]]. q.e.d.

While the above results are remarkable, the next result is bizarre. Note that in its

formulation, the filtration IF is even allowed to be general; but of course we could also

take IF = IF
W .

Theorem 3.3 (Dudley). Suppose W = (Wt)t�0 is a Brownian motion with respect to

P and IF = (Ft)t�0. As usual, set

F1 :=
_

t�0

Ft = �

✓[

t�0

Ft

◆
.

Then every F1-measurable random variable H with |H| < 1 P -a.s. (for example every

H 2 L
1(F1, P )) can be written as

H =

Z 1

0

 s dWs P -a.s.
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for some integrand  2 L
2
loc(W ).

Note that there is no constant in the representation of H in Theorem 3.3. Note

also that we could for instance take for H a constant and represent this as a stochastic

integral of Brownian motion. This makes it almost immediately clear that the integrand

 in Theorem 3.3 cannot be nice. In fact:

1) In Theorem 3.3, the stochastic integral process
R
 dW is of course a local mar-

tingale, and can even be a martingale on [0,1), but it is in general not a martingale on

[0,1]; if it were, it would have constant expectation 0 up to +1, which would imply

that E[H] = 0.

2) In Theorem 3.3, the representation by  is not unique. In fact, one can easily

construct some bounded predictable  ̄ with 0 <
R1
0  ̄

2
s
ds < 1 P -a.s. (so that  ̄ 6⌘ 0

and  ̄ 2 L
2
loc(W )), but nevertheless

R1
0  ̄s dWs = 0 P -a.s. Of course,  and  +  ̄ then

represent the same H, but they are di↵erent in a nontrivial way.

[Exercise: Try to find such a  ̄ — it is not very di�cult.]

3) In terms of finance, the integrands  appearing in Theorem 3.3 are not nice at

all. For one thing,
R
 dW cannot be bounded from below in general. Indeed, if it

were, then
R
 dW would be a local martingale uniformly bounded from below, hence

a supermartingale, and this would imply that we must have E[H]  0. Moreover, the

representation 1 =
R1
0  s dWs looks suspiciously like creating the riskless payo↵ 1 out of

zero initial capital with a self-financing strategy ' b= (0, ), which would be arbitrage.

(But of course, that ' is not admissible, as we have just argued.)

Remark. It is not important for the above results that we work on the infinite interval

[0,1] or [0,1); everything could be done equally well on [0, T ] for any T 2 (0,1). ⇧
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7 The Black–Scholes formula

Our goal in this final chapter is to combine the modelling and financial ideas from the

discrete-time setting with the continuous-time techniques from stochastic calculus. We

introduce and study a simple continuous-time financial market model and show how this

allows us to derive the celebrated Black–Scholes formula together with the underlying

methodology. We emphasise that the latter is much more important than the formula

itself, for obvious reasons.

7.1 The Black–Scholes model

The Black–Scholes model or Samuelson model is the continuous-time analogue of the

Cox–Ross–Rubinstein binomial model we have seen at length in earlier chapters. Like the

latter, it is too simple to be realistic, but still very popular because it allows many explicit

calculations and results. It also serves as a basic starting point or reference model.

To set up the model, we start with a fixed time horizon T 2 (0,1) and a probability

space (⌦,F , P ) on which there is a Brownian motionW = (Wt)0tT . We take as filtration

IF = (Ft)0tT the one generated by W and augmented as in Section 6.3 by the P -nullsets

from F
0
T
:= �(Ws, s  T ) so that IF = IF

W satisfies the usual conditions under P . We

shall see soon that this choice of filtration is important.

The financial market model has two basic traded assets: a bank account with constant

continuously compounded interest rate r 2 IR, and a risky asset (usually called stock)

having two parameters µ 2 IR and � > 0. Undiscounted prices are given by

eS0
t
= e

rt
,(1.1)

eS1
t
= S

1
0 exp

✓
�Wt +

⇣
µ�

1

2
�
2
⌘
t

◆
(1.2)

with a constant S1
0 > 0. Applying Itô’s formula easily yields

deS0
t
= eS0

t
r dt,(1.3)

deS1
t
= eS1

t
µ dt+ eS1

t
� dWt,(1.4)
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which can be rewritten as

deS0
t

eS0
t

= r dt,(1.5)

deS1
t

eS1
t

= µ dt+ � dWt.(1.6)

This means that the bank account has a relative price change (eS0
t
� eS0

t�dt)/eS0
t�dt over a

short time period (t�dt, t] of r dt; so r is the growth rate of the bank account. In the same

way, the relative price change of the stock has a part µ dt giving a growth at rate µ, and a

second part � dWt “with mean 0 and variance �2 dt” that causes random fluctuations. We

call µ the drift (rate) and � the (instantaneous) volatility of eS1. The formulation (1.5),

(1.6) also makes it clear why this model is the continuous-time analogue of the CRR

binomial model; see Example 6.1.3 in Section 6.1 for a more detailed discussion. (Because

eS0 and eS1 are both continuous, we can replace eS0
t�dt and eS1

t�dt in the denominators above

by eS0
t
and eS1

t
, respectively.)

As usual, we pass to quantities discounted with eS0; so we have S
0 = eS0

/eS0
⌘ 1, and

S
1 = eS1

/eS0 is by (1.1) and (1.2) given by

(1.7) S
1
t
= S

1
0 exp

✓
�Wt +

⇣
µ� r �

1

2
�
2
⌘
t

◆
.

Either from (1.7) or from (1.3), (1.4), we obtain via Itô’s formula that S1 solves the SDE

(1.8) dS1
t
= S

1
t

�
(µ� r) dt+ � dWt

�
.

For later use, we observe that this gives

(1.9) dhS1
it = (S1

t
)2�2 dhW it = (S1

t
)2�2 dt

for the quadratic variation of S1, because hW it = t.

Remark 1.1. Because the co�cients µ, r, � are all constant and � > 0, the undiscounted

prices (eS0
, eS1), the discounted prices (S0

, S
1), the discounted stock price S

1 alone, and

the Brownian motion W all generate the same filtration. This means that there is here
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no compromise between mathematical convenience (the filtration IF is generated by W )

and financial modelling (the filtration is generated by information about prices). ⇧

As in discrete time, we should like to have an equivalent martingale measure for the

discounted stock price process S1. To get an idea how to find this, we rewrite (1.8) as

(1.10) dS1
t
= S

1
t
�

✓
dWt +

µ� r

�
dt

◆
= S

1
t
� dW ⇤

t
,

with W
⇤ = (W ⇤

t
)0tT defined by

W
⇤
t
:= Wt +

µ� r

�
t = Wt +

Z
t

0

� ds for 0  t  T .

The quantity

� :=
µ� r

�

is often called the instantaneous market price of risk or infinitesimal Sharpe ratio of S1.

By looking at Girsanov’s theorem in the form of Theorem 6.2.3, we see that W
⇤ is a

Brownian motion on [0, T ] under the probability measure Q
⇤ given by

dQ⇤

dP
:= E

✓
�

Z
� dW

◆

T

= exp

✓
��WT �

1

2
�
2
T

◆
on FT ,

whose density process with respect to P is

Z
Q

⇤;P
t = Z

⇤
t
= E

✓
�

Z
� dW

◆

t

= exp

✓
��Wt �

1

2
�
2
t

◆
for 0  t  T .

By (1.10), the stochastic integral process

S
1
t
= S

1
0 +

Z
t

0

S
1
u
� dW ⇤

u

is then a continuous local Q⇤-martingale like W
⇤; it is even a Q

⇤-martingale because we

have the explicit expression

(1.11) S
1
t
= S

0
1 E(�W

⇤)t = S
1
0 exp

✓
�W

⇤
t
�

1

2
�
2
t

◆
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from (1.10) by Itô’s formula, and so we can use Proposition 4.2.3 under Q⇤.

All in all, then, S1 admits an equivalent martingale measure, explicitly given by Q
⇤,

and so we expect that S
1 should be “arbitrage-free” in any reasonable sense. However,

we cannot make this precise here before defining more carefully what “trading strategy”,

“self-financing”, “arbitrage opportunity” etc. should mean in this context.

Remark. Suppose Q is any probability measure equivalent to P on FT and denote its

P -density process by Z
Q;P = Z = (Zt)0tT . Then we can write Z = Z0 E(L) as in

Section 6.2, where L is a local (P, IF )-martingale null at 0. But IF is generated by W ; so

Itô’s representation theorem in Corollary 6.3.2 says that

L =

Z
⌫s dWs for some ⌫ 2 L

2
loc(W )

and therefore dZt = Zt� dLt = Zt⌫t dWt (as Z is automatically continuous like L).

Now suppose in addition that S1 is a local Q-martingale, i.e. Q is an ELMM for S1.

By the Bayes rule in Lemma 6.2.1, this implies that ZS1 is a local P -martingale. But the

product rule, (1.8) and the rules for computing covariations of stochastic integrals give

d(ZtS
1
t
) = Zt dS

1
t
+ S

1
t
dZt + dhZ, S1

it

= ZtS
1
t
(µ� r) dt+ ZtS

1
t
� dWt + S

1
t
Zt⌫t dWt + Zt⌫tS

1
t
� dhW,W it

= ZtS
1
t
(� + ⌫t) dWt + ZtS

1
t
�(�+ ⌫t) dt,

using that µ�r = ��. On the left-hand side, we have by assumption a local P -martingale,

and on the right-hand side, the dW -integral is also a local P -martingale. Therefore the

last term,

At :=

Z
t

0

ZsS
1
s
�(�+ ⌫s) ds for 0  t  T ,

must also be a local P -martingale. But A is adapted and continuous (hence predictable)

and of finite variation; so it has quadratic variation 0, hence must be constant, and so

its integrand must be 0. This implies that ⌫s ⌘ ��, because Z, S
1
, � are all > 0, and

therefore we get

Z = Z0 E(L) = Z0 E

✓Z
⌫ dW

◆
= Z0 E

✓
�

Z
� dW

◆
.
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Finally, Z0 has EP [Z0] = EP [ZT ] = Q[⌦] = 1 and is measurable with respect to F0 = F
W

0

which is P -trivial (because W0 is constant P -a.s.); so Z0 = EP [Z0] = 1 and therefore

Z = E

✓
�

Z
� dW

◆
= Z

⇤
, or Q = Q

⇤.

Thus we have shown that in the Black–Scholes model, there is a unique equivalent

martingale measure, which is given explicitly by Q
⇤. So we expect that the Black–Scholes

model is not only “arbitrage-free”, but also “complete” in a suitable sense. Note that the

latter point (as well as the above proof of uniqueness) depends via Itô’s representation

theorem in a crucial way on the assumption that the filtration IF is generated by W . ⇧

Now take any H 2 L
0
+(FT ) and view H as a random payo↵ (in discounted units) due

at time T . Recall that IF is generated by W and that W
⇤
t
= Wt + �t, 0  t  T , is a

Q
⇤-Brownian motion. Because � is deterministic, W and W

⇤ generate the same filtration,

and so we can also apply Itô’s representation theorem with Q
⇤ and W

⇤ instead of P and

W . So if H is also in L
1(Q⇤), the Q

⇤-martingale V
⇤
t
:= EQ⇤ [H | Ft], 0  t  T , can be

represented as

V
⇤
t
= EQ⇤ [H] +

Z
t

0

 
H

s
dW ⇤

s
for 0  t  T ,

with some unique  H
2 L

2
loc(W

⇤) such that
R
 

H dW ⇤ is a Q
⇤-martingale. Recall from

(1.10) that

dS1
t
= S

1
t
� dW ⇤

t
.

So if we define for 0  t  T

#
H

t
:=

 
H

t

S
1
t �

,

⌘
H

t
:= V

⇤
t
� #

H

t
S
1
t

(which are both predictable because  H is and S
1
, V

⇤ are both adapted and continuous),

then we can interpret 'H = (#H
, ⌘

H) as a trading strategy whose discounted value process

is given by

Vt('
H) = #

H

t
S
1
t
+ ⌘

H

t
S
0
t
= V

⇤
t

for 0  t  T ,
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and which is self-financing in the (usual) sense that

(1.12) Vt('
H) = V

⇤
t
= V

⇤
0 +

Z
t

0

 
H

u
dW ⇤

u
= V0('

H) +

Z
t

0

#
H

u
dS1

u
for 0  t  T .

Moreover,

VT ('
H) = V

⇤
T
= H a.s.

shows that the strategy 'H
replicates H, and

Z
#
H dS1 = V ('H)� V0('

H) = V
⇤
� EQ⇤ [H] � �EQ⇤ [H]

(because V
⇤
� 0, as H � 0) shows that #H is admissible (for S1) in the usual sense.

In summary, then, every H 2 L
1
+(FT , Q

⇤) is attainable in the sense that it can be

replicated by a dynamic strategy trading in the stock and the bank account in such a way

that the strategy is self-financing and admissible, and its value process is a Q
⇤-martingale.

In that sense, we can say that the Black–Scholes model is complete. By analogous argu-

ments as in discrete time, we then also obtain the arbitrage-free value at time t of any

payo↵ H 2 L
1
+(FT , Q

⇤) as its conditional expectation

V
H

t
= V

⇤
t
= EQ⇤ [H | Ft]

under the unique equivalent martingale measure Q
⇤ for S1. This is in perfect parallel to

the results we have seen for the CRR binomial model; see Section 3.3.

Remarks. 1) All the above computations and results are in discounted units. Of course,

we could also go back to undiscounted units.

2) Itô’s representation theorem gives the existence of a strategy, but does not tell us

how it looks. To get more explicit results, additional structure (for the payo↵ H) and

more work is needed. [! Exercise]

3) The SDE (1.8) for discounted prices is

dS1
t

S
1
t

= (µ� r) dt+ � dWt,
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and this is rather restrictive as µ, r, � are all constant. An obvious extension is to allow the

coe�cients µ, r, � to be (suitably integrable) predictable processes, or possibly functionals

of S or eS. This brings up several issues:

a) If µ, r, � are specified as functionals of S, it is no longer clear whether there exists

a solution of the resulting SDE. This needs a more careful and usually case-based

analysis.

b) If µ, r, � are stochastic processes that depend on extra randomness apart from W ,

we have to work in a larger filtration and a result like Itô’s representation theorem is

perhaps no longer available. Typical examples are stochastic volatility models where

� usually depends on a second Brownian motion as well, or credit risk models where

the default of an asset often involves the jump of some process.

c) Even if µ, r, � are predictable with respect to the filtration IF generated by W , the

process W
⇤ = W +

R
�s ds in general does not generate IF , but only a smaller

filtration. Fortunately, there is still a representation result with respect to W
⇤ and

Q
⇤, but one must work a little to prove this.

4) From the point of view of finance, the natural filtration to work with would be the

one generated by S or eS, i.e. by prices, not by W . From the explicit formulae (1.1), (1.2),

one can see that eS and W generate the same filtrations when the coe�cients µ, r, � are

deterministic. (This has already been pointed out in Remark 1.1.) But in general (i.e. for

more general coe�cients), working with the price filtration is rather di�cult because it is

hard to describe.

5) A closer look at the no-arbitrage argument for valuing H shows that in continuous

time, we can only say that the arbitrage-free seller price process for the payo↵ H is

given by V
H = V

⇤. The reason is that the strategy 'H is admissible, but �'
H is not,

in general, unless H is in addition bounded from above. In finite discrete time, this

phenomenon does not appear because absence of arbitrage for admissible or for general

self-financing strategies is the same there. ⇧
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7.2 Markovian payo↵s and PDEs

The presentation in Section 7.1 is often called the martingale approach to valuing options,

for obvious reasons. If one has more structure for the payo↵ H (and, in more general

models, also for S), an alternative method involves the use of partial di↵erential equations

(PDEs) and is thus called the PDE approach. We briefly outline some aspects of this here.

Suppose that the (discounted) payo↵ is of the form H = h(S1
T
) for some measurable

function h � 0 on IR+. We also suppose that H is in L
1(Q⇤). One example discussed

in detail in the next section is the European call option on eS1 with maturity T and

undiscounted strike eK; here, H = (eS1
T
� eK)+/eS0

T
= (S1

T
� eKe

�rT )+ so that the payo↵

function is h(x) = (x� eKe
�rT )+ =: (x�K)+. Our goal, for general h, is to compute the

value process V ⇤ and the strategy #H more explicitly.

We start with the value process . Because we have V ⇤
t
= EQ⇤ [H | Ft] = EQ⇤ [h(S1

T
) | Ft],

we look at the explicit expression for S1 in (1.11) and write

S
1
T
= S

1
t

S
1
T

S
1
t

= S
1
t
exp

✓
�(W ⇤

T
�W

⇤
t
)�

1

2
�
2(T � t)

◆
.

In the last term, the first factor S
1
t
is obviously Ft-measurable. Moreover, W

⇤ is a

Q
⇤-Brownian motion with respect to IF , and so in the second factor, W ⇤

T
�W

⇤
t
is under

Q
⇤ independent of Ft and has an N (0, T � t)-distribution. Therefore we get

(2.1) V
⇤
t
= EQ⇤ [h(S1

T
) | Ft] = v(t, S1

t
)

with the function v(t, x) given, for Y ⇠ N (0, 1) under Q⇤, by

v(t, x) = EQ⇤


h

✓
x exp

⇣
�(W ⇤

T
�W

⇤
t
)�

1

2
�
2(T � t)

⌘◆�
(2.2)

= EQ⇤

h
h

⇣
xe

�
p
T�t Y� 1

2�
2(T�t)

⌘i

=

Z 1

�1
h

⇣
xe

�
p
T�t y� 1

2�
2(T�t)

⌘ 1
p
2⇡

e
� 1

2y
2
dy.

This already gives a fairly precise structural description of V ⇤
t
as a function of (t and) S1

t
,

instead of a general Ft-measurable random variable.
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Because we have an explicit formula for the function v as essentially the convolution of

h with a very smooth function (the density of a lognormally distributed random variable),

one can prove that the function v is su�ciently smooth to allow the use of Itô’s formula.

This gives, writing subscripts in the function v for partial derivatives and using (1.10)

and (1.9),

dV ⇤
t
= dv(t, S1

t
)(2.3)

= vt(t, S
1
t
) dt+ vx(t, S

1
t
) dS1

t
+

1

2
vxx(t, S

1
t
) dhS1

it

= vx(t, S
1
t
)�S1

t
dW ⇤

t
+

✓
vt(t, S

1
t
) +

1

2
vxx(t, S

1
t
)�2(S1

t
)2
◆
dt.

But V ⇤ is a local (even a true) Q⇤-martingale, by its definition, and so is the integrated

dW ⇤-term on the right-hand side above. Therefore the integrated dt-term on the right-

hand side of (2.3) is at the same time continuous and adapted and of finite variation, and

a local Q⇤-martingale. Hence it must vanish, and so (2.3) and (1.12) yield

vx(t, S
1
t
) dS1

t
= dV

⇤
t
= #

H

t
dS1

t
.

In consequence, we obtain the strategy explicitly as

(2.4) #
H

t
=
@v

@x
(t, S1

t
),

i.e., as the spatial derivative of v, evaluated along the trajectories of S1. This is parallel

to the result in Section 3.3 for the CRR binomial model; see (3.3.6) or (3.3.7).

A closer look at the above argument also allows us to extract some information about

the function v. This is similar to our arguments in Example 6.1.4 for the representation of

the random variable h(WT ) as a stochastic integral ofW . Indeed, the fact that the dt-term

vanishes means that the function vt(t, x)+
1
2vxx(t, x)�

2
x
2 must vanish along the trajectories

of the space-time process (t, S1
t
)0<t<T . But by the explicit expression in (1.11), each S

1
t

is lognormally distributed and hence has all of (0,1) in its support. So the support of

the space-time process contains (0, T ) ⇥ (0,1), and so v(t, x) must satisfy the (linear,

second-order) partial di↵erential equation (PDE)

(2.5) 0 =
@v

@t
+

1

2
�
2
x
2 @

2
v

@x2
on (0, T )⇥ (0,1).
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Moreover, the definition of v via (2.1) gives the boundary condition

(2.6) v(T, · ) = h( · ) on (0,1),

because v(T, S1
T
) = V

⇤
T
= H = h(S1

T
) and the support of the distribution of S1

T
contains

(0,1). So even if we cannot compute the integral in (2.2) explicitly, we can at least

obtain v(t, x) numerically by solving the PDE (2.5), (2.6).

Remarks. 1) Instead of using the above probabilistic argument, one can also derive the

PDE (2.5) analytically . Using in (2.2) the substitution u = x exp(�
p
T � t y�

1
2�

2(T � t))

gives y = (log u

x
+ 1

2�
2(T � t))/�

p
T � t, hence dy = 1

u�
p
T�t

du, and then

v(t, x) =

Z 1

0

h(u)
1p

2⇡�2(T � t)

1

u
exp

✓
�

(log u

x
+ 1

2�
2(T � t))2

2�2(T � t)

◆
du.

One can now first check, by using that h(S1
T
) is in L

1(Q⇤), that v may be di↵erentiated

by di↵erentiating under the integral sign, and by brute force computations , one can then

check in this way that v indeed satisfies the PDE (2.5). The deeper reason behind this

is the fact that the density function '(t, z) = 1p
2⇡t

e
� z2

2t of an N (0, t)-distribution satisfies

the heat equation 't =
1
2'zz.

2) The above approach works not only for the Black–Scholes model, but more generally

in a Markovian setting , because conditional expectations given Ft can there typically

be written as functions of the state variables at time t. The martingale property then

essentially translates into saying that the generator of the driving Markov process applied

to the above functions must vanish. For di↵usion state variables, the generator is a

second-order di↵erential operator and so this leads to PDEs; for Lévy state variables, one

has additional integral terms coming from the jumps of the driving Lévy process, and so

one obtains PIDEs (partial integro-di↵erential equations). However, there are a number

of substantial technical issues; for instance, regularity or existence of smooth solutions to

the resulting equations is often not clear, and one must also be careful whether or not one

has uniqueness of solutions. Not all the literature is equally rigorous and precise about

these issues. ⇧
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When comparing the PDE (2.5), (2.6) to some of those found in the literature, one

might be puzzled by the simple form of (2.5). This is because we have expressed everything

in discounted units. If the undiscounted payo↵ is eH = h̃(eS1
T
) and the undiscounted value

at time t is written as ṽ(t, eS1
t
), we have the relations

h̃(eS1
T
) = h̃(erTS1

T
) = eH = e

rT
H = e

rT
h(S1

T
)

and

ṽ(t, eS1
t
) = e

rt
v(t, S1

t
)

so that

v(t, x) = e
�rt

ṽ(t, xert),

ṽ(t, x̃) = e
rt
v(t, x̃e�rt).

For the function ṽ, we can then compute the partial derivatives

@ṽ

@t
(t, x̃) = rṽ(t, x̃) + e

rt
@v

@t
(t, x̃e�rt)� e

rt
@v

@x
(t, x̃e�rt)x̃re�rt

,

@ṽ

@x̃
(t, x̃) = e

rt
@v

@x
(t, x̃e�rt)e�rt =

@v

@x
(t, x̃e�rt),

@
2
ṽ

@x̃2
(t, x̃) =

@
2
v

@x2
(t, x̃e�rt)e�rt

,

and by plugging in, we obtain from (2.5) the PDE

0 =
@ṽ

@t
+ rx̃

@ṽ

@x̃
+

1

2
�
2
x̃
2 @

2
ṽ

@x̃2
� rṽ on (0, T )⇥ (0,1)

with the boundary condition

ṽ(T, · ) = h̃( · ).

[It is a nice [! exercise] to convince oneself that this is correct. Possible ways include

straightforward but tedious calculus, or alternatively again a martingale argument.]



7 THE BLACK–SCHOLES FORMULA 138

7.3 The Black–Scholes formula

In the special case of a European call option, the value process and the corresponding

strategy can be computed explicitly, and this has found widespread use in the financial

industry. Suppose the undiscounted strike price is eK so that the undiscounted payo↵ is

eH = (eS1
T
� eK)+.

Then H = eH/eS0
T
= (S1

T
� eKe

�rT )+ =: (S1
T
� K)+, and we obtain from (2.2) that the

discounted value of H at time t is

V
H

t
= V

⇤
t
= EQ⇤ [H | Ft] = EQ⇤ [(S1

T
�K)+ | Ft] = EQ⇤

h⇣
xe

�
p
T�t Y� 1

2�
2(T�t)

�K

⌘+i���
x=S

1
t

,

with Y ⇠ N (0, 1) under Q⇤. An elementary computation with normal distributions yields

for x > 0, a > 0 and b � 0 that

EQ⇤
⇥�
xe

aY� 1
2a

2
� b
�+⇤

= x�

✓
log x

b
+ 1

2a
2

a

◆
� b�

✓
log x

b
�

1
2a

2

a

◆
,

where

�(y) = Q
⇤[Y  y] =

Z
y

�1

1
p
2⇡

e
� 1

2 z
2
dz

is the cumulative distribution function of the standard normal distribution N (0, 1). Plug-

ging in x = S
1
t
, a = �

p
T � t, b = K and then passing to undiscounted quantities via

S
1
t
= eS1

t
e
�rt, K = eKe

�rT therefore yields the famous Black–Scholes formula in the form

(3.1) Ṽ
eH

t
= ṽ(t, eS1

t
) = eS1

t
�(d1)� eKe

�r(T�t)�(d2)

with

(3.2) d1,2 =
log(eS1

t
/ eK) + (r ± 1

2�
2)(T � t)

�
p
T � t

.

Note that the drift µ of the stock does not appear here; this is analogous to the result

that the probability p of an up move in the CRR binomial model does not appear in
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the binomial option pricing formula (3.2), (3.3) in Section 3.3. What does appear is the

volatility �, in analogy to the di↵erence log(1 + u)� log(1 + d) which gives an indication

of the spread between future stock prices from one time point to the next.

To compute the replicating strategy , we recall from (2.4) that the stock price holdings

at time t are given by

#
H

t
=
@v

@x
(t, S1

t
).

Moreover, v(t, x) = e
�rt

ṽ(t, xert) so that

@v

@x
(t, x) = e

�rt
@ṽ

@x
(t, xert) = e

�rt
@ṽ

@x̃
(t, xert)ert =

@ṽ

@x̃
(t, x̃).

Computing the above derivative explicitly [! exercise] gives

(3.3) #
H

t
=
@ṽ

@x̃
(t, eS1

t
) = �(d1) = �

 
log(eS1

t
/ eK) + (r + 1

2�
2)(T � t)

�
p
T � t

!
,

which always lies between 0 and 1.

One very useful feature of the above results is that the explicit formula (3.1), (3.2)

allows to compute all partial derivatives of the option price with respect to the various

parameters. These sensitivities are usually called Greeks and denoted by (genuine or

invented) Greek letters. Examples are

• Delta: the partial derivative with respect to the asset price eS1
t
, computed in (3.3),

also called hedge ratio.

• Gamma: the second partial derivative with respect to eS1
t
; it measures the reaction

of Delta to a stock price change.

• Rho: the partial derivative with respect to the interest rate r.

• Vega: the partial derivative with respect to the volatility �.

• Theta: the partial derivative with respect to T � t, the time to maturity.
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• Vanna: the partial derivative of Delta with respect to �, or the second partial

derivative of the option price, once with respect to eS1
t
and once with respect to �.

• Vomma: the second partial derivative of the option price with respect to �.

• Charm: the partial derivative of Delta with respect to T � t, the time to maturity.

• Volga: another term for Vomma.

Of course, the above definitions per se make sense for any model; but in the Black–

Scholes model, one has even explicit expressions for them.

Remark. One can find in the literature many di↵erent derivations for the Black–Scholes

formula. One especially popular approach is to first derive the binomial call pricing

formula in the CRR model via arbitrage arguments, as we have done in Section 3.3, and

to then pass to the limit by appropriately rescaling the parameters. More precisely, one

considers for each n 2 IN a binomial model with time step T/n so that letting n increase

corresponds to more and more frequent trading. It is intuitively plausible that the CRR

models should then converge in some sense to the BS model, and one can make this

mathematically precise via Donsker’s theorem. Obtaining the Black–Scholes formula as

a limit is similar but simpler; it is essentially an application of the central limit theorem.

The above limiting “derivation” of the Black–Scholes formula is mathematically much

simpler; but it is also far less satisfactory, especially at the conceptual level. Most impor-

tantly, it does not give the key insight of the methodology behind the formula, namely that

the price is the initial capital for a self-financing replication strategy in the continuous-

time model. We do have the corresponding insight for each binomial model; but the

elementary analysis usually done in the literature does not study whether that important

structural property is preserved when passing to the limit. To obtain that insight (and to

develop it further in other applications or maybe generalisations), stochastic calculus in

continuous time is indispensable.

It is interesting to note that the above view was also shared by the Nobel Prize

Committee; when it awarded the 1997 Nobel Prize in Economics to Robert C. Merton

and Myron Scholes (Fischer Black had died in 1995), the award was given “for a new
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method to determine the value of derivatives”. The emphasis here is clearly on “method”,

as opposed to “formula”. ⇧
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8 Appendix: Some basic concepts and results

This short chapter recalls some basic notations, concepts and results from probability

theory. It is not exhaustive and not meant to serve as a replacement for a serious text in

probability theory.

8.1 Very basic things

Let ⌦ 6= ; be a nonempty set. We denote by 2⌦ the power set of ⌦; this is the family of

all subsets of ⌦. A �-field or �-algebra on ⌦ is a family F of subsets of ⌦ which contains

⌦ and which is closed under taking complements and countable unions, i.e. if A 2 F ,

then also A
c
2 F , and if Ai, i 2 IN , are in F , then also

S
i2IN Ai is in F . Of course, F is

then also closed under countable intersections. A �-field is called finite if it contains only

finitely many sets.

A pair (⌦,F) with ⌦ 6= ; and F a �-algebra on ⌦ is called a measurable space. One

concrete example is (IR,B(IR)), where B(IR) denotes the Borel-�-field on IR. For any

mapping X : ⌦ ! IR and any subset B ✓ IR, we use the shorthand notation

X
�1(B) := {X 2 B} := {! 2 ⌦ : X(!) 2 B}.

This is sometimes called the pre-image of the set B under the mapping X. We say that

X is measurable (or more precisely Borel-measurable) if for every B 2 B(IR), we have

{X 2 B} 2 F . One can show that this is equivalent to having {X  c} 2 F for every

c 2 IR. More precisely, we could also say that X : ⌦ ! IR is measurable with respect

to F and B(IR). If we replace the measurable space (IR,B(IR)) by another measurable

space (⌦0
,F

0), say, we have an analogous definition of a measurable function from ⌦ to

⌦0, with respect to F and F
0.

For any subset A of ⌦, the indicator function IA is the function defined by

IA(!) :=

8
<

:
1 if ! 2 A,

0 if ! 62 A.
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The function IA is measurable if and only if A 2 F .

Sometimes, we start with ⌦ 6= ; and a function X : ⌦ ! IR (or more generally to ⌦0).

Then �(X) is by definition the smallest �-field G, say, on ⌦ such thatX is measurable with

respect to G and B(IR) (or G and F
0, respectively). We call �(X) the �-field generated

by X. Sometimes, we also consider a �-field generated by a whole family of mappings;

this is then analogously the smallest �-field that makes all the mappings in that family

measurable.

If (⌦,F) is a measurable space, a probability measure on F is a mapping P : F ! [0, 1]

such that P [⌦] = 1 and P is �-additive, i.e.

P

 [

i2IN

Ai

�
=
X

i2IN

P [Ai] whenever Ai, i 2 IN , are sets in F that are pairwise disjoint.

The triple (⌦,F , P ) is then called a probability space.

We say that a statement holds P -almost surely or P -a.s. if the set

A := {! : the statement does not hold}

is a P -nullset, i.e. has P [A] = 0. We sometimes also use instead the formulation that a

statement holds for P -almost all !. For example, X � Y P -a.s. means that P [X < Y ] = 0

or, equivalently, P [X � Y ] = 1. Note that we also use here the shorthand notation

P [X � Y ] := P [{X � Y }] := P [{! 2 ⌦ : X(!) � Y (!)}].

Let (⌦,F , P ) be a probability space and X : ⌦ ! IR a measurable function. We also

say that X is a (real-valued) random variable. If Y is another random variable, we call

X and Y equivalent if X = Y P -a.s. We then denote by L
0 or L

0(F) the family of all

equivalence classes of random variables on (⌦,F , P ). For 0 < p < 1, we denote by L
p(P )

the family of all equivalence classes of random variables X which are p-integrable in the

sense that E[|X|
p] < 1, and we write then X 2 L

p(P ) or X 2 L
p for short. Finally, L1
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is the family of all equivalence classes of random variables that are bounded by a constant

c, say (where the constant can depend on the random variable).

If (⌦,F , P ) is a probability space, then an atom of F is a set A 2 F with the properties

that P [A] > 0 and that if B ✓ A is also in F , then either P [B] = 0 or P [B] = P [A].

Intuitively, atoms are the “smallest P -indivisible sets” in a �-field. Atoms are pairwise

disjoint up to P -nullsets. The space (⌦,F , P ) is called atomless if F contains no atoms;

this can only happen if F is infinite. On the other hand, a finite �-field F can be very

conveniently described via its atoms because every set in F is then a union of atoms.
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8.2 Conditional expectations: A survival kit

This section gives a short summary of some basic notions about conditional expectations.

We provide the definition and the most important properties, but hardly any proofs.

Let (⌦,F , P ) be a probability space and U a real-valued random variable, i.e. an

F -measurable mapping U : ⌦ ! IR. Let G ✓ F be a fixed sub-�-field of F ; the intuitive

interpretation is that G gives us some partial information. The goal is then to find a

prediction for U on the basis of the information conveyed by G, or, put di↵erently, a best

estimate for U that uses only information from G.

Definition. A conditional expectation of U given G is a real-valued random variable Y

with the following two properties:

Y is G-measurable.(2.1)

E[UIA] = E[Y IA] for all A 2 G.(2.2)

Y is then called a version of the conditional expectation and is denoted by E[U | G].

Theorem 2.1. Let U be an integrable random variable, i.e. U 2 L
1(P ). Then:

1) There exists a conditional expectation E[U | G], and E[U | G] is again integrable.

2) E[U | G] is unique up to P -nullsets: If Y, Y
0
are random variables satisfying (2.1)

and (2.2), then Y
0 = Y P -a.s.

Proof. 1) is nontrivial and not proved here; possible proofs use the Radon–Nikodým

theorem or a projection argument in L
2(P ) combined with an extension argument.

2) Due to (2.1), the set A := {Y > Y
0
} is in G so that (2.2) implies

0 = E[(Y � Y
0)IA].

But by the definition of A, we have (Y � Y
0)IA � 0 P -a.s., and so we get (Y � Y

0)IA = 0

P -a.s., hence P [A] = 0 by the definition of A, i.e. Y  Y
0
P -a.s. The converse inequality

is proved in the same way. q.e.d.
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We next recall without proofs some properties of and computation rules for conditional

expectations. Let U,U 0 be integrable random variables so that E[U | G] and E[U 0
| G] exist.

We denote by bG the set of all bounded G-measurable random variables. Then we have:

E[UZ] = E
⇥
E[U | G]Z

⇤
for all Z 2 bG.(2.3)

Linearity: E[aU + bU
0
| G] = aE[U | G] + bE[U 0

| G] P -a.s., for all a, b 2 IR.

Monotonicity: If U � U
0
P -a.s., then E[U | G] � E[U 0

| G] P -a.s.

Projectivity : E[U | G] = E
⇥
E[U | G]

��H
⇤

P -a.s., for every �-field H ✓ G.

Further elementary properties are:

E[U | G] = U P -a.s. if U is G-measurable.(2.4)

E
⇥
E[U | G]

⇤
= E[U ].(2.5)

E[ZU | G] = ZE[U | G] P -a.s., for all Z 2 bG.(2.6)

E[U | G] = E[U ] P -a.s. for U independent of G.(2.7)

In fact, (2.4) is clear from the definition, (2.5) follows immediately from (2.2) with A = ⌦,

and (2.6) follows from (2.3) with the help of the definition. The right-hand side of (2.7)

is clearly G-measurable, and U and IA are by assumption independent for every A 2 G;

hence we obtain

E[UIA] = E[U ]E[IA] = E
⇥
E[U ]IA

⇤

and therefore (2.7), as (2.2) holds as well.

Remarks. 1) Instead of integrability of U , one could also assume that U � 0; then

analogous statements are true. One point of caution applies: if U � 0, then U as well

as E[U | G] could take the value +1, and so one must be careful to avoid expressions

involving 1�1 as these are not well defined.

2) More generally, (2.3) and (2.6) hold as soon as U and ZU are both integrable or

both nonnegative; this is often useful.

3) If U is IRd-valued, one simply does everything component by component to obtain

analogous results. ⇧
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For concrete computations of conditional expectations, the following result is often

very useful.

Lemma 2.2. Let U, V be random variables such that U is G-measurable and V is inde-

pendent of G. For every measurable function F � 0 on IR
2
, we then have

(2.8) E[F (U, V ) | G] = E[F (u, V )]
��
u=U

=: f(U).

Proof. For F of the form F (u, v) = g(u)h(v) with g, h � 0 and measurable, we have on

the one hand

f(u) = E[F (u, V )] = g(u)E[h(V )]

and on the other hand by (2.6) and (2.7) that

E[F (U, V ) | G] = E[g(U)h(V ) | G] = g(U)E[h(V ) | G] = g(U)E[h(V )] = f(U),

because g(U) is G-measurable and h(V ) is like V independent of G. For general F , one

then uses an argument via the so-called monotone class theorem. q.e.d.

Intuitively, (2.8) says that under the assumptions of Lemma 2.2, one can compute

the conditional expectation E[F (U, V ) | G] by “fixing the known value U and taking the

expectation over the independent quantity V ”.

In analogy to Fatou’s lemma and the dominated convergence theorem, one has the

following convergence results for conditional expectations.

Theorem 2.3. Suppose (Un)n2IN is a sequence of random variables.

1) If Un � X P -a.s. for all n and some integrable random variable X, then

E

h
lim inf
n!1

Un

���G
i
 lim inf

n!1
E[Un | G] P -a.s.

2) If (Un) converges to some random variable U P -a.s. and if |Un|  X P -a.s. for all n

and some integrable random variable X, then

(2.9) E

h
lim
n!1

Un

���G
i
= E[U | G] = lim

n!1
E[Un | G] P -a.s.
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Remark. In analogy to what happens for usual expectations, one might be tempted to

think that (2.9) is still true if one replaces the assumption that all the Un are dominated

by an integrable random variable by the weaker requirement that the sequence (Un) is

uniformly integrable. But while this is still enough to conclude that E[U ] = limn!1 E[Un]

(in fact, one even has convergence of (Un) to U in L
1(P )), it does not imply that the

conditional expectations converge P -a.s. (although they then do converge in L
1).
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8.3 Stochastic processes and functions

Let (⌦,F , P ) be a probability space and T an index set. Usually, we use T = {0, 1, . . . , T}

with some T 2 IN , or T = [0, T ] with some T 2 (0,1), or T = [0,1). A (real-valued)

stochastic process with index set T is then a family of random variables Xt, t 2 T , which

are all defined on the same probability space (⌦,F , P ). We often write X = (Xt)t2T .

Mathematically, a stochastic process can be viewed as a function depending on two

parameters, namely ! 2 ⌦ and t 2 T . If we fix t 2 T , then ! 7! Xt(!) is simply a

random variable. If we fix instead ! 2 ⌦, then t 7! Xt(!) can be viewed as a function

T ! IR, and we often call this the path or the trajectory of the process corresponding

to !. But also viewing a stochastic process as a mapping X : ⌦ ⇥ T ! IR is useful in

some circumstances.

We say that a stochastic process is continuous if all or P -almost all its trajectories

are continuous functions. We call a stochastic process RCLL if all or P -almost all its

trajectories are right-continuous (RC) functions admitting left limits (LL). We say that a

stochastic process is of finite variation if all or P -almost all its trajectories are functions

of finite variation. Recall that a function is of finite variation if and only if it can be

written as the di↵erence of two increasing functions.

Finally, we say that a stochastic process has a property locally if there exists a se-

quence of stopping times (⌧n)n2IN increasing to 1 P -a.s. such that when restricted to the

stochastic interval [[0, ⌧n]] = {(!, t) 2 ⌦⇥ T : 0  t  ⌧n(!)}, the process has the prop-

erty under consideration. (Actually, this is a bit tricky. In some cases, for example when

considering integrators, one can simply keep the process constant after ⌧n at its time-⌧n

level; in other cases, for example when considering integrands, one must set the process

to 0 after time ⌧n.)
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10 Index

L
2
loc(M), 94

P -augmented filtration, 124

X-integrable, 104

F⌧ , 77

M
2
0, loc, 94

a-admissible, 20

(NFLVR), 43

(predictable) compensator, 88

(NA), 31

adapted, 5

admissible, 20

American option, 52

arbitrage opportunity, 31

arbitrage-free, 31

arc length, 73

atom, 27

attainable, 54

bank account, 9

barrier option, 81

Bayes formula, 46, 117

Bichteler–Dellacherie theorem, 103

binomial call pricing formula, 65

binomial model, 7, 62

Black–Scholes formula, 138

Black–Scholes model, 127

boundary condition, 136

bounded elementary process, 89

branch, 27

Brownian motion (with respect to filtra-

tion), 69

Brownian motion with (instantaneous) drift,

120

canonical decomposition, 101

canonical model, 26

change of numeraire, 64

complete, 59

contingent claim, 51

cost process, 13

covariation process, 87

Cox–Ross–Rubinstein model, 7, 62

credit risk, 133

density, 45

density process, 45, 117

discounting, 9, 62, 65, 128, 137, 138

dominated convergence theorem, 103

doubling strategy, 18

drift, 128

dual martingale measure, 64

dynamic portfolio, 11

equivalent martingale measure, 39

equivalent martingale measure, construc-

tion, 47

equivalent probability measures, 34

European call option, 52, 62, 138

European option, 51
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events observable up to time �, 77

filtration, 5, 69

filtration, generated by a process, 6

finite variation, 73

frictionless financial market, 10

FTAP, 43

fundamental theorem of asset pricing, 43,

60

gains process, 13

geometric Brownian motion, 112

Girsanov’s theorem, 103, 118, 119

Greeks, 139

hitting time, 79

i.i.d. returns, 7

incomplete, 59

increment (of a process), 13

interest rate, 127

isometry property, 89

Itô process, 114

Itô’s formula, 103, 107, 110

Itô’s representation theorem, 124

Laplace transform, 81

law of large numbers, 71

law of the iterated logarithm, 71

local martingale, 22

local martingale null at 0, 78

localisation, 94

localised class, 94

localising sequence, 22, 78

locally bounded, 95

locally equivalent probability measures,

117

market price of risk, 129

Markov property, 82

martingale, 21, 76

martingale approach, 134

martingale property, 21

mesh size, 73

multinomial model, 7

no free lunch with vanishing risk, 43

node, 27

Novikov condition, 121

numeraire, 9

one-step transition probabilities, 27

optional decomposition theorem, 56

optional quadratic variation, 87

partial di↵erential equation, 135

partition, 73

path space, 26

payo↵, 51

payo↵ stream, 52

PDE approach, 134

portfolio, 11

predictable, 5, 91

predictable �-field, 91

predictable (process), 91

product rule, 115
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quadratic variation, 72, 74, 106

Radon–Nikodým, 45

RCLL, 76

recombining tree, 28

reference asset, 9

replicating strategy, 54, 132, 139

risk-neutral measure, 57

risk-neutral valuation, 57

risky assets, 9

ruin problem for Brownian motion, 115

Samuelson model, 127

second fundamental theorem of asset pric-

ing, 60

self-financing, 14, 132

semimartingale, 101

separating hyperplane, 41

sharp bracket, 88

Sharpe ratio, 129

special, 101

square bracket, 87

stochastic di↵erential equation, 112

stochastic exponential, 113

stochastic integral, 14, 85, 89

stochastic interval, 94

stochastic logarithm, 119

stochastic volatility, 133

stopped process, 17

stopping theorem, 77

stopping time, 17, 76

strong Markov property, 82

submartingale, 21, 76

supermartingale, 21, 76

trading dates, 5

trading strategy, 11, 131

transformations of Brownian motion, 70

tree, 27

tree, non-recombining, 27, 65

tree, recombining, 28, 67

trivial �-field, 9

usual conditions, 69

value process, 11

vector stochastic integral, 95

volatility, 128


