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0 Introduction

The goal of this course is mostly to study stochastic processes in discrete time, i.e.
infinite sequences X0, X1, X2, . . . , Xn, . . . of random variables. Usually, 0, 1, 2, . . . play
the role of time.

In particular, we would like to introduce the notions and tools allowing to describe
such stochastic processes. Very often, we will be interested in the asymptotic behavior
of the sequence X0,X1, . . . ,Xn, . . .

Example 0.1. Series with stochastic coefficients: One can verify that

Xn =
n∑

k=1

(−1)k

k
−→
n→∞

− log 2, while

X̃n =
n∑

k=1

1
k
−→
n→∞

∞ (no absolute convergence) .

What happens if we do not choose the preceding sign to be (−1)k, but random instead?

Xn =
n∑

k=1

Zk

k
, where Z1, Z2, . . . are independent, with
P [Zi = 1] = P [Zi = −1] = 1

2
.

How does one determine, in general, whether such stochastic series converge or not? �

Probability theory is a relatively new mathematical subject (Kolmogorov’s axioms –
1933), even if questions related to it were considered quite early (Bernoulli, Fermat, Pascal
– 17th century).

However, probability theory has numerous connections with other fields of pure math-
ematics, as well as with applications.

Example 0.2.

1) Connection with Partial Differential Equations:

We consider the Simple Random Walk (SRW) on the two-dimensional square grid Z2, with
starting point x ∈ Z2, X0 = x,X1,X2, . . . ,Xn, . . .

X10

X6

X0 = x = X4

X5

X1 X2

X3

Z2

Fig. 0.1: A possible trajectory of the random walk
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(the random walk makes successive “independent” jumps, each time to one of its four
neighbors). Let g(·) be a continuous function on R2, and D a disk with center 0 and
radius R.

0

D

X0 = x R

Y = exit point from D

of the random walk

Fig. 0.2

One can consider the exit point of the random walk from D (i.e. the first point outside D
that is visited by the random walk), and then define the function

u(x) = E[g(Y )], x ∈ Z2.

↑
exit point from D of the random walk with starting point x .

It can be proved that u is a solution of the discrete Dirichlet problem:
{

∆disc u(x) = 0 , x ∈ Z2 ∩D ,

u(x) = g(x) , x ∈ Z2 ∩Dc ,

where

∆disc u(y) = 1
4

(
u(y + e1) + u(y + e2) + u(y − e1) + u(y − e2)

)
− u(y)

is the so-called discrete Laplacian, and

e1 = (1, 0), e2 = (0, 1) .
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2) Connection with financial mathematics:

The exchange rate of a currency (e.g. US dollar / Swiss Franc) can often be seen as a
random process, and thus be modeled accurately with stochastic processes.

The computation of “call options” is for instance a successful application of methods
from probability theory, in particular the theory of martingales (Chapter 4).

For example, someone can obtain, through the purchase of a “call option”, the right
to buy in two months 100 US dollars at a price of SFr. 95.

If the exchange rate of the US dollar is lower than SFr. 0.95 in two months, then he
will of course not exercise his right. On the contrary, if the rate happens to be higher than
SFr. 0.95, then his contract allows him to buy 100 US dollars at a price of SFr. 95.

The question is now: what is the fair price for such a contract? Here, methods from
the theory of martingales give an answer to such questions in certain cases. �

20

20

15

10

5

40 60 80 1000

Fig. 0.3: Simple Random Walk
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Fig 0.4: Swiss Performance Index

There are of course many further examples of connections and applications of probability
theory (e.g. with physics). We will discuss some of them in the course of the lecture.

Plan of the course:

Chap. 1: Basic notions, Law of Large Numbers

Chap. 2: Central Limit Theorem, characteristic functions

Chap. 3: Martingales

Chap. 4: Random walks, Markov chains

References:

Probability: Theory and Examples, R. Durrett, Duxbury Press (1996).

Probability with Martingales, D. Williams, Cambridge University Press (1991).

Wahrscheinlichkeitstheorie, H. Bauer, de Gruyter Lehrbuch, 4. Auflage (1991).

Wahrscheinlichkeitstheorie, A. Klenke, Springer (2006).
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1 Basic notions, Law of Large Numbers

1.1 Probability spaces, random variables

We start with the axioms of Kolmogorov. A random experiment will be modeled by a
probability space (Ω,A, P ), where:

(1.1.1)

• Ω “the sample space” is a non-empty set,

• A is a σ-algebra on Ω
(i.e. A is a family of subsets of Ω, with
Ω ∈ A; A ∈ A =⇒ Ac ∈ A; and for each sequence Ai,
i ≥ 1, Ai ∈ A, one has

⋃
i≥1

Ai ∈ A),

• P is a probability measure on (Ω,A)
(i.e. P is a map: A P−→ [0, 1], with P (Ω) = 1,
and for each sequence Ai, i ≥ 1, of pairwise disjoint
elements of A (i.e. Ai ∈ A, i ≥ 1, and Ai ∩Aj = φ,
i 6= j), it holds that P (

⋃
i≥1

Ai) =
∑
i≥1

P (Ai) ),

in other words, P is a normalized measure on (Ω,A).

• ω ∈ Ω is called an “elementary event”.

• A ∈ A is called an “event”.

• Intuitively speaking, A ∈ A models a possible question related to the random ex-
periment: by running the experiment, one obtains an elementary event ω, and asks
the question: “does ω lie in A?”

• P (A) (with A ∈ A) describes the relative likelihood of a positive answer to the
previous question (“does ω lie in A?”), when we conduct the random experiment
many times.

Example 1.1.

1) Ω = R, A = B(R) “the Borel σ-algebra on R”, which means the smallest σ-algebra1 on
R that contains all open subsets of R, and for A ∈ B(R):

(1.1.2) P (A) =
∫

A

1√
2πσ2

exp
{
− (x−m)2

2σ2
}
dx .

Here, we have the normal distribution with parameters m ∈ R, σ > 0 (notation:
N (m,σ2)).

1We remind the reader that in general, for any E ⊂ P(Ω), there exists a smallest σ-algebra σ(E)
satisfying E ⊂ σ(E). This σ-algebra is called σ-algebra generated by E , and it can be defined as
σ(E) = ∩A′, where this intersection runs over all σ-algebras A′ ⊂ P(Ω) with E ⊂ A′. We leave as an
exercise to check that this definition indeed gives rise to a σ-algebra with the desired property, and that
in particular, σ(σ(E)) = σ(E), and E ⊂ E ′ =⇒ σ(E) ⊂ σ(E ′).
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Fig. 1.1: Density of the standard normal distribution: f(x) = 1√
2π

e−
x2
2

2) Ω = N, A = P(N) the power set of N, i.e. the family of all subsets of N, and for A ⊆ N:

(1.1.3) P (A) =
∑

n∈A
e−λ λn

n!
,

the Poisson distribution with parameter λ > 0.

3) Product spaces: (Ω1,A1, P1), (Ω2,A2, P2) two probability spaces.

One can construct a new probability space (Ω,A, P ), defined by

(1.1.4)

• Ω = Ω1 ×Ω2,

• A = A1 ×A2, i.e. A is the smallest σ-algebra on Ω
that contains all sets of the form A1 ×A2, A1 ∈ A1, A2 ∈ A2,

• P is the unique probability measure on (Ω,A) with
P (A1 ×A2) = P1(A1) · P2(A2) for all A1 ∈ A1, A2 ∈ A2.

P = P1 ×P2 means product of P1 and P2 (see the course on measure theory, or Durrett,
p. 423). �

One can also consider, of course, the product of n probability spaces (Ω1,A1, P1), . . . ,
(Ωn,An, Pn).
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For instance, if all (Ωi,Ai, Pi), 1 ≤ i ≤ n, are chosen as in Example 1.1 1) with m = 0
and σ = 1 (standard normal distribution), one obtains the n-dimensional standard normal
distribution:

(1.1.5)
Ω = Rn, A = B(Rn) (Borel σ-algebra on Rn),

P (A) =
∫

A

1
(2π)n/2

exp
{
− x21 + · · · + x2n

2

}
dx1 . . . dxn for A ∈ B(Rn) .

0.2

0.15

0.1

0.05

0
0 2 4 6 8 10 12 14

Fig. 1.2: Poisson distribution: p(n) = e−λ λn

n!
, with parameter λ = 5

Probability spaces often contain too much information, and we thus introduce the notion
of random variables.

Definition 1.2. Let (Ω,A, P ) be a probability space. A map X: Ω → R is called a
random variable if

(1.1.6)
X−1(B) def.= {ω ∈ Ω : X(ω) ∈ B} ∈ A for each B ∈ B(R),

(X−1(B) notation= {X ∈ B})

(In other words: X is a measurable map from (Ω,A) to (R,B(R))).

Remark 1.3. The family of Borel sets B(R) is rather abstract, and the property “X is a
random variable” actually is equivalent to the concrete condition:

(1.1.7) X−1((−∞, a])
( notation= {X ≤ a}

)
∈ A for all a ∈ R .
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Proof.

• (1.1.6) =⇒ (1.1.7): clear.

• (1.1.7) =⇒ (1.1.6): the family of B ⊆ R such that X−1(B) ∈ A is a σ-algebra:
indeed,

X−1(R) = Ω, X−1(Bc) =
(
X−1(B)

)c
, X−1

( ⋃
i≥1

Bi

)
=
⋃
i≥1

X−1(Bi) .

Because of (1.1.7), this σ-algebra contains all sets (−∞, a], a ∈ R, so that it contains
B(R), and (1.1.6) is thus satisfied.

With a random variable X on (Ω,A, P ), one can associate a probability measure µX
on (R, B(R)), the so-called distribution of X. One has

(1.1.8) for all B ∈ B(R), µX(B) = P ({X ∈ B}).
µX is a probability measure, since: µX(R) = P (Ω) = 1, and for Bi ∈ B(R), i ≥ 1,
pairwise-disjoint, it holds that

{
X ∈ ⋃

i≥1
Bi

}
=
⋃
i≥1
{X ∈ Bi} ← pairwise-disjoint events ∈ A ,

and thus

µX

( ⋃
i≥1

Bi

)
= P

( ⋃
i≥1
{X ∈ Bi}

)
=
∑

i≥1

P ({X ∈ Bi}) =
∑

i≥1

µX(Bi) .

Example 1.4. In the setting of (1.1.5), X : Rn → R, (x1, . . . , xn) X7−→ x1 is a random
variable, and for B ∈ B(R), one has:

µX(B) = P ({X ∈ B})

=
∫

B×Rn−1

1
(2π)n/2

exp
{
− x21 + · · ·+ x2n

2

}
dx1 . . . dxn

=
∫

B

1
(2π)1/2

exp
{
− x2

2

}
dx ,

so µX is the standard normal distribution on R. �

The distribution function F (·) of a random variable X on (Ω,A, P ) is defined as
follows: F : R→ [0, 1], with

(1.1.9) F (x) = P [{X ≤ x}] (1.1.8)
= µX((−∞, x]) for all x ∈ R .

This function has the following three properties:

(1.1.10)

i) F (·) is non-decreasing ,

ii) lim
x→∞

F (x) = 1, lim
x→−∞

F (x) = 0 ,

iii) F is right-continuous .
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Proof. i): clear from (1.1.9).

iii): if x ∈ R, then for each sequence xn ↓ x, one has ∩n(−∞, xn] = (−∞, x] and (−∞, xn]
is decreasing. From this, it follows that F (x) = µX((−∞, x]) = limn µX((−∞, xn]) =
limn F (xn), which gives iii).

ii) is proved similarly.

With the help of distribution functions, one can in fact derive a complete description
of all possible probability measures on (R,B(R)):

Proposition 1.5. (Lebesgue-Stieltjes)

For each function F : R → [0, 1] satisfying (1.1.10), there exists a unique probability
measure µ on (R,B(R)) with:

(1.1.11) F (x) = µ((−∞, x]) for all x ∈ R .

Proof. Existence:

Consider Ω = (0, 1), A = B(0, 1), P = Lebesgue measure on (0, 1), and define for ω ∈ (0, 1)

(1.1.12) X(ω) = sup{y ∈ R; F (y) < ω} ,

X plays the role of the inverse function of F .

1

3/4

5/8

1/2

0

F

x

X(1/2) X(5/8) = X(3/4)

Fig. 1.3
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We claim that:

(1.1.13) {ω : X(ω) ≤ x} = {ω : ω ≤ F (x)} ∀x ∈ R .

The existence of µ in (1.1.11) follows from this: we deduce from (1.1.13) that X is a
random variable, and that the distribution function of X is equal to F . As for proving
(1.1.13):

“⊇”: Let ω ∈ (0, 1) with ω ≤ F (x). Then x /∈ {y : F (y) < ω}, which
implies x ≥ X(ω).

“⊆”: Let ω ∈ (0, 1) with F (x) < ω. From the right-continuity of F ,
there exists an ǫ > 0 with F (x+ ǫ) < ω, and consequently X(ω) ≥
x+ ǫ > x. This means F (x) < ω =⇒ X(ω) > x.

Uniqueness:

We can see from (1.1.11) that µ((a, b]) = F (b)− F (a), a < b, is uniquely determined, and
thus µ((a, b)) = limn µ((a, b − 1

n ]), a < b, as well. Also, by σ-additivity, µ(O) is uniquely
determined for each open set O in R (since it can be written as a countable union of
pairwise disjoint open intervals). The uniqueness of µ follows (see the course on measure
theory, or Dynkin’s lemma below).

Remark 1.6. The proof of existence is constructive. One can use (1.1.12) to simulate a
general distribution, if one is already able to simulate the uniform distribution on (0, 1).

�

We will now study a few further properties of random variables:

Proposition 1.7. Let X1, . . . ,Xn be random variables on (Ω,A, P ), and f : Rn → R a
measurable map, then

(1.1.14) f(X1,X2, . . . ,Xn) is a random variable .

Proof. One has
f(X1,X2, . . . ,Xn) = f ◦X ,

with X : ω ∈ Ω → (X1(ω), . . . ,Xn(ω)) ∈ Rn. If we show that X from (Ω,A) to
(Rn,B(Rn)) is measurable, then it will follow that f ◦ X from (Ω,A) to (R,B(R)) is
measurable as well since f is measurable, in other words that f(X1, . . . ,Xn) is a random
variable.

But one has, for A1, . . . , An ∈ B(R),

{ω : X(ω) ∈ A1 × · · · ×An} =
n⋂

i=1
{Xi ∈ Ai},

and B(Rn) is the smallest σ-algebra on Rn that contains all such A1 × · · · × An. The
measurability of X now follows as in (1.1.7).

10



A classical application of (1.1.14) is for example:

(1.1.15) Let X1, . . . ,Xn be random variables,
then X1 +X2 + · · ·+Xn is a random variable too .

As a conclusion of this section, we will discuss a very useful property of the notion of
random variable. Namely, the class of random variables is closed under countable inf-,
liminf-, sup-, and limsup- operations.

In order to present the full power of this result, a small generalization will how-
ever be needed: we will consider random variables with values in [−∞,∞], i.e.
X−1((a,+∞]) ∈ A for all a ∈ R. Such random variables are also sometimes called nu-
merical random variables.

Proposition 1.8. Let X1,X2, . . . ,Xn, . . . be random variables with values in [−∞,+∞],
then infnXn, supnXn, lim infnXn, and lim supnXn are numerical random variables as
well.

Indeed, for all a ∈ R,

{inf
n
Xn < a} =

⋃

n

{Xn < a}, and

{sup
n

Xn > a} =
⋃

n

{Xn > a} .

Hence, infnXn and supnXn are measurable, and thus (numerical) random variables.

From this, it also follows that

lim sup
n

Xn = inf
m

(
sup
n≥m

Xn

)
and

lim inf
n

Xn = sup
m

(
inf
n≥m

Xn

)

are (numerical) random variables too.

Using the previous proposition, one can easily see that the set of convergence of the
sequence Xn,

Ω0 = {lim sup
n

Xn = lim inf
n

Xn} ⊂ Ω,

lies in A. When P (Ω0) = 1, we say that the sequence Xn P -almost surely (abbreviated
as P -a.s.) converges.

1.2 Expectation

In this section, we will recall a few classical and useful results from the course on measure
theory.

Intuitively speaking, the expectation (or expected value) of a random variable X on
(Ω,A, P ) corresponds to the average value taken by X, when one repeats the random
experiment modeled by (Ω,A, P ).

11



The expectation of a random variable X on (Ω,A, P ) with

(1.2.1)
∫

Ω
|X| dP <∞

is defined mathematically as:

(1.2.2) E[X] =
∫

Ω
X dP .

If X and Y are random variables satisfying (1.2.1), one has (see Durrett, Appendix)

(1.2.3) E[aX + bY ] = aE[X] + bE[Y ] for all a, b ∈ R ,

(1.2.4) E[X] ≥ E[Y ] if X ≥ Y ,

and as a special case of (1.2.4),

(1.2.5) E[ |X| ] ≥ |E[X]| .

Jensen’s Inequality:

For a random variable X satisfying property (1.2.1), and a convex function ϕ : R → R
(i.e. ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y), x, y ∈ R, λ ∈ [0, 1]) with E[|ϕ(X)|] < ∞,
one has

(1.2.6) ϕ(E[X]) ≤ E[ϕ(X)] .

x

ϕ

E[X]

line

y = a(x− E[X])
+ϕ(E[X])

Fig. 1.4

Special case:

(1.2.7) E[X]2 ≤ E[X2] .

The difference Var(X) def.= E[X2]− E[X]2 ≥ 0 is called variance of X.

12



Hölder’s Inequality:

Let p, q ∈ [1,∞] with 1
p + 1

q = 1, one has:

(1.2.8)

E[ |XY | ] ≤ ‖X‖p ‖Y ‖q, where

‖X‖r= E[ |X|r ]1/r, r ∈ [1,∞), and

‖X‖∞ = inf{M : P [ |X| > M ] = 0} .

For p = q = 2, one obtains in particular the Cauchy-Schwarz Inequality:

(1.2.9) E[ |XY | ] ≤ ‖X‖2 ‖Y ‖2 .

Lemma 1.9. (Fatou)

Let Xn ≥ 0 be a sequence of random variables with values in [0,∞], then:

(1.2.10) E
[

lim inf
n

Xn

]
≤ lim inf

n
E[Xn] .

Theorem 1.10. (Monotone convergence (Beppo Levi))

Let Xn be a sequence of random variables with Xn ≥ 0 and Xn ↑ X, then

(1.2.11) E[Xn] ↑ E[X] .

Theorem 1.11. (Dominated convergence (Lebesgue))

Let X, Y , and Xn be random variables with Xn
P−a.s.−→ X, |Xn| ≤ Y for all n, and

E[Y ] <∞, then:

(1.2.12) lim
n→∞

E[Xn] = E[X] .

Chebyshev’s Inequality:

For ϕ : R→ [0,∞) a measurable function, A ∈ B(R), and X a random variable, one has

(1.2.13)

inf{ϕ(x), x ∈ A} P [X ∈ A]

≤
∫

X∈A
ϕ(X) dP

( notation= E[ϕ(X); X ∈ A]
)

≤ E[ϕ(X)] .

Proof. We can write

inf{ϕ(x), x ∈ A} 1{X∈A} ≤ ϕ(X) 1{X∈A} ≤ ϕ(X)

(we adopt the usual convention from measure theory that 0 · ∞ = 0), and (1.2.13) follows
by integration.

13



Special case:

(1.2.14) a2 P [ |X| ≥ a] ≤ E[X2] .

Image of a probability measure through a measurable map:
(change of variable formula)

We consider a probability space (Ω,A, P ), a measurable space (S,S), and a measurable
map h : (Ω,A) −→ (S,S).

One can define the image of P through h (denoted by h ◦ P or P ◦ h−1) as the
following probability measure:

(1.2.15) (h ◦ P )(B) = P [h−1(B)] ∀B ∈ S .

The fact that h ◦ P is a probability measure on (S,S) follows from analogous reasons as
for the distribution of a random variable (see (1.1.8)).

Example 1.12. Consider P (dx) = 1√
2π

exp{−1
2 x

2}dx (standard normal distribution) on
(R,B(R)).

The image of P through the exponential function x→ exp(x) is the distribution:

Q(dy) = (exp ◦P )(dy) =
1√
2π

exp
{
− 1

2
(log y)2

}
1(y > 0)

dy

y
.

(log-normal distribution)

�

Proposition 1.13. Let (Ω,A, P ) be a probability space, (Ω,A) h−→ (S,S) a measurable
map, and Y a random variable on (S,S). One has

(1.2.16)
∫

S
|Y | d(h ◦ P ) <∞⇐⇒

∫

Ω
|Y ◦ h| dP <∞ ,

and if (1.2.16) is satisfied, then

(1.2.17) E(h◦P )[Y ] = EP [Y ◦ h] .

Proof. We approximate Y in four steps (this is sometimes called “measure-theoretic in-
duction”):

a) Y = 1B , B ∈ S. In this case, (1.2.16) is clearly satisfied, and

(h ◦ P )(B) def.= P [h−1(B)] = EP [1B ◦ h] ,

which is (1.2.17).

b) Y =
∑n

m=1 cm 1Bm , cm ∈ R, Bm ∈ S. Again, (1.2.16) is satisfied, and (1.2.17)
follows from a) and the linearity of expected value.
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c) Y ≥ 0. Let us introduce

Yn =
n2n−1∑

k=0

k

2n
1
{ k

2n
≤ Y <

k + 1
2n

}
+ n 1{n ≤ Y }

(in other words: Yn(s) is, for s ∈ S, the minimum of n and the largest dyadic number
with complexity n that is smaller than Y (s)). One has

{
Yn ↑ Y , and Yn is as in b),

Yn ◦ h ↑ Y ◦ h.

Using the monotone convergence theorem, we obtain

E(h◦P )[Y ]
(monotone convergence)

= lim
n→∞

↑ Eh◦P [Yn]

(b)
= lim

n→∞
↑ EP [Yn ◦ h]

(monotone convergence)
= EP [Y ◦ h] .

Hence, (1.2.16) and (1.2.17) follow.

d) Y a general random variable on (S,S). Consider

Y+(s) = max(Y (s), 0), s ∈ S,
Y−(s) = max(−Y (s), 0), s ∈ S .

The property E(h◦P )[ |Y | ] <∞ is then equivalent to

E(h◦P )[Y+] <∞ and Eh◦P [Y−] <∞ .

A similar statement holds for Y ◦ h, Y+ ◦ h (= (Y ◦ h)+), and Y− ◦ h(= (Y ◦ h)−),
with respect to P .

The equivalence (1.2.16) then follows from these observations and c), and (1.2.17)
comes from writing

Eh◦P [Y ] = Eh◦P [Y+]− Eh◦P [Y−],

EP [Y ◦ h] = EP [Y+ ◦ h]− EP [Y− ◦ h],

and using c).

1.3 Independence

We first present the elementary definition of independence for two events, and then a series
of generalizations of this elementary definition.

Let (Ω,A, P ) be a probability space, B,C ∈ A are said to be independent if

(1.3.1) P [B ∩C] = P [B]P [C] .

15



If for instance P (B) > 0, then (1.3.1) is equivalent to

P [C ∩B]
P [B]

= P [C|B] = P [C] (conditional probability) .

This allows one to interpret (1.3.1) as follows:

“The occurrence of B has no influence on the occurrence of C” (and similarly for C,
if P [C] > 0).

Two σ-algebras B, C ⊆ A are said to be independent if

(1.3.2) P [B ∩ C] = P [B]P [C] ∀B ∈ B, ∀C ∈ C .

(1.3.3)

Two random variables X,Y on (Ω,A, P ) are said to be
independent if the σ-algebras σ(X) = {X−1(A); A ∈ B(R)} and
σ(Y ) = {Y −1(A); A ∈ B(R)} that they generate are independent
(in the sense of (1.3.2))

(we leave as an exercise to check that σ(X) and σ(Y ) are indeed σ-algebras). These
definitions can be generalized to the case of a larger number (more than two) of σ-algebras
or random variables.

From such a generalized definition, we expect for example that from the property

(1.3.4)
“X1,X2,X3,X4,X5 are independent random variables”, it follows that
“exp{X1 +X2}, 1

1+X2
3+X2

4+X2
5

are independent random variables”.

But we immediately encounter a problem here, as the following example shows:

Example 1.14.
Ω = {a, b, c, d}, A = P(Ω) ,

P [{a}] = P [{b}] = P [{c}] = P [{d}] = 1
4
,

then
A = {a, b}, B = {b, c}, C = {c, a}

are pairwise independent, but A and B ∩ C = {c} are not independent at all, since
A ∩ (B ∩ C) = ∅ ! �

As a consequence, in order to define the desired generalization in the case of a larger
number of σ-algebras (or random variables), one needs more than simply pairwise inde-
pendence for each pair of σ-algebras (or random variables).

Definition 1.15. Consider (Ω,A, P ) a probability space. The sub-σ-algebras B1, . . . ,Bn
of A are said to be independent if:

(1.3.5) P [B1 ∩ · · · ∩Bn] = P [B1]P [B2] . . . P [Bn] ∀B1 ∈ B1, . . . , ∀Bn ∈ Bn .
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Remark 1.16. Each subsequence of B1, . . . ,Bn (for instance B1,B5,B8, if n ≥ 8) is also
independent.

(1.3.6)
Independence of random variables X1, . . . ,Xn can be defined
in an analogue way as the independence of the σ-algebras
σ(X1), . . . , σ(Xn) that they generate .

�

It is now more than time that we investigate whether these definitions make sense. For
this, we will devise a very useful tool: Dynkin’s lemma.

Definition 1.17. A family D of subsets of Ω is called a Dynkin system (or a λ-system)
if it satisfies

(1.3.7)

i) Ω ∈ D,
ii) A ∈ D =⇒ Ac ∈ D,
iii) for each sequence Ai, i ≥ 1, of pairwise disjoint

elements from D (i.e. Ai ∈ D, i ≥ 1, and Ai ∩Aj = φ,
i 6= j), one has (

⋃
i≥1Ai) ∈ D

(the difference with the notion of σ-algebra lies in iii)).

(1.3.8) A family C of subsets of Ω is called a π-system
if C ∩ C ′ ∈ C for C,C ′ ∈ C

(in other words: C is closed under ∩).

1

0.8

0.6

0.4

0.2

20 40 60 80 100

Fig. 1.4: Independent Bernoulli(1/2) random variables

Lemma 1.18. (Dynkin)

Let D be a Dynkin system, and C a π-system on Ω with C ⊆ D. Then one has

(1.3.9) D ⊃ σ(C) (← the σ-algebra generated by C) .
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The proof of Lemma 1.18 is rather abstract. As a motivation, we will first examine a
few consequences and applications of this lemma.

For many applications, the following general principle is of interest:

(1.3.10) Let P,Q be two probability measures on (Ω,A), then
the family D = {A ∈ A : P (A) = Q(A)} is a Dynkin system .

Proof. i) and ii) are clear, and iii) follows by σ-additivity.

As a consequence of Dynkin’s lemma and (1.3.10), we obtain

(1.3.11)

Let P,Q be two probability measures on (Ω,A), C ⊆ A
a π-system such that ∀C ∈ C, P (C) = Q(C), then one has:

∀B ∈ σ(C), P (B) = Q(B) .

As a concrete application of (1.3.11), one has for instance:

Proposition 1.19. Let X,Y be independent random variables on (Ω,A, P ), with dis-
tributions µ and ν respectively. Then, the image of P on (R2,B(R2)) through the map

ω
φ7−→ (X(ω), Y (ω)) is exactly µ⊗ ν.

For a measurable function h: (R2,B(R2))→ (R,B(R)), one has:

(1.3.12) E[ |h(X,Y )| ] <∞⇐⇒ h is µ⊗ ν integrable.

In this case, one has furthermore

(1.3.13) E[h(X,Y )] =
∫

R2
h(x, y) dµ(x)d ν(y) .

In particular:

(1.3.14) E[XY ] = E[X]E[Y ] if E[ |X| ], E[ |Y | ] <∞ .

Proof. Thanks to (1.2.16) and (1.2.17), we only need to show that

(1.3.15) µ⊗ ν = φ ◦ P .

Define C = {A1 × A2 : A1, A2 ∈ B(R)}. C is a π-system, and for A = A1 × A2 ∈ C, one
has

µ⊗ ν(A) = µ(A1) ν(A2), and

(φ ◦ P )(A) = P [X ∈ A1, Y ∈ A2]
(independence)

= P [X ∈ A1]P [Y ∈ A2] = µ(A1) ν(A2) .

(1.3.16)

Since one has also σ(C) = B(R2), the claim follows from (1.3.11) and (1.3.16).
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Remark 1.20. The uniqueness part in the proposition of Lebesgue-Stieltjes (see (1.1.11))
can be proved analogously. In this case, one chooses as a π-system C the family of intervals
(a, b], with a ≤ b in R. �

A further application of Dynkin’s lemma is the following:

Theorem 1.21. Let C1, . . . , Cn ⊆ A be π-systems with Ω ∈ Ci, and

∀C1 ∈ C1, . . . , ∀Cn ∈ Cn, P [C1 ∩ · · · ∩ Cn] = P [C1] . . . P [Cn] .(1.3.17)

Then the σ-algebras σ(C1), . . . , σ(Cn) are independent .(1.3.18)

Proof. For fixed C2 ∈ C2, . . . , Cn ∈ Cn, we consider the family D1 of all D ∈ A with

(1.3.19) P [D ∩C2 ∩ · · · ∩ Cn] = P [D]P [C2] . . . P [Cn] .

Then one has

(1.3.20) D1 contains C1 (using (1.3.17)) .

(1.3.21)

D1 is a Dynkin system:

i), ii) are clear.

iii) Consider Dℓ, ℓ ≥ 1, in D1 pairwise disjoint, and D =
⋃

ℓDℓ,
then one has:

P [D ∩ C2 ∩ · · · ∩ Cn]
(σ−addit.)

=
∑

ℓ≥1

P [Dℓ ∩ C2 ∩ · · · ∩ Cn]

(Dℓ∈D1)=
∑

ℓ≥1

P [Dℓ]P [C2] . . . P [Cn]
(σ−addit.)

= P [D]P [C2] . . . P [Cn].

Thanks to (1.3.20), (1.3.21) and Lemma 1.18, one has (1.3.19) for D ∈ σ(C1).

One can now define the family D2 of all sets D ∈ A with:

(1.3.22) P [A ∩D ∩ C3 ∩ · · · ∩ Cn] = P [A]P [D]P [C3] . . . P [Cn] ,

for fixed C3 ∈ C3, . . . , Cn ∈ Cn and arbitrary A ∈ σ(C1). In a similar way, one can see that
D2 ⊃ C2 and D2 is a Dynkin system.

We conclude from this, using Dynkin’s lemma, that (1.3.22) holds true for A ∈ σ(C1),
D ∈ σ(C2), C3 ∈ C3, . . . , Cn ∈ Cn, and so on.

Corollary 1.22.

• Let Fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), be independent σ-algebras.

(1.3.23) Then the σ-algebras Gi = σ
(m(i)⋃

j=1
Fi,j

)
, 1 ≤ i ≤ n,

are also independent .
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• Let Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), be independent random variables, and fi:
Rm(i) → R be measurable functions,

(1.3.24) then the random variables Yi = fi(Xi,1, . . . ,Xi,m(i)),
1 ≤ i ≤ n, are independent too.

In particular, (1.3.4) holds, as desired.

Proof.

• (1.3.23) =⇒ (1.3.24): Since σ(Yi) ⊂ Gi def.= σ(Xi,1, . . . ,Xi,m(i)), and using (1.3.23),
G1, . . . ,Gn are independent.

• (1.3.23): Define Ci as the family of subsets of Ω of the form
⋂m(i)

j=1 Ai,j, where Ai,j ∈
Fi,j . Then (1.3.17) holds, and (1.3.23) follows from (1.3.18).

Finally, we arrive to

Proof of Lemma 1.18.
D ⊃ C ← π−system .
↑

Dynkin system

(1.3.9): We must show D ⊃ σ(C). We define the Dynkin system generated by C:

(1.3.25) D(C) =
⋂

D′⊃C,D′ Dynkin system

D′,

and we will show that
D(C) = σ(C) (and so (1.3.9)) .

D(C) ⊆ σ(C) is clear, since each σ-algebra is a Dynkin system. Hence, we only need to
prove that

σ(C) ⊆ D(C) .
This statement follows from

(1.3.26) D(C) is a σ-algebra ,

which we now prove. It follows from (1.3.25) that (see below)

(1.3.27) D(C) is
⋂

-closed .

With (1.3.27), we obtain

D(C) is
⋃

-closed (using A ∪B = (Ac ∩Bc)c,
(1.3.7) ii), and (1.3.27) ) .

Hence, D(C) is closed under countable unions, since for An, n ≥ 1, An ∈ D(C), one has:

⋃
n≥1

An =
⋃
n≥1

Bn\Bn−1, with B0 = ∅, Bn =
n⋃

i=1
Ai ∈ D(C),
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and
(Bn\Bn−1) ∈ D(C), since (Bn\Bn−1)c = Bc

n ∪Bn−1 ∈ D(C) .
տր

pairwise disjoint in D(C)

Consequently,
⋃

n≥1An ∈ D(C) follows with (1.3.7) iii). As Ω ∈ D(C), and D(C) is closed
under taking complement, we obtain (1.3.26).

It is thus enough to prove (1.3.27):

First step:

(1.3.27): A ∈ D(C), B ∈ C =⇒ A ∩B ∈ D(C).
We define, for fixed B ∈ C:

DB = {A ⊆ Ω : A ∩B ∈ D(C)} .

• DB is a Dynkin system, since:

i) Ω ∈ DB : clear.

ii) A ∈ DB =⇒ Ac ∩B = B︸︷︷︸
∈C
\ A ∩B︸ ︷︷ ︸

∈D(C)
∈ D(C)

(since (B\(A ∩B))c = Bc ∪ (A ∩B))
տ ր

pairwise disjoint in D(C)
=⇒ Ac ∈ DB .

iii) A1, . . . , An, · · · ∈ DB pairwise disjoint =⇒
( ∞⋃

i=1
Ai

)
∩B =

∞⋃
i=1

(Ai ∩B)︸ ︷︷ ︸
∈D(C), pairwise disjoint

∈ D(C) .

Hence,
⋃∞

i=1Ai ∈ DB.

• DB ⊃ C. Consequently DB ⊃ D(C), and the statement follows.

Second step to prove (1.3.27):

We define, for fixed A ∈ D(C),

DA = {B ⊆ Ω : A ∩B ∈ D(C)} .

• DA is a Dynkin system: the proof is analogous to i), ii), iii) above.

• DA ⊃ C thanks to the first step.

It follows that DA ⊃ D(C), and A ∈ D(C), B ∈ D(C) =⇒ A ∩ B ∈ D(C): we deduce
(1.3.27). �
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Up to now, we have only defined the independence of finite sequences of σ-algebras or
random variables. An infinite sequence of σ-algebras Bi, i ≥ 1 (resp. random variables
Xi, i ≥ 1), is said to be independent if each finite subsequence of Bi (resp. of Xi) is
independent. A sequence of events Ai, i ≥ 1, is called independent if the random variables
1Ai

, i ≥ 1, are independent.

Lemma 1.23. (Borel-Cantelli)

For a sequence Ai, i ≥ 1, of events, we define

lim sup
n→∞

An =
⋂

n≥1

( ⋃

m≥n

Am

)
(1.3.28)

= {ω ∈ Ω : ω lies in infinitely many An},

lim inf
n→∞

An =
⋃

n≥1

( ⋂

m≥n

Am

)
(1.3.29)

= {ω ∈ Ω : only finitely many An do not contain ω } .

The notations lim sup
n

An, lim inf
n

An come from the identities

(1.3.30) 1lim sup
n

An = lim sup
n

1An , 1lim inf
n

An = lim inf
n

1An .

Lemma 1.24. (First lemma of Borel Cantelli)

Let An, n ≥ 1, be a sequence of events on (Ω,A, P ), then:

(1.3.31)
∑

n

P (An) <∞ =⇒ P [lim supAn] = 0 .

Proof. Using the monotone convergence theorem (1.2.11), we have

E

[ ∞∑

n=1

1An

]
=

∞∑

n=1

P (An) <∞ ,

so that ∞∑

n=1

1An <∞ P -a.s =⇒ P [lim supAn] = 0 ,

which completes the proof.

The converse is false without further assumptions, as the following example shows.

Example 1.25. Ω = (0, 1), A = B(0, 1), P = Lebesgue measure on (0, 1), An =
(
0, 1n

)
,

then lim supAn = ∅, but
∑
P (An) =∞. �

Lemma 1.26. (Second lemma of Borel Cantelli)

Let An, n ≥ 1, be a sequence of independent events on (Ω,A, P ). Then:

(1.3.32)
∑

n

P (An) =∞ =⇒ P [lim supAn] = 1 .
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Proof. We show P [(lim supAn)c] = P [lim inf Ac
n] = 0. From the inequality 1−x ≤ e−x(x ∈

R), we see that for m < M ,

P
[ M⋂
k=m

Ac
k

]
independent=

M∏
k=m

P [Ac
k] =

M∏
k=m

(1− P (Ak))

≤ exp
{
−

M∑

k=m

P (Ak)
}
−→

M→∞
0 (using (1.3.32)) .

It follows that P [
⋂

k≥mA
c
k] = 0, ∀m ≥ 1 =⇒ P [lim inf Ac

n] = 0.

Examples

1) Let Xn, n ≥ 1, be a sequence of independent N(0, σ2)-distributed random variables,
with σ > 0. From the second lemma of Borel-Cantelli, it follows that

P -a.s., lim sup
n

Xn =∞.

Proposition 1.27.

(1.3.33) P -a.s., lim sup
n

Xn

σ
√

2 log n
= 1 .

The proof consists essentially of two steps, establishing first an upper bound, and then a
lower bound. For that, we will make use of the following lemma.

Lemma 1.28. For x > 0, one has

(1.3.34)
(
x+

1
x

)−1
e−x2/2

i)

≤
∫ ∞

x
e−y2/2dy

ii)

≤ 1
x
e−x2/2 .

Proof.

i) 1
xe

−x2/2 =
∫∞
x (1 + 1

y2 )e−y2/2dy ≤ (1 + 1
x2 )
∫∞
x e−y2/2dy. Moreover, one has also

x(1 + 1
x2 ) = x+ 1

x , which establishes the first inequality.

ii)
∫∞
x e−y2/2dy ≤ 1

x

∫∞
x ye−y2/2dy = 1

xe
−x2/2.

Proof of Proposition 1.27.

First step: (upper bound)

(1.3.35) P -a.s., lim sup
n

Xn

σ
√

2 log n
≤ 1.

For the proof of this upper bound, we will use Lemma 1.24. Let us choose an arbitrary
ε > 0, and set

An =
{
Xn > (1 + ε)σ

√
2 log n

}
, n ≥ 1 .

23



Then, one has

P [An] =
1√
2πσ

∫ ∞

(1+ε)σ
√
2 logn

e
−y2

2σ2 dy =
1√
2π

∫ ∞

(1+ε)
√
2 logn

e−y2/2dy

(1.3.34)

≤ 1√
2π

1
(1 + ε)

√
2 log n

e−(1+ε)2 logn =
1√
2π

1
(1 + ε)

√
2 log n

1
n(1+ε)2 ,

and so
∑

n P [An] <∞. It follows from Lemma 1.24 that P [lim supnAn] = 0, and thus

P -a.s., for large n, Xn ≤ (1 + ε)σ
√

2 log n.

Hence,

P -a.s., lim sup
n

Xn

σ
√

2 log n
≤ (1 + ε).

(1.3.35) then follows with εց 0.

Second step: (lower bound)

(1.3.36) P -a.s., lim sup
n

Xn

σ
√

2 log n
≥ 1.

For the proof of this lower bound, we will use the second lemma of Borel-Cantelli. In a
similar way as in the first step, we choose some 0 < ε < 1, and set

Bn =
{
Xn > (1− ε)σ

√
2 log n

}
, n ≥ 1.

The events Bn, n ≥ 1, are then independent, and

P [Bn] =
1√
2πσ

∫ ∞

(1−ε)σ
√
2 logn

e
−y2

2σ2 dy =
1√
2π

∫ ∞

(1−ε)
√
2 logn

e−y2/2dy

(1.3.34)

≥ 1√
2π

(
(1− ε)σ

√
2 log n+

1
(1 − ε)σ√2 log n

)−1

e−(1−ε)2 logn

≥ 1
na
, for n ≥ n0(a, ε) and (1− ε)2 < a < 1 .

It follows that
∑

n P [Bn] =∞: the second lemma of Borel-Cantelli implies that P [lim supnBn] =
1, and thus

P -a.s., lim sup
n

Xn

σ
√

2 log n
≥ (1− ε) .

By letting εց 0, we obtain (1.3.36). The claim (1.3.33) follows. �

2) (Length of the longest gap in a sequence of independent 0−1 Bernoulli random variables
with parameter p = 1/2).

We consider a sequence Xi, i ≥ 1, of independent Bernoulli(12 )-distributed random
variables on a probability space (Ω,A, P ).
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Fig. 1.5

The length Ln(ω) of the longest gap in the sequence Xi(ω), 1 ≤ i ≤ n, is

(1.3.37)
Ln(ω) = max

{
m ∈ {0, . . . , n}, ∃k ∈ {1, . . . , n} :

k +m− 1 ≤ n, Xk(ω) = Xk+1(ω) = · · · = Xk+m−1(ω) = 0
}
.

Our goal is then to study the asymptotic behavior of Ln. The following proposition tells
us at which speed Ln(ω) grows to infinity – its order of magnitude – for a typical ω:

Proposition 1.29.

(1.3.38) P -a.s.,
Ln

log2(n)
−→
n→∞

1 .

Proof.

First step: For all ǫ > 0, one has

(1.3.39) P -a.s., lim
n
Ln/ log2(n) ≤ 1 + ǫ .

For 2m ≤ n < 2m+1, m ≥ 1, one has

Ln > (1 + ǫ) log2(n) =⇒ L2m+1 > (1 + ǫ) log2(2
m) = (1 + ǫ)m .

Hence,

(1.3.40)
P
[

lim
n
Ln/ log2(n) > 1 + ǫ

]
≤ P [lim sup

m
Am], where

Am = {L2m+1 > (1 + ǫ)m} .

Now, we have

P [Am] ≤ P

[
2m+1−1⋃
k=0

{Xk+1 = · · · = Xk+[(1+ǫ)m] = 0}
]

≤ 2m+1 · P [X1 = · · · = X[(1+ǫ)m] = 0] independence= 2m+1
(

1
2

)[(1+ǫ)m]

≤ 2m+2
(

1
2

)(1+ǫ)m
= 22−ǫm .

Consequently,
∑

m P (Am) < ∞, so that (1.3.39) follows from (1.3.40), using the first
lemma of Borel-Cantelli.
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Second step: Let us choose ǫ ∈ (0, 1), then one has

(1.3.41) P -a.s., lim
n
Ln/ log2(n) ≥ (1− ǫ) .

(1.3.41) indeed follows from

(1.3.42)

P [lim inf
m

Bm] = 1, where Bm
def.=
{
ω: there exists “a gap

of length ≥ [(1− ǫ
2)m] in the block {2m + 1, . . . , 2m+1}”}

def.=
⋃

2m≤k≤2m+1−[(1− ǫ
2 )m]

{0 = Xk+1 = Xk+2 = · · · = Xk+[(1− ǫ
2 )m]} .

gap

2m 2m+1

Fig. 1.6

Furthermore, we see that

Bc
m ⊂

{
ω : in each block

{
2m + ℓ[

(
1− ǫ

2

)
m
]

+ 1,

2m + (ℓ + 1)
[(

1− ǫ

2

)
m
]}
, 0 ≤ ℓ <

[
2m/

[(
1− ǫ

2

)
m
]]
,

one has Xi = 1 for at least one i} .

2m+1

blocks of length
[(

1− ǫ
2

)
m
]

2m 2m + 1 2m + [(1− ǫ)m]

Fig. 1.7

These blocks are pairwise disjoint, which implies, thanks to (1.3.22):
for am =

[
2m/[(1 − ǫ

2)m]] = number of blocks,

P [Bc
m] ≤

(
P
[
Xi = 1, for one i ∈

{
1, . . . ,

[(
1− ǫ

2

)
m
]}])am

=
(
1− P

[
Xi = 0, for all i ∈

{
1, . . . ,

[(
1− ǫ

2

)
m
]}])am

≤
(
1−

(1
2

)(1− ǫ
2 )m
)am = exp

{
am log

(
1−

(1
2

)(1− ǫ
2 )m
)}
.
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Since

am log
(

1−
(

1
2

)(1− ǫ
2 )m
)
∼

m→∞
−am ·

(
1
2

)(1− ǫ
2 )m ∼

m→∞
−2

ǫ
2 m

[(1− ǫ
2)m]

,

we have
∑

P [Bc
m] < ∞ =⇒ P [lim supBc

m] = 0 using the first lemma of Borel Cantelli,
and (1.3.42) follows readily.

Kolmogorov’s 0-1 Law

Let Xi, i ≥ 1, be a sequence of random variables on (Ω,A, P ). For n ≥ 1, let us define the
σ-algebra Fn, corresponding to the “future of the sequence (Xi)i≥1 after time n”,
as:

(1.3.43)
Fn = σ(Xn,Xn+1,Xn+2 . . . )

def.= the smallest σ-algebra that contains all σ(Xn),
σ(Xn+1), σ(Xn+2) . . .

(in other words, σ(
⋃

i≥n σ(Xi))). For p > n, one has

σ(Xn,Xn+1, . . . ,Xp) ⊆ σ(Xn,Xn+1,Xn+2 . . . ) ,

and for n ≥ 1, σ(Xn,Xn+1,Xn+2 . . . ) is the smallest σ-algebra that contains all σ(Xn, . . . ,Xp),
p > n.

For instance, all partial sums
∑p

k=10Xk, with p > 10, are

σ(X10,X11 . . . )−measurable .

One can then define the σ-algebra of the “distant future of the sequence (Xi)i≥1”,
denoted by F∞, as:

(1.3.44) F∞ =
⋂
n≥1
Fn (also called “asymptotic σ-algebra”) .

For example, it contains the set of convergence (in [−∞,+∞]) of the series
∑
Xk:

Ω1 =
{
ω ∈ Ω, lim

p

p∑

k=1

Xk(ω) = lim
p

p∑

k=1

Xk(ω)
}
∈ F∞ ,

since for each n ≥ 1,

(1.3.45)
Ω1 =

{
ω ∈ Ω, lim

p

p∑

k=n

Xk(ω) = lim
p

p∑

k=n

Xk(ω)
}
∈ Fn

=⇒ Ω1 ∈
⋂
n≥1
Fn = F∞ .
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Analogously, it also contains the set of convergence in R of the series
∑

Xk:

(1.3.46)
Ω2 = Ω1 ∩

{
lim
p

p∑

k=1

Xk > −∞
}

∩
{

lim
p

p∑

k=1

Xk <∞
}
∈ F∞ .

In the case of independent random variables Xi, i ≥ 1, we have a very particular
property of the σ-algebra F∞:

Theorem 1.30. (Kolmogorov’s 0-1 law)

If the Xi, i ≥ 1, are independent, then the asymptotic σ-algebra F∞ is trivial, i.e.

(1.3.47) A ∈ F∞ =⇒ P (A) = 0 or 1 .

For example, P (Ω1) = 0 or 1 for the set Ω1 from (1.3.45).

Proof.

First step: Let n > 1 be fixed. We prove:

(1.3.48)
∀A ∈ σ(X1, . . . ,Xn−1), ∀B ∈ Fn = σ(Xn,Xn+1 . . . ),

P [A ∩B] = P [A]P [B] .

Indeed, (1.3.48) holds for all A ∈ σ(X1, . . . ,Xn−1), B ∈ σ(Xn, . . . ,Xp) (p ≥ n), thanks to
(1.3.23). However, σ(X1, . . . ,Xn−1) and

⋃
p≥n σ(Xn, . . . ,Xp) are π-systems, and σ(

⋃
p≥n

σ(Xn, . . . ,Xp)) = Fn. Claim (1.3.48) follows using (1.3.17).

Second step:

(1.3.49)
∀A ∈ σ(X1, . . . ,Xn, . . . ) = F1, ∀B ∈ F∞, one has

P [A ∩B] = P [A]P [B] .

Thanks to (1.3.48) and F∞ ⊆ Fn, this equality holds for

A ∈ ⋃
n>1

σ(X1, . . . ,Xn−1)← π-system, and

B ∈ F∞(σ-algebra =⇒ π-system) .

Similarly, (1.3.49) follows from (1.3.17), and the fact that F1 is the smallest σ-algebra
containing

⋃
n>1 σ(X1, . . . , Xn−1).

We finally see that for A = B ∈ F∞ ⊂ F1, (1.3.49) implies that

P (A) = P (A ∩A) = P (A)2 =⇒ P (A) = 0 or 1 .

Up to now, we have hardly discussed the question of existence for sequences of inde-
pendent random variables. We conclude this section by mentioning the following result.
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Theorem 1.31.

(1.3.50)
Let µ be a probability measure on (R,B(R)), then there exists
a probability space (Ω,A, P ) with a sequence Xi, i ≥ 1,
of independent µ-distributed random variables on (Ω,A, P ) .

An “abstract” proof of this statement, as a consequence of Kolmogorov’s extension
theorem and the construction of products of infinitely many measures, can be found in
the Appendix of Durrett. We also refer the reader to Durrett, p. 26. A “concrete proof”,
with Ω = [0, 1), A = B([0, 1)), P = Lebesgue measure on [0, 1), can also be given, as will
be explained in an exercise.

1.4 Convergence of stochastic series

We consider a sequence Xi, i ≥ 1, of independent random variables on (Ω,A, P ).

In this section, we would like to develop concrete criteria to determine whether the
series

∑
kXk converges.

As in (1.3.46), we define the set of convergence in R of the series
∑
Xk as

Ω2 =
{
ω ∈ Ω, lim

p

p∑

k=1

Xk = lim
p

p∑

k=1

Xk ∈ R
}
∈ F∞, where

F∞ = asymptotic σ-algebra of the Xi, i ≥ 1 .

(1.4.1)

Thanks to Kolmogorov’s 0−1 law (1.3.47), we know that

(1.4.2) P (Ω2) = 0 or 1 .

Under which conditions on the Xi, i ≥ 1, does one have P (Ω2) = 1?

Notation:

(1.4.3) S0 = 0, Sn =
n∑

k=1

Xk, n ≥ 1 .

Kolmogorov’s Inequality:

Let X1, . . . ,Xn be independent random variables with E[X2
i ] <∞ and E[Xi] = 0, then

(1.4.4) ∀u > 0, P
[

max
1≤k≤n

|Sk| ≥ u
]
≤ 1
u2

Var(Sn) =
1
u2

n∑

i=1

Var(Xi) .

Remark 1.32. (1.4.4) is an example of a maximal inequality, i.e. the variance of the
final term Sn of the sequence S0, S1, . . . , Sn controls the behavior of max1≤k≤n |Sk|.
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u

−u

max
1≤k≤n

|Sk| ≥ u

S1 Sn
S0

0

S2

Fig. 1.8

�

Proof. We first decompose {max1≤k≤n |Sk| ≥ u} as

(1.4.5)
{max |Sk| ≥ u} =

n⋃
k=1

Ak, where
տ
pairwise disjoint

Ak = { |Sk| ≥ u, and |Sj | < u for all j < k}
= {ω: the first time j at which |Sj | ≥ u is exactly k} .

(1.4.6)

One can easily see that Ak ∈ σ(X1,X2, . . . ,Xk) (later, we will link decompositions such
as those in (1.4.5) - (1.4.6) with the notion of stopping times). Now, we have

(1.4.7)

E[S2
n] ≥

n∑

k=1

∫

Ak

S2
n dP =

n∑

k=1

∫

Ak

(Sk + Sn − Sk)2 dP

=
n∑

k=1

∫

Ak

S2
k + 2Sk · (Sn − Sk) + (Sn − Sk)2 dP

≥
n∑

k=1

∫

Ak

S2
k dP + 2

n∑

k=1

∫

Ak

Sk · (Sn − Sk) dP .

Let us note that
1Ak
· Sk is σ(X1, . . . ,Xk)-measurable, and

(Sn − Sk) is σ(Xk+1, . . . ,Xn)-measurable .

These two random variables are thus independent (see (1.3.23)), and
∫

Ak

Sk(Sn − Sk) dP
(1.3.14)

= E[1Ak
Sk] E[Sn − Sk]︸ ︷︷ ︸

‖
0

= 0 .
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We conclude from (1.4.7) that

(1.4.8)

E[S2
n] ≥

n∑

k=1

∫

Ak

S2
k dP

≥
n∑

k=1

u2 P [Ak] (since 1Ak
S2
k ≥ u2 1Ak

, see (1.4.6))

= u2 P
[ n⋃
k=1

Ak

] (1.4.5)
= u2 P [ max

1≤k≤n
|Sk| ≥ u] .

Finally: E[Sn] = 0 =⇒ E[S2
n] = Var(Sn), and

(1.4.9) E[S2
n] = E

[( n∑

k=1

Xk

)2]
= E

[ n∑

k=1

X2
k + 2

∑

1≤k<k′≤n

XkXk′

]
,

where for k < k′, E[XkXk′ ]
(1.3.14)

= E[Xk]E[Xk′ ] = 0. Hence, we obtain that

Var(Sn) = E[S2
n] =

n∑

k=1

E[X2
k ] =

n∑

k=1

Var(Xk) .

Remark 1.33. A similar calculation leads to:

(1.4.10)
Let Yi be independent with E[Y 2

i ] <∞, 1 ≤ i ≤ n,

then Var
( n∑

i=1
Yi

)
=

n∑
i=1

Var(Yi) .

�

As an application of Kolmogorov’s inequality, we obtain the following theorem:

Theorem 1.34.

(1.4.11)
Let Xk, k ≥ 1, be independent with

∑
Var(Xk) <∞,

and E[Xk] = 0 for all k ≥ 1. Then
∑
Xk converges P -a.s.

(i.e. P [Ω2] = 1, see (1.4.1)).

Remark 1.35. TheXk, k ≥ 1, are pairwise orthogonal in L2(Ω,A, P ), and since
∑ ‖Xk‖22 =∑

E(X2
k ) <∞, the series

∑
Xk also converges in L2(Ω,A, P ). �

Example 1.36. In the introduction (Chapter 0), we considered
∑

k≥1
Zk

k , where Zi, i ≥ 1,
are independent with P [Zi = −1] = P [Zi = 1] = 1

2 . We have

∑

k≥1

Var
(Zk

k

)
=
∑

k≥1

1
k2

<∞ ,

and the series
∑

k
Zk

k converges P -a.s. �
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Proof. We will show that Sn, n ≥ 0, is a Cauchy sequence P -a.s. We define, for M ≥ 1,

(1.4.12) WM = sup
m,n≥M

|Sm − Sn| .

It holds that WM ↓W∞ as M →∞, and (1.4.11) would follow from

(1.4.13) P [W∞ = 0] = 1 (i.e. W∞ = 0 P -a.s.) .

Let us prove (1.4.13): for ǫ > 0 and M ≥ 1, one has

sup
m≥M

{ |Sm − SM |} ≤ ǫ =⇒ sup
m,n≥M

{ |Sm − Sn|}
︸ ︷︷ ︸

‖
WM

≤ 2ǫ .

Hence,

(1.4.14)

P [WM > 2ǫ] ≤ P
[

sup
m≥M

|Sm − SM | > ǫ
]

= lim
N→∞

↑ P
[

sup
M≤m≤N

|Sm − SM | > ǫ
]
,

since {
sup
m≥M

|Sm − SM | > ǫ
}

=
⋃

N≥M

{
supM≤m≤N |Sm − SM | > ǫ

}
,

where the latter sets form an increasing sequence2 in N .

From the equality Sm − SM =
∑m−M

k=1 XM+k, m > M , and Kolmogorov’s inequality,
we find:

(1.4.15)

P
[

sup
M≤m≤N

|Sm − SM | > ǫ
]
≤ 1

ǫ2

N∑

k=M+1

Var(Xk)

≤ 1
ǫ2

∞∑

k>M

Var(Xk) .

Thanks to (1.4.14), we obtain for ǫ > 0, M ≥ 1,

P [W∞ > 2ǫ] ≤ P [WM > 2ǫ] ≤ 1
ǫ2

∑

k>M

Var(Xk) −→
M→∞

0,

and (1.4.13) follows.

2We remind the reader that the notation “lim ↑”, resp. “lim ↓”, is often used to stress that one is
taking the limit of a non-decreasing, resp. non-increasing, sequence.
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Theorem 1.37. (Kolmogorov’s Three-Series Theorem)

Let Xk, k ≥ 1, be independent random variables, A > 0, and Yk = Xk 1{ |Xk| ≤ A}.
Statements (1.4.16) and (1.4.17) are then equivalent:

(1.4.16)
∑

k Xk converges P -a.s.

(1.4.17)

i)
∑∞

k=1 P ( |Xk| > A) <∞ ,

ii)
∑

k E[Yk] converges ,

iii)
∑∞

k=1 Var(Yk) <∞ .

Example 1.38. Consider

Xk =
Zk

kα
, k ≥ 1, with α > 0 and Zk, k ≥ 1, independent with

P [Zi = −1] = P [Zi = 1] = 1
2
.

Let us apply the theorem above with A = 1. Then

Yk = Xk, P [ |Xk| > 1] = 0, E[Yk] = 0, and Var(Yk) =
1
k2α

.

Hence, i), ii), iii) satisfied ⇐⇒ α > 1
2 , and

∑
Xk converges P -a.s. for α > 1

2
,

diverges P -a.s. for α ≤ 1
2
.

�

Proof. We only prove (1.4.17) =⇒ (1.4.16) (the converse (1.4.16) =⇒ (1.4.17) is a bit more
complicated, it can be proved using martingales, defined in Chapter 3).

Let us define Ỹk = Yk − E[Yk]. Then the Ỹk are independent, E[Ỹk] = 0, and∑
Var(Ỹk) =

∑
Var(Yk) < ∞ (using iii)). Thanks to (1.4.11), one has

∑
Ỹk converges

P -a.s., from which it follows that (using also ii))

(1.4.18)
∑

Yk =
∑

Ỹk +
∑

E[Yk] converges P -a.s.

Thanks to the first lemma of Borel Cantelli and i), it now follows that

(1.4.19) P
[

lim inf |Xk| ≤ A
]

= 1− P
[

lim sup |Xk| > A
]

= 1 .

On the set lim inf {|Xk| ≤ A}, it holds that
∑

Xk(ω) converges ⇐⇒∑
Yk(ω) converges .

Thanks to (1.4.18) and (1.4.19), P
[∑

Xk(ω) converges
]

= 1.
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1.5 Law of Large Numbers

In this section, we consider sequences Xk, k ≥ 1, of random variables that all possess the
same distribution. We want to investigate the asymptotic behavior of

(1.5.1)
Sn
n
,

where

(1.5.2) S0 = 0, Sn =
n∑

k=1

Xk, n ≥ 1 .

Terminology:

Let Yn, n ≥ 1, and Y be random variables on (Ω,A, P ). The sequence Yn is said to
converge in probability to Y (Notation: Yn

P−→ Y ) if:

(1.5.3) ∀ǫ > 0, lim
n→∞

P [ |Yn − Y | ≥ ǫ] = 0 .

We will discuss a weak and a strong Law of Large Numbers.

For the weak law, we show that under certain hypotheses, Sn

n converges in probability.
For the strong law, it is then proved that Sn

n converges P -a.s.

The terminology comes from the observation that

(1.5.4) Yn → Y P -a.s. =⇒ Yn
P−→ Y

since:
lim
n

P [ |Yn − Y | ≥ ǫ] = lim
n

∫
1{ |Yn − Y | ≥ ǫ} dP = 0

using the dominated convergence theorem (1.2.12).

Using Chebyshev’s inequality, one has

(1.5.5)
P [ |Yn − Y | ≥ ǫ] ≤ ǫ−p E[ |Yn − Y |p], ǫ > 0, p ∈ [1,∞),

so that Yn
Lp

−→ Y =⇒ Yn
P−→ Y .

Weak Law of Large Numbers:

LetXk, k ≥ 1, be identically distributed, uncorrelated (i.e. E[X2
k ] <∞, and Cov(Xk,Xk′)

def.=
E
[
(Xk − E[Xk])(Xk′ − E[Xk′ ])

]
= 0 for k 6= k′) random variables. Then:

(1.5.6)
Sn
n

converges in L2 (and thus also in probability)
to µ = E[Xk], k ≥ 1 .

34



Proof. Let us write Sn

n − µ = 1
n

∑n
k=1 X̃k, where X̃k = Xk − µ. Then,

E

[(Sn
n
− µ

)2]
=

1
n2

E

[( n∑

k=1

X̃k

)2
]

=
1
n2

(
E

[ n∑

k=1

X̃2
k

]
+ 2E

[ ∑

1≤k<k′≤n

X̃k X̃k′

︸ ︷︷ ︸
‖
0 since the Xk are uncorrelated

])

=
n

n2
E[X̃2

1 ] =
Var(X1)

n
→ 0 .

Example 1.39. (Shannon’s theorem)

MESSAGE
SENDER

Fig. 1.9

A person sends a message, modeled by a sequence X1,X2, . . . of independent random
variables with values in {1, . . . , r} (“finite alphabet”), and a common distribution 0 <
p(k) = P [X = k], k = 1, . . . , r.

For n ≥ 1, we consider

πn(ω) = p(X1(ω)) · p(X2(ω)) · · · p(Xn(ω))

= probability to observe the exact sequence

(X1(ω), . . . ,Xn(ω)) for the first n “letters”.

Thanks to (1.5.6),

− 1
n

log πn(ω) = − 1
n

n∑

k=1

log p(Xk(ω)) P−→
n→∞

E[− log p(X1)]

= −
∑

p(k) log p(k) def.= H .

(1.5.7)

H is called the sender’s entropy per character. It is a measure of the quantity of
information contained in the message.

Thanks to (1.5.7), for ǫ > 0 fixed and large n,

πn(ω) ∈ [exp{−n(H + ǫ)}, exp{−n(H − ǫ)}]

with probability ≥ 1− ǫ. �
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Strong Law of Large Numbers (Etemadi (1981)):

Let Xk, k ≥ 1, be pairwise independent, identically distributed random variables, with
E[ |Xk| ] <∞. Then

(1.5.8)
Sn
n
−→ E[X1] P -a.s. �

Remark 1.40. The first proof of the Strong Law of Large Numbers (Kolmogorov)
is less general, it assumes that the random variables Xk are independent3 and identically
distributed, with E[ |Xk| ] < ∞. The original proof is based on the three-series theorem,
and the connection between stochastic series and the Law of Large Numbers comes from
Kronecker’s lemma (see Durrett, pp. 51-53). �

Lemma 1.41. Let an, n ≥ 1, and xn, n ≥ 1, be two sequences of real numbers with an ↑ ∞.
If
∑

n≥1
xn

an
converges, then 1

an
(
∑n

k=1 xk) converges to 0.

Proof of (1.5.8).

First reduction:

X+
k

def.= max(Xk, 0), k ≥ 1, and X−
k

def.= max(−Xk, 0) are two sequences of pairwise
independent, identically distributed, integrable random variables. If we prove (1.5.8) for
X+

k and X−
k , instead of Xk, then (1.5.8) will hold for Xk, k ≥ 1, as well (by writing

Xk = X+
k −X−

k ). Therefore:

(1.5.9) From now on, we will assume (without loss of generality) that Xk ≥ 0 .

Second reduction: (this reduction is not needed if E[X2
1 ] <∞).

Define Yk = Xk 1{Xk ≤ k} (“truncated” variable), and A = lim inf{Yk = Xk}. Then

P (A) = 1− P [lim sup{Yk 6= Xk}], and
∑

k

P [Yk 6= Xk] ≤
∑

k

P [Xk ≥ k]

identically
distributed=

∑

k

E[1{X1 ≥ k}]
monotone
convergence= E

[∑

k≥1

1{k ≤ X1}
︸ ︷︷ ︸

=[X1]≤X1

]
≤ E[X1] <∞ .

Using the first lemma of Borel-Cantelli, one has P (Ac) = 0, and so P (A) = 1. For ω ∈ A,
one has

X1 + · · · +Xn

n
−→ E[X1]⇐⇒ Y1 + · · ·+ Yn

n
−→ E[X1] .

Our claim (1.5.8) would follow, under assumption (1.5.9), from

(1.5.10)
Tn
n
−→ E[X1] P -a.s., where T0 = 0, Tn = Y1 + · · ·+ Yn .

3Note that this is a much stronger hypothesis than simply pairwise independence.
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Third reduction: (1.5.10) follows from

(1.5.11)

integer part
ւ

for all fixed α > 1,
T[αn]

[αn]
−→
n

E[X1] P -a.s.

Indeed, consider αM = 1 + 1
M , and define

Ω̃ =
⋂

M≥1
ΩM , where ΩM =

{
ω ∈ Ω, lim

n

T[αn
M ]

[αn
M ]

= E[X1]
}

P [ΩM ] = 1 ∀M ≥ 1 =⇒ P [Ω̃] = 1 .

Consider now ω ∈ Ω̃ and αM = 1 + 1
M fixed.

Notation: k(n) def.= [αn
M ], n ≥ 1. Then, since Yi ≥ 0, there holds

(1.5.12)
Tk(n)

k(n + 1)
≤ Tm

m
≤ Tk(n+1)

k(n)
for k(n) ≤ m < k(n+ 1) .

Clearly, one also has limn
k(n+1)
k(n) = αM , since

αn+1
M − 1
αn
M

≤ k(n+ 1)
k(n)

≤ αn+1
M

αn
M − 1

.

From (1.5.11) - (1.5.12), we obtain, for ω ∈ Ω̃ and M ≥ 1:

1
αM

E[X1] ≤ lim
n

Tn
n
≤ lim

n

Tn
n
≤ αM E[X1] ,

and it follows, for M →∞, that for ω ∈ Ω̃, limn
Tn

n = E[X1].

Hence, there only remains to prove (1.5.11):

Thanks to Chebyshev’s inequality and the pairwise independence hypothesis, one has, for
ǫ > 0,

(1.5.13)

∞∑

n=1

P [ |Tk(n) − E[Tk(n)] | > ǫk(n)] ≤ 1
ǫ2

∞∑

n=1

Var(Tk(n))
k(n)2

=
1
ǫ2

∞∑

n=1

1
k(n)2

k(n)∑

m=1

Var(Ym)

Fubini=
1
ǫ2

∞∑

m=1

Var(Ym) ·
∑

k(n)≥m

1
k(n)2

.
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For n ≥ 1, one has k(n) = [αn] ≥ αn

2 (if k(n) ≥ 2: k(n) ≥ αn − 1; if k(n) = 1: clear).
Consequently,

(1.5.14)
∑

k(n)≥m︸ ︷︷ ︸
m

αn≥m

1
k(n)2

≤ 4
∑

αn≥m

α−2n =
4α−2n0(m)

(1 − α−2)
≤ 4

(1− α−2)m2
,

where n0(m) = the smallest n with αn ≥ m.

From (1.5.13) and (1.5.14), we get:

(1.5.15)
∞∑

n=1

P [ |Tk(n) −E[Tk(n)] | > ǫk(n)] ≤ 4
ǫ2(1− α−2)

∞∑

m=1

E[Y 2
m]

m2
.

Remark 1.42. If E[X2
1 ] <∞, one has

∞∑

m=1

E[Y 2
m]

m2
≤

∞∑

m=1

E[X2
1 ]

m2
<∞ .

One can conclude, using (1.5.15) and the Borel-Cantelli lemma, that

(1.5.16) lim
n

∣∣∣
Tk(n)

k(n)
−
E[Tk(n)]
k(n)

∣∣∣ ≤ ǫ P -a.s.

Actually, in the case E[X2
1 ] < ∞, one does not need to introduce the variables Yk at all;

one can directly work with the variables Xk. One can write simply

P -a.s. lim
n

∣∣∣
Sk(n)

k(n)
− E[Sk(n)]

k(n)

∣∣∣ = lim
n

∣∣∣
Sk(n)

k(n)
− E[X1]

∣∣∣ ≤ ǫ,

and obtain the analogue of (1.5.11) in this way. �

In the general case, one has:

Lemma 1.43.

(1.5.17)
∞∑

m=1

E[Y 2
m]

m2
<∞ ,

(1.5.18)
E[Tn]
n

−→
n→∞

E[X1] .

We first complete the proof of (1.5.11): using (1.5.15) and (1.5.17), we deduce (1.5.16).
Thanks to (1.5.18), we obtain, for ǫ > 0,

P
[
lim
n

∣∣∣
Tk(n)

k(n)
− E[X1]

∣∣∣ ≤ 2ǫ
]

= 1 =⇒ P
[ ⋂

L≥1

{
lim
n

∣∣∣
Tk(n)

k(n)
− E[X1]

∣∣∣ ≤ 2
L

}]
= 1,

and (1.5.11) follows. �
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Proof of Lemma 1.43.

(1.5.18): E[Tn]
n = E[Y1]+···+E[Yn]

n , and

0 ≤ E[X1]− E[Yk] = E[X1 1{X1 > k}]
dominated
convergence−→

k→∞
0 .

We deduce E[Yk] −→
k→∞

E[X1] and E[Tn]
n −→

(Cesàro convergence)
E[X1].

(1.5.17): E[Y 2
m] = E

[
2
∫ ∞

0
1(y ≤ Ym)y dy

]
Fubini= 2

∫ ∞

0
y P [Ym ≥ y]dy

= 2
∫ m

0
y P [Ym ≥ y]dy (since Ym ≤ m).

Hence, E[Y 2
m] ≤ 2

∫ m

0
y P [X1 ≥ y]dy (using Ym = Xm 1{Xm ≤ m} ≤ Xm).

From this, we deduce

(1.5.19)

∞∑

m=1

E[Y 2
m]

m2
≤ 2

∞∑

m=1

1
m2

∫ m

0
y P [X1 ≥ y]dy

monotone
convergence= 2

∫ ∞

0

∑

m≥1

1
m2

1(y ≤ m) · y P [X1 ≥ y]dy .

For y ≥ 2, we obtain an upper bound for
∑

m≥y
1
m2 :

∑

m≥y

1
m2
≤
∑

m≥y

∫ m

m−1

dx

x2
≤
∫ ∞

y−1

dx

x2
=

1
(y − 1)

.

Furthermore,
∑∞

m=1
1
m2 = 1 +

∑∞
m=2

1
m2 ≤ 1 + 1 = 2. Using (1.5.19):

∞∑

m=1

E[Y 2
m]

m2
≤ 2

∫ 2

0
2 y︸︷︷︸

≤2

P [X1 ≥ y]dy + 2
∫ ∞

2

( y

y − 1

)
P [X1 ≥ y] dy

≤ 8
∫ ∞

0
P [X1 ≥ y] dy

Fubini= 8E
[ ∫ X1

0
dy
]

= 8E[X1] .

Claim (1.5.17) thus follows. �
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Remark 1.44.

• It was sufficient to consider geometric subsequences (1.5.11).

• Even if X1 does not necessarily possess a finite second moment, one can still work
with the truncated variables Yk, and although E[Y 2

k ] diverges, it does not do so too
fast (1.5.17).

�

We next discuss an application of the strong Law of Large Numbers:

Example 1.45. (renewal process)

We consider random variables X1,X2, . . . which are independent, identically distributed,
positive (i.e. Xi > 0), with E[Xi] <∞. The variables

(1.5.20) Tn = X1 + · · ·+Xn, n ≥ 1 ,

model, for instance, the successive arrival times of customers in a queue, or occurrence
times of failures in an electrical system. Set

(1.5.21)
Nt(ω) =

∑

n≥1

1{Tn(ω) ≤ t} = sup{n ≥ 0, Tn(ω) ≤ t}
(with the convention : T0 = 0)

to be the number of customers (or failures) that arrived (occurred) up to time t.

Proposition 1.46.

(1.5.22) P -a.s.
Nt(ω)
t

−→
t→∞

1
E[X1]

.

Proof. Thanks to the strong Law of Large Numbers,

(1.5.23)
Tn(ω)
n
−→ E[X1] P -a.s.

Consider some fixed ω for which (1.5.23) is satisfied. Then, for t > 0,

TNt(ω) ≤ t < TNt(ω)+1

using (1.5.21), and we deduce

(1.5.24)
TNt(ω)

Nt(ω)
≤ t

Nt(ω)
≤

TNt(ω)+1

Nt(ω) + 1
Nt(ω) + 1
Nt(ω)

.

Since Nt(ω)→∞ for t→∞, we obtain, by (1.5.23) and (1.5.24),

lim
t→∞

t

Nt(ω)
= E[X1] P -a.s.

�
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2 Central Limit Theorem, characteristic functions

2.1 Motivation, goals

We know, from the strong Law of Large Numbers, that for a sequence of independent,
identically distributed, integrable random variables Xk, k ≥ 1, with E[Xk] = 0,

Sn
n
−→ 0 P -a.s. ,

where
S0 = 0, Sn = X1 + · · ·+Xn .

The Law of Large Numbers says that Sn grows sublinearly in n. A natural question that
we can then ask ourselves is: at which speed (with which order of magnitude) does Sn
increase?

We examine a concrete example first, with

(2.1.1) P [Xk = 1] = P [Xk = −1] = 1
2
.

We define

(2.1.2) Zn =
Sn√
n
, n ≥ 1 .

One has

(2.1.3) E[Zn] = 0 and Var(Zn) =
1
n

Var(Sn) =
n

n
Var(X1) = 1 .

It is thus plausible that the right order of magnitude for Zn neither decreases nor increases
in n, i.e. that it stays ∼ 1. In order to study this more closely, let us introduce a sequence
k(n) ∈ Z with

(2.1.4)
2k(n)√

2n
−→
n→∞

x ∈ R, |k(n)| ≤ n,

and consider
P
[
Z2n =

2k(n)√
2n︸ ︷︷ ︸

close to x

]
= P [S2n = 2k(n)] =

P [X1 + · · ·+X2n = 2k(n)︸ ︷︷ ︸
number of 1 : n+ k(n)
number of − 1 : n− k(n)

] =
( 2n
n+ k(n)

)
2−2n .

It comes from Stirling’s formula that

(2.1.5) m! def.= 1 · 2 · 3 . . . (m− 1)m ∼
m→∞

mm e−m
√

2πm ,
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where am ∼ bm means am
bm
−→
m→∞

1. Hence,

( 2n
n+ k(n)

)
=

(2n)!
(n+ k(n))!(n − k(n))!

∼ (thanks to k(n)
n → 0 and (2.1.5))

(2n)2n

(n+ k(n))n+k(n)(n− k(n))n−k(n)

√
2π(2n)√

2π(n + k(n))
√

2π(n − k(n))
∼

22n
(

1 +
k(n)
n

)−(n+k(n)) (
1− k(n)

n

)−(n−k(n))
(πn)−1/2 .

It follows that

(2.1.6) P
[
Z2n =

2k(n)√
2n

]
(2.1.4)∼
n→∞

1√
πn
·
(

1 +
k(n)
n

)−(n+k(n)) (
1− k(n)

n

)−(n−k(n))
.

We note that
(

1 +
k(n)
n

)n+k(n) (
1− k(n)

n

)n−k(n)
=
(

1− k2(n)
n2

)n (
1 +

k(n)
n

)k(n) (
1− k(n)

n

)−k(n)
,

and
(

1− k2(n)
n2

)n
= exp

{
n log

(
1− k2(n)

n2

)

︸ ︷︷ ︸
∼

n→∞
−n

k2(n)
n2 = −

k2(n)
n

(2.1.4)
−→ −

x2

2
, using log(1 + x) = x + o(x) as x → 0

}
.

Hence, (1− k2(n)
n2 )n −→

n→∞
exp{−x2

2 }. In an analogue way,

(
1 +

k(n)
n

)k(n)
−→ exp

{x2
2

}
since k(n) · k(n)

n
−→ x2

2
,

and
(

1− k(n)
n

)−k(n)
−→ exp

{x2
2

}
since k(n) · k(n)

n
−→ x2

2
.

From this, we obtain

(2.1.7) P
[
Z2n =

2k(n)√
2n

]
∼ 1

(πn)1/2
exp

{
− x2

2

}
,

or, in other words,

(2.1.8) lim
n→∞

√
n

2
P
[
Z2n =

2k(n)√
2n

]
=

1√
2π

exp
{
− x2

2

}
.
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It is therefore plausible (here, in order to argue rigorously, we would need to prove some
uniform convergence in (2.1.8), for values of x in a bounded interval) that for a < b,

P [a ≤ Z2n ≤ b] =
∑

2k∈[a
√
2n,b

√
2n]

√
2
n

√
n

2
P
[
Z2n =

2k√
2n

] (2.1.8)
≈

∑

2k∈[a
√
2n,b

√
2n]

√
2
n

1√
2π

exp
{
− 1

2

( 2k√
2n︸ ︷︷ ︸
‖√

2
n
· k

)2} Riemann
sum−−−−−−−−→ 1√

2π

∫ b

a
e−

x2
2 dx .

In this way, we obtain an almost rigorous proof of the de Moivre Laplace theorem
(de Moivre: 1667-1754, Laplace 1749-1827):

For a < b, one has

(2.1.9) P [a ≤ Zn ≤ b] −→
n→∞

1√
2π

∫ b

a
e−

x2
2 dx .

It is clear that the combinatorial argument above is not general. It is the goal of this
chapter to develop general methods that allow one to prove statements like (2.1.9).

Let us now describe quickly the strategy that we will apply.

We will first introduce the characteristic function of Zn:

(2.1.10) ϕZn(t) def.= E[exp{i t Zn}] .

One has

ϕZn(t) = E
[

exp
{
i
t√
n

(X1 + · · · +Xn)
}]

= E
[ n∏

k=1

exp
{
i
t√
n
Xk

}] independence
=

(1.3.14)

n∏

k=1

E
[

exp
{
i
t√
n
Xk

}]

= E
[

exp
{
i
t√
n
X1

}]n (2.1.1)
=

(
cos

t√
n

)n
,

and for t ∈ R:

cos
t√
n

Taylor
expansion= 1− t2

2n
+
ǫ(n)
n

, ǫ(n) n→∞−→ 0 .
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Fig. 2.1: Distribution of S100

Hence,

(2.1.11)

ϕZn(t) =
(

cos
t√
n

)n
=
(

1− t2

2n
+
ǫ(n)
n

)n

= exp
{
n log

(
1− t2

2n
+
ǫ(n)
n

)

︸ ︷︷ ︸
∼ n

(
−

t2

2n
+

ǫ(n)
n

)
→ −

t2

2

}
n→∞−→ exp

{
− t2

2

}
.

We will see that

(2.1.12) exp
{
− t2

2

}
=
∫
eitx

1√
2π

e−
x2
2 dx

(i.e. exp{−x2

2 } is the characteristic function of the standard normal distribution). The
method that we develop in this chapter will provide (2.1.9) as a consequence of (2.1.11)
and (2.1.12).

The first step is to introduce a notion of convergence, for which statements like (2.1.9)
make sense.

2.2 Weak convergence

Definition 2.1. A sequence of distributions µn on R (i.e. probability measures on

(R,B(R))) converges weakly to the distribution µ on R (Notation: µn
w−→ µ) if

(2.2.1)
Fn(y) n→∞−→ F (y) for all points of continuity y of F , where
Fn(·) = µn((−∞, ·]) and F (·) = µ((−∞, ·]) are the corresponding
distribution functions.
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A sequence of random variables Xn (on possibly different probability spaces (Ωn,An, Pn))
converges in distribution to the random variable X on (Ω,A, P ) if the distributions µn
of the Xn converge weakly to the distribution µ of X.

Remark 2.2. We will introduce later a condition equivalent to (2.2.1) which can easily
be generalized to other spaces (e.g. Rd). The drawback of this equivalent definition is that
it is a little less intuitive than (2.2.1). �

Example 2.3.

1) De Moivre Laplace: (2.1.9) is equivalent to

(2.2.2) Zn converges in distribution to an N (0, 1) random variable .

(2.1.9) =⇒ (2.2.2):

Consider y ∈ R, Fn(·) the distribution functions of Zn, ǫ > 0, and M > |y| such that

1√
2π

∫

(−∞,−M ]∪[M,+∞)
e−

x2
2 dx ≤ ǫ

2
.

Using (2.1.9), one has, for n ≥ n0,

(2.2.3) P [−M ≤ Zn ≤M ] ≥ 1− ǫ .

Hence,
Fn(y) = P [Zn ≤ y] = P [−M ≤ Zn ≤ y] + P [Zn < −M ]︸ ︷︷ ︸

≤ ǫ using (2.2.3)
n → ∞ ↓ (2.1.9)

∫ y

−M

1√
2π

exp
{
− x2

2

}
dx

and

lim
n

∣∣∣Fn(y)− 1√
2π

∫ y

−∞
e−

x2
2 dx

∣∣∣≤ lim
n
P [Zn ≤ −M ] +

1√
2π

∫ −M

−∞
e−

x2
2 dx

≤ ǫ+ ǫ

2
= 3ǫ

2
.

(2.2.2) follows for ǫ→ 0.

(2.2.2) =⇒ (2.1.9): One has, for a < b,

P [a ≤ Zn ≤ b] = P [Zn ≤ b]− P [Zn < a] ,

so

lim
n
P [a ≤ Zn ≤ b] ≥ lim

n
Fn(b)− lim

n
Fn(a) =

1√
2π

∫ b

a
exp

{
− x2

2

}
dx,

and for a′ < a,

lim
n
P [a ≤ Zn ≤ b] ≤ lim

n
P [a′ < Zn ≤ b]

= lim
n

(
Fn(b)− Fn(a′)

)
=

1√
2π

∫ b

a′
exp

{
− x2

2

}
dx .

45



If we let a′ ↑ a, we find

lim
n

P [a ≤ Zn ≤ b] =
1√
2π

∫ b

a
exp

{
− x2

2

}
dx .

2) Consider µn(dx) = δ 1
n

(dx). Then µn
w−→ µ = δ0, since the corresponding distribution

functions are equal to

Fn(y) = 1
{
y ≥ 1

n

}
and F (y) = 1{y ≥ 0} ,

F (·) Fn(·)

1
n

Fig. 2.2

so that we have Fn(y) −→ F (y) for y 6= 0, and (2.2.1) holds (note that Fn(0) = 0 does
not converge to F (0) = 1).

3) Xp a geometrically distributed random variable with success probability p:

P [Xp = k] = p(1− p)k−1 ∀k ≥ 1.

(Interpretation: Xp is the location of the first success in an infinite sequence of
independent Bernoulli variables with parameter p: (Y1, Y2, . . . , Yn, . . . )). If we let the

success parameter p tend to 0, we obtain

(2.2.4) pXp converges in distribution to an exponentially
distributed random variable with parameter 1 .

Indeed: for y ≤ 0,
P [pXp ≤ y] ≤ P [Xp ≤ 0] −→

p→0
0,

and for y > 0,

P [pXp ≤ y] = 1− P
[
Xp >

y

p

]
= 1−

∑

k> y
p

p(1− p)k−1 =

1− p

(1− (1− p)) · (1 − p)
[ y
p
] = 1− (1− p)[

y
p
]
.
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One has
p ·
[y
p

]
p→0−→ y

(
since p

y

p
≥ p

[y
p

]
≥ p
(y
p
− 1
))

and consequently, (1− p)[
y
p
] −→
p→0

e−y. We thus have, for y > 0,

P [pXp ≤ y] −→
p→0

1− e−y ,

and (2.2.4) follows.

4) Poisson approximation

Let Xn be binomial(n, pn) distributed random variables, with n · pn −→ λ > 0. Then

(2.2.5) Xn converges in distribution to a Poisson distributed
random variable X with parameter λ .

For fixed k ≥ 0,

P [Xn = k] =
n!

k!(n − k)!
pkn (1− pn)n−k

=
n(n− 1) · ... · (n− k + 1)
n · n · ... · n︸ ︷︷ ︸

↓ n → ∞
1

· 1
k!

(pn · n)k︸ ︷︷ ︸
↓ n → ∞

λk

(
1− pn · n

n

)n−k
,

and since pn·n
n · (n− k) −→ λ, one has (1− pn·n

n )n−k −→
n→∞

e−λ. Hence,

P [Xn = k] −→ e−λ

k!
λk = P [X = k] ,

and for y ∈ R,

P [Xn ≤ y] =
∑

k≤y

P [Xn = k] −→
n→∞

∑

k≤y

P [X = k] = P [X ≤ y] .

Our claim (2.2.5) thus follows.

5) Order statistics

Let X1, . . . ,X2n+1 be independent, uniformly distributed random variables on (0, 1). De-
fine:

Vn+1 = (n+ 1)th smallest value of {X1,X2, . . . ,X2n+1}
= min{max{Xk, k ∈ J}, |J | = n+ 1}
= max{min{Xk, k ∈ J}, |J | = n+ 1}
= median value of the numbers {X1,X2, . . . ,X2n+1} .
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Fig. 2.3

For x ∈ (0, 1),

(2.2.6)

P [Vn+1 ≤ x] = P [ #{k, Xk ≤ x}︸ ︷︷ ︸
binomial(n, x) distributed

≥ n+ 1]

=
2n+1∑

k=n+1

(
2n+ 1
k

)
xk(1− x)2n+1−k .

By differentiating (2.2.6), we obtain the density fn+1(·) of Vn+1:

(2.2.7)

fn+1(x) =

2n+1∑

k=n+1

(2n+ 1)!
k!(2n + 1− k)!

1{0 < x < 1}[k xk−1(1− x)2n+1−k

− (2n+ 1− k)xk(1− x)2n−k] =

(2n+ 1)
2n∑

k=n+1

1{0 < x < 1}
[( 2n
k − 1

)
xk−1(1− x)2n−(k−1)

−
(

2n
k

)
xk(1− x)2n−k

]
+ (2n + 1) 1{0 < x < 1}

(
2n
2n

)
x2n

simplifications
= (2n+ 1)

(
2n
n

)
xn(1− x)n 1{0 < x < 1} .

Remark 2.4. It can be showed analogously that the kth smallest value Vk of {X1, . . . ,
X2n+1} has density

(2.2.8) fk(x) = (2n+ 1)
(

2n
k − 1

)
xk−1(1− x)2n+1−k 1{0 < x < 1},

1 ≤ k ≤ 2n+ 1. �

Define

(2.2.9) Yn = 2
(
Vn+1 − 1

2

)√
2n .
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Proposition 2.5.

(2.2.10) Yn converges in distribution to an N (0, 1) random variable .

Proof. One has

P [Yn ≤ y] = P
[
Vn+1 ≤

1
2

+
y

2
√

2n

]
,

and Yn has density

gn(y) = fn+1

(1
2

+
y

2
√

2n

)
× 1

2
√

2n
.

For fixed y ∈ R and n large enough,

gn(y) = (2n + 1)
(

2n
n

)(1
2

+
y

2
√

2n

)n (1
2
− y

2
√

2n

)n
× 1

2
√

2n

=
(

2n
n

)
×
(1

2

)2n

︸ ︷︷ ︸
∼

1√
πn

using (2.1.7)

with k(n) = 0

×
(

1− y2

2n︸ ︷︷ ︸
↓

exp
{

−
y2

2

}

)n
× 2n+ 1

2
√

2n
,

and since 1√
πn

2n+1
2
√
2n
−→ 1√

2π
, we obtain:

(2.2.11) gn(y) −→
n→∞

1√
2π

exp
{
− y2

2

}
for all y ∈ R .

Lemma 2.6. (Scheffe)

Let hn(·), h(·) be density functions on R (i.e. hn, h ≥ 0 are measurable functions, with∫
hn =

∫
h = 1).

(2.2.12) From hn(x) n→∞−→ h(x) for x ∈ R, it follows that ‖hn − h‖L1(R)
n→∞−→ 0 .

Proof. ∫
|hn(x)− h(x)|dx = 2

∫
(h(x) − hn(x))+dx

since
∫

(h(x) − hn(x))+dx−
∫

(h(x) − hn(x))−dx =
∫
h(x)dx−

∫
hn(x)dx = 0. Hence,

∫
(h(x) − hn(x))+︸ ︷︷ ︸

≤ h(x)

dx
dominated
convergence−−−−−−−→ 0 .

Thanks to (2.2.11) - (2.2.12), one has ‖gn−g‖L1(R) → 0, where g(y) = 1√
2π

exp{−y2

2 }.
It follows, for y ∈ R, that:

lim
n→∞

P [Yn ≤ y] = lim
n→∞

∫ y

−∞
gn(y)dy =

∫ y

−∞
g(y)dy .
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6) µn(dy) = 1
2
δ0(dy) + 1

2
δn(dy). One has:

Fn(y) = 1
2

1{y ≥ 0}+ 1
2

1{y ≥ n}
n → ∞ ↓

F (y) = 1
2

1{y ≥ 0} .

This is not a distribution function, and so the sequence µn does not converge weakly.

0

1
2
δ0 1

2
δn

n

Fig 2.4

A fraction of the mass “disappears to +∞”. �

The next proposition gives two further conditions that are equivalent to weak conver-
gence.

Proposition 2.7. The following conditions are equivalent:

(2.2.13) µn
w−→ µ,

(2.2.14)
there exist random variables Yn, n ≥ 1, and Y on a common
probability space (Ω,A, P ) such that µn = distribution of Yn,
µ = distribution of Y , and Yn → Y P -a.s.,

(2.2.15)
∫

R
f dµn −→

n→∞

∫

R
f dµ for all f ∈ Cb(R),

where Cb(R) def.= {bounded continuous functions on R}.

Proof. We show (2.2.13) =⇒ (2.2.14) =⇒ (2.2.15) =⇒ (2.2.13).

(2.2.13) =⇒ (2.2.14):

We choose Ω = (0, 1), A = B((0, 1)), P = Lebesgue measure on (0, 1), and we define,
for ω ∈ (0, 1),

Yn(ω) = sup{y ∈ R, Fn(y) < ω}
(where Fn is the distribution function of µn),

Y (ω) = sup{y ∈ R, F (y) < ω}
(where F is the distribution function of µ) .

(2.2.16)
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Thanks to the proof of (1.1.13) in Chapter 1, we know that µn = distribution of Yn, µ =
distribution of Y .

Y and Yn are non-decreasing on (0, 1). We define

Ω0 = {ω ∈ (0, 1) : Y (ω) = Ỹ (ω)} ,

where Ỹ (ω) = inf{y ∈ R : F (y) > ω} .
(2.2.17)

0

3/4

1 F (·)

Y (3/4) Ỹ (3/4)

Fig. 2.5

Note that for ω < ω′,
Y (ω) ≤ Ỹ (ω) ≤ Y (ω′) ≤ Ỹ (ω′) .

Hence, Y (·) has a discontinuity in each ω ∈ Ω\Ω0, and since Y (·) is non-decreasing, we
have

(2.2.18) Ω\Ω0 is at most countable .

We have thus P (Ω0) = 1, and it suffices to show that

(2.2.19) for all ω ∈ Ω0, lim
n

Yn(ω) = Y (ω) .

Choose ω ∈ Ω0. Let y < Y (ω) be a point of continuity of F (·). Then F (y) < ω (from the
definition of Y (·)), and for n large enough, Fn(y) < ω =⇒ y ≤ Yn(ω). Hence,

(2.2.20) y ≤ lim
n
Yn(ω)

for y as above. If we let y ↑ Y (ω) (using that F (·) has only at most countably many points
of discontinuity), we obtain Y (ω) ≤ limn Yn(ω).
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Let y > Y (ω) be a point of continuity of F (·). Then

F (y) > ω (since ω ∈ Ω0 and y > Y (ω) = Ỹ (ω) = inf{z : F (z) > ω}) .

We thus have, for n large enough, Fn(y) > ω =⇒ Yn(ω) ≤ y =⇒ limn Yn(ω) ≤ Y (ω), and
(2.2.19) follows readily.

(2.2.14) =⇒ (2.2.15):

If we take f ∈ Cb(R), then

∫
f dµn = E[f(Yn)]

dominated
convergence−−−−−−−→ E[f(Y )] =

∫
f dµ .

(2.2.15) =⇒ (2.2.13):

Let y ∈ R be a point of continuity of F (·), and the function gǫ(·): R → [0, 1] defined
by

gǫ(x) =





1 for x ≤ y ,

0 for x ≥ y + ǫ ,

linear for x ∈ [y, y + ǫ]

1

y y + ǫ

gǫ(·)

Fig. 2.6

(note that gǫ(·) ∈ Cb(R)). Then:

gǫ(·) ≤ 1(−∞,y+ǫ]

↓
F (y + ǫ) = µ((−∞, y + ǫ]) ≥

∫
gǫ(x)µ(dx) = lim

n

∫
gǫ(x)µn(dx)

(gǫ ≥ 1 on (−∞, y])
↓
≥ lim

n
µn((−∞, y]) = lim

n
Fn(y) .
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For ǫ → 0, we obtain lim
n

Fn(y) ≤ F (y). In an analogue way, we consider the function
hǫ(·): R→ [0, 1] defined by

hǫ(x) =





1 for x ≤ y − ǫ ,

0 for x ≥ y ,

linear for x ∈ [y − ǫ, y] .

1

yy + ǫ

hǫ(·)

Fig. 2.7

Then

F (y − ǫ) = µ((−∞, y − ǫ]) ≤
∫
hǫ(x)µ(dx) = lim

n

∫
hǫ(x)µn(dx)

≤ lim
n
µn((−∞, y]) = lim

n
Fn(y) .

For ǫ→ 0, we get
F (y) ≤ lim

n
Fn(y) .

↑
points of continuity y of F

We deduce that F (y) = lim
n

Fn(y) for all points of continuity y of F , i.e. µn
w−→ µ.

Remark 2.8. (2.2.15) can easily be generalized to other spaces (for example Rd), and it
is often used directly as a definition for weak convergence. �

Theorem 2.9. (Helly)

Let Fn(·), n ≥ 1, be a sequence of distribution functions on R, then there exists a
subsequence Fn(k) and a right-continuous non-decreasing function F (·): R → [0, 1] such
that

(2.2.21) F (y) = lim
k→∞

Fn(k)(y) for all points of continuity y of F .
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Remark 2.10. 1) F (·) is not necessarily a distribution function, as Example 6 shows:
for all y ∈ R,

(2.2.22) Fn(y) = 1
2

1{y ≥ 0}+ 1
2

1{y ≥ n} −−→
n→∞

F (y) = 1
2

1{y ≥ 0} .

We will later give a sufficient condition on the sequence Fn from which it follows that F (·)
in (2.2.21) is a distribution function.

2) Helly’s theorem can be interpreted as a compactness result. For that, one defines
the so-called “vague convergence” of a sequence of sub-probability measures νn on R (i.e.
νn ∈ M+(R) with νn(R) ≤ 1) to a sub-probability measure ν as:

∫
f dνn −→

∫
f dν ∀f ∈ Ccomp.(R).

‖
continuous with compact support

This allows one to reformulate Helly’s theorem as follows: “any sequence of sub-probability
measures νn on R, n ≥ 1, possesses a subsequence that converges vaguely to a sub-
probability measure ν”. �

Proof. We write Q = {q1, q2, q3, . . . }. Note that Fn(q1) ∈ [0, 1] for all n ≥ 1

=⇒ there exists an infinite set N1 ⊆ N\{0} such that

lim
n∈N1

Fn(q1) = G(q1) .

In an analogous way, one has Fn(q2) ∈ [0, 1] for all n ∈ N1

=⇒ there exists an infinite set N2 ⊆ N1 such that

lim
n∈N2

Fn(q2) = G(q2), lim
n∈N2

Fn(q1) = G(q1) .

By induction, we obtain a decreasing sequence N1 ⊇ N2 ⊇ · · · ⊇ Nk ⊇ . . . of infinite
subsets of N\{0} such that for all k ≥ 1,

(2.2.23) lim
n∈Nk

Fn(qℓ) = G(qℓ) (1 ≤ ℓ ≤ k) .

Using Cantor’s diagonal argument, we deduce the existence of an infinite set N∗ such that
N∗\Nk is finite for each k, and so

∀ℓ ≥ 1, lim
n∈N∗

Fn(qℓ) = G(qℓ) .

In other words,

(2.2.24) for all r ∈ Q, one has lim
n∈N∗

Fn(r) = G(r) .

G(·) is a non-decreasing function Q→ [0, 1], and

F (x) def.= inf{G(q) : q ∈ Q , q > x}
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is non-decreasing as well. Furthermore, F (·) is right-continuous: indeed, for x ∈ R and
ǫ > 0, one can choose q > x rational such that F (x) ≤ G(q) < F (x) + ǫ, which implies

F (x) ≤ F (y) ≤ F (x) + ǫ for x ≤ y < q .

We now show (2.2.21). Let y ∈ R be a point of continuity of F (·), and ǫ > 0. Let us
consider rational numbers

r1 < r2 < y < s

such that
F (y)− ǫ < F (r1) ≤ F (r2) ≤ F (y) ≤ F (s) < F (y) + ǫ .

Then
lim
n∈N∗

Fn(r2) = G(r2) ≥ F (r1),

lim
n∈N∗

Fn(s) = G(s) ≤ F (s) .

We thus have, for n ∈ N∗ large enough,

F (y)− ǫ ≤ Fn(r2) ≤ Fn(y) ≤ Fn(s) ≤ F (y) + ǫ ,

and so lim
n∈N∗

Fn(y) = F (y). Hence, (2.2.21) follows.

Proposition 2.11. If a sequence of distributions µn on R is tight, i.e.

(2.2.25) ∀ǫ > 0, ∃M > 0, sup
n≥1

µn([−M,M ]c) ≤ ǫ ,

then any subsequential limit (in the sense of (2.2.21)) of Fn(·) (the distribution functions
of µn) is a distribution function too.

Proof. Let F (·) be non-decreasing, right-continuous with

F (y) = lim
k→∞

Fnk
(y) for all points of continuity y of F .

Choose ǫ > 0, and then M > 0 such that

sup
n

µn([−M,M ]c) ≤ ǫ .

Consider some points of continuity y1 > M and y2 < −M of F (·), then

F (y2) = lim
k

Fnk
(y2) ≤ lim

k
µnk

((−∞,−M)) ≤ ǫ,
and F (y1) = lim

k
Fnk

(y1) ≥ lim
k
Fnk

(M) ≥ 1− ǫ .

It follows that limy→−∞ F (y) = 0 and limy→∞ F (y) = 1. F (·) is thus a distribution
function on R.

An important consequence of the last proposition and Helly’s theorem is the following:

Corollary 2.12.

(2.2.26)
Any tight sequence of distributions µn, n ≥ 1, on R
possesses a weakly convergent sub-sequence µnk

w−→ µ .
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2.3 Characteristic functions

Definition 2.13. Let µ be a probability measure on (R,B(R)). The characteristic func-

tion ϕ of µ is the function from R to C defined by

(2.3.1) ϕ(t) =
∫

R
eitxµ(dx) ∀t ∈ R .

The characteristic function of a random variable X is the characteristic function
of the distribution of X, i.e.

(2.3.2) ϕ(t) = E[eitX ] =
∫
eitxµX(dx) .

Remark 2.14. The characteristic function ϕ(·) of a distribution µ is nothing else but the
Fourier transform of µ.

First properties: Let µ be a distribution on R, one has

(2.3.3) ϕ(0) = 1 ,

(2.3.4)
∀t ∈ R, |ϕ(t)| ≤ 1 since

|ϕ(t)| ≤
∫
|eitx|µ(dx) =

∫
µ(dx) ,

(2.3.5)
∀t ∈ R, ϕ(−t) = ϕ(t) since

ϕ(−t) =
∫
e−itx µ(dx) =

∫
eitx µ(dx) = ϕ(t) ,

(2.3.6)

ϕ(·) is uniformly continuous since

|ϕ(t + h)− ϕ(t)| =
∣∣∣
∫

(ei(t+h)·x − eitx)µ(dx)
∣∣∣

≤
∫
|eihx − 1| | eitx︸︷︷︸

=1

| µ(dx),

and using Lebesgue’s theorem,
∫
|eihx − 1|µ(dx) −→

h→0
0 .

(2.3.7)

Let X,Y be independent random variables on (Ω,A, P ),
then ϕX+Y (t) = ϕX(t) · ϕY (t) for all t ∈ R, since

ϕX+Y (t) = E[eit(X+Y )] independence= E[eitX ]E[eitY ]

= ϕX(t) ϕY (t) .

�

We start with a few examples of characteristic functions.
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Example 2.15.

1) For some a < b, let us consider µ = uniform on [a, b], i.e.

µ(dx) =
1

b− a 1[a,b](x)dx,

then:

(2.3.8) ϕ(t) =
1

b− a

∫ b

a
eitxdx =





1 for t = 0,

eitb − eita
it(b− a)

for t 6= 0.

2) µ = standard normal distribution. We have, for all t ∈ R,

ϕ(t) =
∫

R
eitx−

x2
2

dx√
2π

(symmetry)
=

∫

R
cos(tx) e−

x2
2

dx√
2π

.

Note that for h 6= 0,

∣∣∣
1
h

(
cos((t + h)x)− cos(tx)

)∣∣∣ =
∣∣∣

1
h

∫ (t+h)x

tx
sinu︸︷︷︸
∈[−1,1]

du
∣∣∣ ≤ |x| ,

and
1
h

(ϕ(t + h)− ϕ(t)) =
∫

R

cos((t + h)x)− cos(tx)
h

e−
x2
2

dx√
2π

.

The dominating function |x| e−
x2
2√
2π

is Lebesgue integrable. It follows from Lebesgue’s

theorem that

ϕ′(t) = lim
h→0

ϕ(t + h)− ϕ(t)
h

=
∫

R
−x sin(tx) e−

x2
2

dx√
2π

.

(2.3.9)

With the help of one integration by parts, one obtains

1√
2π

∫ +∞

−∞
sin(tx)︸ ︷︷ ︸

=u

(−x e−x2
2︸ ︷︷ ︸

=v′

) dx = 0− 1√
2π

∫ +∞

−∞
t cos(tx) e−

x2
2 dx

= −t ϕ(t) .

Hence,

ϕ′(t) = −tϕ(t) ,

and
(

exp
{t2

2

}
ϕ(t)

)′
= t exp

{ t2
2

}
ϕ(t)− exp

{ t2
2

}
tϕ(t)

= 0 .

(2.3.10)
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It follows that exp{ t22 }ϕ(t) = exp{02

2 }ϕ(0) = 1, and so we obtain that for all t ∈ R,

(2.3.11) ϕ(t) = exp
{
− t2

2

}
.

3) Y : N (m,σ2) distributed. Consider X with standard normal distribution, then

Y
distribution= σX +m.

Hence,

ϕY (t) = E[exp{itY }]

= E[exp{it(m + σX)}]

= exp{itm}ϕX (tσ)

= exp{itm− σ2

2
t2} .

In other words,

(2.3.12) ∀t ∈ R, ϕN (m,σ2)(t) = exp
{
itm− σ2

2
t2
}
.

�
Uniqueness Property:

(2.3.13) If two distributions µ, ν on R have the same
characteristic function, then µ = ν.

�

Proof. Consider h ∈ L1(R, dx), and set

(2.3.14) f(x) =
1

2π

∫ +∞

−∞
e−ixt h(t)dt .

Then: ∫
f(x)dµ(x) =

∫ (∫ 1
2π

e−ixth(t)dt
)
dµ(x)

Fubini=
1

2π

∫
h(t)

( ∫
e−ixtdµ(x)

)
dt

=
1

2π

∫
ϕµ(−t)h(t)dt .

Analogously, ∫
f(x) dν(x) =

1
2π

∫
ϕν(−t)h(t)dt ,

and so

(2.3.15)
∫
f(x)dµ(x) =

∫
f(x)dν(x) .
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If we choose h(t) = exp{imt− σ2

2 t2}, then

f(x) =
1

2π

∫
exp

{
i(m− x)t− σ2

2
t2
}
dt

=
1√
2πσ

∫
exp

{
i(m− x)t− σ2

2
t2
} σdt√

2π

=
1√
2πσ

ϕN(0, 1
σ2 )

(m− x)
(2.3.12)

=
1√
2πσ

exp
{
− (x−m)2

2σ2
}
.

Take σ = 1
n2 . It follows from (2.3.15) that:

(2.3.16)

∫
n2√
2π

exp
{
− (x−m)2

2
n4
}
dµ(x) =

∫
n2√
2π

exp
{
− (x−m)2

2
n4
}
dν(x) .

One has

(2.3.17)

∫ b+ 1
n

a− 1
n

n2√
2π

exp
{
− (x−m)2

2
n4
}
dm

= P
[
a− 1

n
≤ x+

X

n2
≤ b+

1
n

]
, where X is N (0, 1) distributed,

= P [(a− x)n2 − n ≤ X ≤ (b− x)n2 + n] −→
n→∞

1[a,b](x) =

{
1 if x ∈ [a, b] ,
0 if x /∈ [a, b] .

If we integrate Equation (2.3.16) over m ∈ [a− 1
n , b+

1
n ], we obtain, using Fubini’s theorem

and (2.3.17) (as well as Lebesgue’s theorem), for n→∞:

∫

R

∫ b+ 1
n

a− 1
n

n2√
2π

exp
{
− (x−m)2

2
n4
}
dmdµ(x)

︸ ︷︷ ︸
↓∫

R
1[a,b](x)dµ(x) = µ([a, b]) = ν([a, b]) =

∫

R
1[a,b](x)dν(x)

=

↑
︷ ︸︸ ︷∫

R

∫ b+ 1
n

a− 1
n

n2√
2π

exp
{
− (x−m)2

2
n4
}
dmdν(x)

and so µ = ν by Dynkin’s lemma (more precisely, one of its consequences), which completes
the proof.
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As a consequence of this uniqueness property, some results can be read directly from the
characteristic function, and then transferred to the distribution itself, as we now explain.

Example 2.16.

1) ∀t ∈ R, ϕX(t) ∈ R
(2.3.5)+uniqueness property

=⇒ X and −X have the same distribution.

2) µ = Poisson (λ), λ > 0, then for all t ∈ R,

(2.3.18) ϕλ(t) =
∑

n≥0

e−λ eitn
λn

n!
= exp{λ(eit − 1)},

and thus: ϕλ(t)ϕλ′(t) = ϕλ+λ′(t). Using (2.3.7), we obtain:

(2.3.19)
If X,Y are two independent random variables, with distribution Poisson (λ),
resp. Poisson (λ′), then X + Y has distribution Poisson (λ+ λ′).

3) µ = Cauchy with parameter a > 0, i.e.

µ(dx) =
1
π

a

x2 + a2
dx,

then for all t ∈ R,

(2.3.20) ϕa(t) =
∫ +∞

−∞

aeitx

a2 + x2
dx

π
= exp{−a |t|}

(see exercises). Hence, a property similar to (2.3.19) follows from the identity ϕa(t)ϕa′(t) =
ϕa+a′(t).

4) Let N,X1,X2, . . . ,Xn, . . . be independent random variables, where N is Poisson (λ)
distributed, and the Xk are µ distributed. Define

Y = X1(ω) +X2(ω) + · · · +XN(ω)(ω) = SN(ω)(ω) .

The distribution of Y is called the compound Poisson distribution, and

ϕY (t) = E[exp{itY }] = E[exp{itSN}]

=
∞∑

n=0

E[exp{itSn} 1{N=n}]

independence=
∞∑

n=0

E[exp{itSn}] e−λ λ
n

n!

=
∞∑

n=0

ϕµ(t)n e−λ λ
n

n!
= exp{λ(ϕµ(t)− 1))} .
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Hence, we have

(2.3.21) ϕY (t) = exp{−λ(1− ϕµ(t))} .

In particular,
ϕYλ+λ′

(t) = ϕYλ
(t) ϕYλ′

(t),

so a property similar to (2.3.19) holds. �

As we now explain, there is an important connection between the differentiability of
the characteristic function ϕµ(·) in a neighborhood of 0, and the “decay” of µ close to
±∞.

Proposition 2.17. Let µ be a distribution on R, then for all u > 0,

(2.3.22) µ
({
x : |x| ≥ 2

u

})
≤ 1
u

∫ u

−u
(1− ϕµ(t))dt .

If for some k ≥ 1, µ has a finite kth moment (i.e.
∫
|x|kdµ < ∞), then ϕµ(·) is k times

continuously differentiable, and one has

(2.3.23) ϕ(ℓ)
µ (t) =

∫
(ix)ℓeitxdµ (0 ≤ ℓ ≤ k) .

Proof. (2.3.22): For x 6= 0,
∫ u

−u
(1− eitx)dt = 2u− eiux − e−iux

ix

= 2u− 2
sin(ux)
x

= 2u
(

1− sinux
ux

)
≥ 0 .

Hence,
1
u

∫ u

−u
(1− ϕ(t))dt Fubini=

∫

R

1
u

∫ u

−u
(1− eitx)dt dµ(x)

= 2
∫

R
1− sinux

ux︸ ︷︷ ︸
≥0

dµ(x) ≥ 2
∫

|x|≥ 2
u

(
1− 1
|ux|︸ ︷︷ ︸

≥ 1
2

)
dµ(x)

≥ µ
({
x : |x| ≥ 2

u

})
,

and (2.3.22) follows.

(2.3.23): We consider k ≥ 1 fixed, and we argue by induction. For ℓ = 0, (2.3.23) holds.
If (2.3.23) holds for ℓ < k, then it follows that:

1
h

(
ϕ(ℓ)
µ (t+ h)− ϕ(ℓ)

µ (t)
)

=
∫

R
(ix)ℓ

ei(t+h)x − eitx
h

µ(dx) .
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Note that
|ei(t+h)x − eitx|

|h| =
|eihx − 1|
|h| =

|
∫ hx
0 ieiu du|
|h| ≤ |x| ,

and |(ix)ℓ| × |x| = |x|ℓ+1 ∈ L1(dµ), by assumption. Using Lebesgue’s theorem, we obtain

lim
h→0

1
h

(
ϕ(ℓ)
µ (t+ h)− ϕ(ℓ)

µ (t)
)

=
∫

R
(ix)ℓ+1 eitx µ(dx) .

In other words, (2.3.23) holds for ℓ+ 1. Our property then follows by induction.

Theorem 2.18. (Continuity)

Let µn, n ≥ 1, be a sequence of distributions on R.

(2.3.24) If µn
w−→ µ, then ∀t ∈ R, ϕµn(t) −→

n→∞
ϕµ(t) .

(2.3.25)
If for all t ∈ R, ϕµn(t) converges, and ϕ∞(t) = limn ϕµn(t)
is continuous in 0, then there exists a distribution µ∞ on R
with: ∀t ∈ R, ϕµ∞(t) = ϕ∞(t), and µn

w−→ µ∞ .

Proof.

(2.3.24): eitx ∈ Cb(R), so (2.3.24) follows from (2.2.15).

(2.3.25): The sequence µn, n ≥ 1, is tight. Indeed, let us consider ǫ > 0: since ϕ∞ is
continuous in 0 (and ϕ∞(0) = 1), we can choose u > 0 small enough so that

ǫ

2
≥ 1
u

∫ u

−u
(1− ϕ∞(t))dt Lebesgue= lim

n

1
u

∫ u

−u
(1− ϕn(t))dt .

Hence, for n ≥ n0,

ǫ ≥ 1
u

∫ u

−u
(1− ϕn(t))dt

(2.3.22)

≥ µn

([
− 2
u
,

2
u

]c)
,

which shows that µn is tight.

Thanks to (2.2.26), each subsequence µn(k) possesses a weakly convergent subsequence
µn(k(ℓ))

w−→
ℓ→∞

ν.

Using (2.3.24), ϕν(·) = ϕ∞(·) =⇒ ν is uniquely determined. We write µ∞
def.= ν.

Then µn
w−→ µ∞, since otherwise, there would exist a point of continuity y of

F∞(·) def.= µ∞((−∞, ·]), ǫ > 0, and a subsequence n′(k) with

∀k ≥ 1, |Fn′(k)(y)− F∞(y)| ≥ ǫ .

This contradicts the existence of a subsequence µn′(k(ℓ)) that converges to µ∞.
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An application: the symmetric stable distributions

We show the existence of distributions on R with characteristic functions:

(2.3.26) ϕα(t) = exp{−c|t|α}, t ∈ R, where α ∈ (0, 2], c > 0 .

Obviously, the case α = 2 corresponds to the N (0, σ2 = 2c) distribution. We discuss the
case 0 < α < 2.

Consider first a random variable X with density

f(x) =
α

2
1

|x|α+1
1{|x|≥1}

(i.e. X and −X have the same distribution, and P [|X| > x] = 1
xα , x ≥ 1).

Let Ψ(·) be the characteristic function of X. We prove:

Lemma 2.19.

(2.3.27) 1−Ψ(t) ∼
t→0

K |t|α, for K > 0 a constant.

Proof. Let us assume (without loss of generality) that t > 0. One has

1−Ψ(t)
(symmetry)

=
∫ ∞

1

(2− eitx − e−itx)
2

α
dx

xα+1

=
∫ ∞

1
(1− cos tx) α

dx

xα+1
= tα

∫ ∞

t
(1− cos u)α

du

uα+1

(where we set x = u
t ). Since 1− cos u ∼

u→0

u2

2 , one has

∫ ∞

0
(1− cosu)

du

uα+1
<∞ for α ∈ (0, 2) .

(2.3.27) thus follows with K = α
∫∞
0 (1− cos u) du

uα+1 .

We now consider, for n ≥ 1, a random variable with compound Poisson distribution
like in Example 4 above:

(2.3.28) Yn(ω) =
X1(ω)
n

+
X2(ω)
n

+ · · ·+
XN(ω)(ω)

n
,

where N , and Xk, k ≥ 1, are independent, with distribution Poisson (nα), resp. the same
distribution as X. Using (2.3.21), we have

(2.3.29) ϕYn(t) = exp
{
− nα

(
1−Ψ

( t
n

))}
.

One has nα(1−Ψ( t
n))

(2.3.27)∼ nαK | tn |α = K|t|α, and so

(2.3.30) lim
n→∞

ϕYn(t) = exp{−K |t|α} .
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Thanks to the continuity theorem, we deduce the existence of a random variable Y with
ϕY (t) = exp{−K|t|α}. From this, it follows that ( c

K )
1
αY = Z has characteristic function

exp{−c|t|α}.
The distributions with a characteristic function of the form (2.3.26) are called “sym-

metric stable distributions”. Explicit formulas for the densities are known only in the two
cases

α = 2 : normal distribution,

α = 1 : Cauchy distribution (Example 3 above) .

2.4 Central Limit Theorem

We can now apply the whole theory that was developed in Sections 2.2 and 2.3. As we will
see, the de Moivre Laplace theorem corresponds to a general phenomenon. The Central
Limit Theorem shows that the normal distribution plays a particularly important
role, since it describes the behavior of the fluctuations of a sum Sn = X1 + · · ·+Xn

of many independent, identically distributed random variables, in the case when the Xi

possess a finite second moment.

Theorem 2.20. (Central limit)

Let X1,X2, . . . ,Xn, . . . be independent, identically distributed random variables with
E[X2

1 ] <∞, and denote

(2.4.1) σ2
def.= Var(X1), µ

def.= E[X1] .

Let us furthermore assume that σ2 > 0 (i.e. that X1 is not a.s. constant). Then, as
n→∞,

(2.4.2) Zn
def.=

Sn − nµ
σ
√
n

, where Sn = X1 + · · ·+Xn, n ≥ 1 ,

converges in distribution to a random variable with standard normal distribution.

Proof. We can write, in an analogue way to (2.1.10):

ϕZn(t) = E
[

exp
{ it

σ
√
n
S̃n

}]
, where

S̃n = X̃1 + · · · + X̃n, and X̃i = Xi − E[Xi] .

Hence,

(2.4.3)

ϕZn(t) independence=
n∏

i=1
E
[

exp
{ it

σ
√
n
X̃i

}]

identical distribution= E
[

exp
{ it

σ
√
n
X̃1

}]n
= ϕ

X̃1

( t

σ
√
n

)n
.
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Thanks to (2.3.23), we also know that ϕX̃1
(·) is twice continuously differentiable, so that:

ϕ′
X̃1

(u) = E[i X̃1 e
iuX̃1 ] =⇒ ϕ′

X̃1
(0) = 0 ,

ϕ′′
X̃1

(u) = −E[X̃2
1 e

iuX̃1 ] =⇒ ϕ′′
X̃1

(0) = −σ2 .

Using a Taylor expansion, we find:

ϕX̃1
(u) = ϕX̃1

(0) + uϕ′
X̃1

(0) +
u2

2
(
ϕ′′
X̃1

(0)− ǫ(u)
)

(where ǫ(u)→ 0 for u→ 0) ,

= 1− u2

2
(σ2 + ǫ(u)) .

Using (2.4.3), we obtain

ϕZn(t) =
(

1− t2

2σ2n

(
σ2 + ǫ

( t

σ
√
n

)))n

= exp
{
n log

(
1− t2

2σ2n

(
σ2 + ǫ

( t

σ
√
n

)))

︸ ︷︷ ︸
∼

n→∞
n × −

t2

2σ2n

(
σ

2 + ǫ
( t

σ
√
n

))
−→ −

t2

2

}
.

Consequently, limn ϕZn(t) = exp{− t2

2 }, and (2.4.2) follows from (2.3.11) and (2.3.25).

If E[|X1|3] <∞, one can actually estimate quantitatively the difference

sup
x∈R
|Fn(x)−N (x)| ,

where

Fn(x) = P [Zn ≤ x] (distribution function of Zn),

N (x) =
1√
2π

∫ x

−∞
e−

u2
2 du (distribution function of the

standard normal distribution) .

One has indeed (see Durrett, p.108):
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Fig. 2.8: Poisson distribution with expectation 1
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Fig. 2.9: Its 50th convolution power
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Fig. 2.10: Geometric distribution with expectation 1
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Fig. 2.11: Its 50th convolution power
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Fig. 2.12: A triangular distribution
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Fig. 2.13: Its 50th convolution power
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Fig. 2.14: Density of the exponential distribution (with expectation 1)
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Theorem 2.21. (Berry-Esseen)

Let X1, . . . ,Xn be independent and identically distributed random variables, with

E[|Xi|3] = ρ <∞, E[Xi] = 0, E[X2
i ] = σ2,

then one has

(2.4.4) sup
x∈R
|Fn(x)−N (x)| ≤ 3ρ

σ3
√
n
.

Remark 2.22. The order of magnitude cst/
√
n in (2.4.4) is correct in general. If, for

instance, P [Xi = 1] = P [Xi = −1] = 1
2 , then

P [S2n = 0]
(2.1.7)∼ 1√

πn
, n→∞ .

For symmetry reasons, one has also

P [S2n ≤ 0] = P [S2n < 0] + P [S2n = 0]

= 1
2

(P [S2n < 0] + P [S2n > 0] + 2P [S2n = 0])

= 1
2

(
P [S2n ∈ R]︸ ︷︷ ︸

=1

+P [S2n = 0]
)

= 1
2

+ 1
2
P [S2n = 0] .

Hence, we obtain:

P [S2n ≤ 0]−N (0) = P [S2n ≤ 0]− 1
2

= 1
2
P [S2n = 0] ∼ 1

2
√
πn

.
�

Complement: the Lindeberg-Feller theorem

We now present a generalization of the Central Limit Theorem in the case of “triangular
arrays”:

(2.4.5) Xn,m, 1 ≤ m ≤ n, are, for each n ≥ 1, independent and integrable
random variables with

(2.4.6) E[Xn,m] = 0 for 1 ≤ m ≤ n .

Example 2.23. If Xi, i ≥ 1, are i.i.d. integrable random variables with E[Xi] = µ, i ≥ 1,
then

Xn,m =
1√
n

(Xm − µ), for 1 ≤ m ≤ n,

constitutes an example of a triangular array, with
n∑

m=1

Xn,m =
Sn − nµ√

n
, where Sn = X1 + · · ·+Xn, for n ≥ 1 .

�
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Theorem 2.24. (Lindeberg-Feller)

Let Xn,m, 1 ≤ m ≤ n, be a triangular array of random variables, in the sense of
(2.4.5), (2.4.6), with finite second moment. If

(2.4.7)
n∑

m=1

E[X2
n,m] −→

n→∞
σ2 > 0 ,

and

(2.4.8) for any ǫ > 0, lim
n→∞

n∑

m=1

E[X2
n,m; |Xn,m| > ǫ] = 0 ,

then

(2.4.9) Xn,1 + · · ·+Xn,n converges in distribution, as n tends to ∞,
to an N (0, σ2)-distributed random variable.

Remark 2.25. The Central Limit Theorem, see (2.4.1), (2.4.2), is a direct consequence
of the Lindeberg-Feller theorem. Consider a sequence Xi, i ≥ 1, of i.i.d. random variables
so that (2.4.1) is satisfied. Define Xn,m, 1 ≤ m ≤ n, as in the example above. Then:

n∑

m=1

E[X2
n,m] = 1

n

n∑

m=1

E[(Xm − µ)2] = σ2
def.= Var(X1) > 0 ,

and for any ǫ > 0,

n∑

m=1

E
[
X2

n,m; |Xn,m| > ǫ
]

= 1
n

n∑

m=1

E
[
(Xm − µ)2;

∣∣∣
Xm − µ√

n

∣∣∣ > ǫ
]

= E
[
(X1 − µ)2; |X1 − µ| >

√
n ǫ
]
−→
n→∞

0 (dominated convergence) .

This implies that (2.4.7) and (2.4.8) are satisfied, and using (2.4.9), X1+···+Xn−nµ
σ
√
n

converges
in distribution to a random variable with standard normal distribution, as in the Central
Limit Theorem (see just below (2.4.2)). �

Proof of Theorem 2.24. We start with

Lemma 2.26.

(2.4.10)
∣∣∣eiu − 1− iu+ 1

2
u2
∣∣∣ ≤ min

( |u|3
6
, u2

)
for all u ∈ R ,

(2.4.11)
∣∣ log(1 + z)− z

∣∣ ≤ 2 |z|2 for all z in C with |z| < 1
2
,

where logw = log ρ+ iθ, for w = ρeiθ, with ρ > 0 and θ ∈ (−π, π).
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Proof. For a function f analytic in D = {z ∈ C : |z| < r} and z ∈ D, Taylor’s formula
implies that for n ≥ 1,

f(z)− f(0)− f ′(0) z − · · · − f (n−1)(0)
zn−1

(n− 1)!
def= Rn(f, z)

=
∫ 1

0
f (n)(tz)(1 − t)n−1dt

zn

(n− 1)!
.

Furthermore, one has
∣∣Rn(f, z)

∣∣ ≤ sup
0≤t≤1

|f (n)(tz)| |z|
n

n!
.

In particular for f(z) = eiz, we obtain, with n = 3 and 2:
∣∣∣eiu − 1− iu+ 1

2
u2
∣∣∣ ≤ |u|3

6
for u ∈ R ,

|eiu − 1− iu| ≤ |u|2

2
for u ∈ R, and thus

∣∣∣eiu − 1− iu+ 1
2
u2
∣∣∣ ≤ u2 .

This shows (2.4.10). In the case of f(z) = log(1 + z), |z| < 1
2 , we obtain

| log(1 + z)− z| ≤ sup
0≤t≤1

1
|1 + tz|2

|z|2
2
≤ 2 |z|2 ,

as claimed in (2.4.11).

We now return to the proof of Theorem 2.24. We show that for all t ∈ R,

(2.4.12) lim
n→∞

E
[
eit(Xn,1+···+Xn,n)

]
= e−

t2
2 σ2

.

Then, (2.4.9) will follow from (2.3.12) and (2.3.25). We use the following notations:

ϕn,m(t) = E[eit Xn,m ], σ2n,m = Var(Xn,m),

wn,m(t) = ϕn,m(t)− 1 +
t2

2
σ2n,m .

Using independence (see (2.4.5)), one has

(2.4.13) E
[
eit(Xn,1+···+Xn,n)

]
=

n∏

m=1

ϕn,m(t) for all t ∈ R .

We now prove the following:

(2.4.14) lim
n→∞

n∑

m=1

|wn,m(t)| = 0 for all t ∈ R .
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Indeed, for ǫ > 0 and t ∈ R, one has, using (2.4.6),

|wn,m(t)| =
∣∣∣E
[
eitXn,m − 1− itXn,m +

t2

2
X2

n,m

]∣∣∣

(2.4.10)

≤ E
[

min
( |tXn,m|3

6
, |tXn,m|2

)]

≤ E
[ |tXn,m|3

6
; |Xn,m| ≤ ǫ

]
+ E

[
|tXn,m|2; |Xn,m| > ǫ

]
,

so that
n∑

m=1

|wn,m(t)| ≤ ǫ

6
|t|3

n∑

m=1

E[X2
n,m] + t2

n∑

m=1

E
[
X2

n,m; |Xn,m| > ǫ
]
.

Now, if we first send n to infinity, and then ǫ to 0, we obtain (2.4.14) as a consequence of
(2.4.7) and (2.4.8). Note that

(2.4.15) lim
n→∞

sup
1≤m≤n

σ2n,m = 0 ,

since for all ǫ > 0, one has

sup
1≤m≤n

σ2n,m ≤ sup
1≤m≤n

(
E[X2

n,m; |Xn,m| > ǫ] + ǫ2
)
,

and thus, using (2.4.8),
lim
n→∞

sup
1≤m≤n

σ2n,m ≤ ǫ2 .

If we let ǫ tend to 0, then (2.4.15) follows. Let us then set, for t ∈ R,

(2.4.16) zn,m(t) = ϕn,m(t)− 1 = − t
2

2
σ2n,m + wn,m(t) .

For large n, and 1 ≤ m ≤ n, one has, thanks to (2.4.14) and (2.4.15),

|zn,m(t)| ≤ t2

2
σ2n,m + |wn,m(t)| < 1

2
.

Using (2.4.11), we obtain

(2.4.17)
∣∣ logϕn,m(t)− zn,m(t)

∣∣ ≤ 2 |zn,m(t)|2 ,

and so

(2.4.18)

∣∣∣∣
n∑

m=1

(logϕn,m − zn,m)
∣∣∣∣ ≤ 2

n∑

m=1

(
− t2

2
σ2n,m + wn,m(t)

)2

≤
n∑

m=1

(
t4 σ4n,m + 4wn,m(t)2

)
(since (a+ b)2 ≤ 2a2 + 2b2)

≤ t4 sup
1≤m≤n

σ2n,m

n∑

m=1

σ2n,m + 4
( n∑

m=1

|wn,m(t)|
)2

−→
n→∞

0 ,
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using (2.4.7), (2.4.15), and (2.4.14) in the last step. Thanks to (2.4.18), (2.4.16), and
(2.4.14), we obtain

lim
n→∞

∣∣∣∣
n∑

m=1

logϕn,m(t) +
t2

2

n∑

m=1

σ2n,m

∣∣∣∣ = 0 for all t ∈ R ,

and using (2.4.7),

(2.4.19) lim
n→∞

n∑

m=1

logϕn,m(t) = − t
2

2
σ2 for all t ∈ R .

Hence, for all t ∈ R,

lim
n→∞

n∏

m=1

ϕn,m(t) = e−
t2
2 σ2

,

which proves (2.4.12), using (2.4.13). �

Example 2.27. Consider Ym,m ≥ 1, some independent Bernoulli distributed random
variables, with respective success probabilities

(2.4.20) P [Ym = 1] =
1
m
.

Define Sn = Y1 + · · ·+ Yn. Then, one has E[Ym] = 1
m , Var(Ym) = 1

m − 1
m2 , and thus

E[Sn] = 1 + 1
2

+ · · · + 1
n
∼ log n,

and Var(Sn) = Var(Y1) + · · ·+ Var(Yn) ∼ log n,
(2.4.21)

as n→∞. We set

Xn,m =
(Ym − 1

m)√
log n

, so that E[Xn,m] = 0, and
n∑

m=1

E[X2
n,m] −→

n→∞
1 .

Since |Xn,m| ≤ (log n)−1/2, one also has, for ǫ > 0,

n∑

m=1

E
[
X2

n,m; |Xn,m| > ǫ
]

= 0 if
√

log n ǫ > 1 .

In other words, hypotheses (2.4.7) and (2.4.8) of the Lindeberg-Feller theorem are satisfied,
and consequently

(
Sn −

∑n
m=1

1
m

)
√

log n
converges in distribution to an
N(0, 1)-distributed random variable .

(2.4.22)
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Note also that for all n ≥ 2,

n−1∑

m=1

1
m
≥
∫ n

1

dx

x
= log n ≥

n∑

m=2

1
m
,

and so
∣∣∣∣

n∑

m=1

1
m
− log n

∣∣∣∣ ≤ 1.

Thanks to the equivalence of (2.2.13) and (2.2.14), it follows that

Sn − log n√
log n

converges in distribution, as n→∞,
to an N(0, 1)-distributed random variable .

(2.4.23)

�
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3 Martingales

3.1 Conditional expectation

We start this chapter by introducing the notion of conditional expectation. This is a quite
abstract notion, therefore we first discuss two concrete examples.

Example 3.1.

1) We consider two urns A and B. The urn A (resp. B) contains X(ω) (resp. Y (ω))
balls. The random variables X and Y are independent, Poisson (λA) and Poisson (λB) dis-
tributed, with λA, λB > 0, and they are defined on a common probability space (Ω,A, P ).

Our first goal is to find the distribution of the number of balls in A, given
that the total number of balls T = X + Y is equal to n. In other words, we
compute

(3.1.1) P
[
X = k|T = n

]
, 0 ≤ k ≤ n ,

where we use the notation for “conditional probability”

P
[
C|D

] def.=
P [C ∩D]
P [D]

(“probability of C given D”), for events C, D with P [D] > 0.

One has:

(3.1.2)

P
[
X = k|T = n

]
=
P [X = k, T = n]

P [T = n]
=
P [X = k, Y = n− k]

P [T = n]

independence=
P [X = k]P [Y = n− k]

P [T = n]
↑

T is Poisson (λA + λB) distributed

= e−λA
λkA
k!
· e−λB

λn−k
B

(n− k)!
· 1

e−(λA+λB) (λA+λB)n

n!

=
n!

k!(n− k)!

( λA
λA + λB

)k ( λB
λA + λB

)n−k

=
(n
k

)
pkA(1− pA)n−k,

where pA = λA

λA+λB
and 1− pA = pB = λB

λA+λB
.

In other words: if the total number T of balls is equal to n, then the number X of
balls in A has a binomial distribution with parameter (n, pA).

Hence, the “expected number of balls in A given that T = n” is:

(3.1.3) E[X|T = n] def.=
n∑

k=0

k P [X = k|T = n] = n · pA .
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Define the random variable

(3.1.4) Z = pA · T “the conditional expectation of X given T”,

Z is a linear function of T , so that

(3.1.5) Z is σ(T ) −→ B(R) measurable .

Let C ∈ σ(T ), then C is of the form {T ∈ I} for a certain I ⊆ N. With the help of
Z = T · pA, we do not need to know the joint distribution of X and T any
more to calculate E[1C · X], since one has:

(3.1.6)

E[1C ·X] = E
[
1{T∈I} ·X

]
=
∑

n∈I
E
[
1{T=n} ·X

]

=
∑

n∈I
E
[
X|T = n

]
· P [T = n]

(3.1.3)
=

∑

n∈I
npA P [T = n]

= E[1C · Z] for C ∈ σ(T ) .

The usual notation for Z is: Z = E[X|T ], or E[X|σ(T )].

Z has a further interpretation: consider

H =
{
f(T ) :

∞∑

n=0

f2(n)
(λA + λB)n

n!
e−(λA+λB) <∞

}

=
{
f(T ) : E[f2(T )] <∞

}
.

(3.1.7)

In fact, H is the set L2(Ω, σ(T ), P ) of square-integrable σ(T )-measurable functions (so a
Hilbert space!). One has Z ∈ H, and for Z ′ = f(T ) ∈ H,

(3.1.8)
E
[
(X − Z ′)2

]
= E

[
(X − Z + Z − Z ′)2

]

= E
[
(X − Z)2

]
+ 2E

[
(X − Z)(Z − Z ′)

]
+ E

[
(Z − Z ′)2

]
.

Z and Z ′ are functions of T , and thanks to (3.1.6) one has

E
[
Z · (Z − Z ′)

]
=

∞∑

n=0

E
[
Z · (Z − Z ′

︸ ︷︷ ︸
constant on {T = n}

) 1{T = n}
]

(3.1.6)
=

∞∑

n=0

E
[
X · (Z − Z ′) 1{T = n}

]

Lebesgue= E
[
X · (Z − Z ′)

]

(since X,Z,Z ′ ∈ L2 =⇒ X(Z − Z ′) ∈ L1) .

78



We obtain

(3.1.9) E
[
(X − Z ′)2

]
≥ E

[
(X − Z)2

]
for Z ′ ∈ H .

That is to say, Z is the orthogonal projection of X(∈ L2(Ω,A, P )) onto H = L2(Ω, σ(T ), P ),
i.e. Z minimizes E

[
(X − Z ′)2

]
for Z ′ ∈ H, “Z is the best forecast for X among all L2-

functions f(T )”.

2) Consider the random variables X and T on R2 with joint density f(x, t) > 0, x, t ∈ R2,
and E[|X|] <∞.

The conditional density of X given T is defined as

(3.1.10) f(x|t) =
f(x, t)∫

R
f(u, t)du

“density in x for fixed t” .

One can define the “conditional expectation of X given T” as

(3.1.11) Z = ϕ(T ), where ϕ(t) =
∫

R
x f(x|t)dx .

We can note that Z satisfies equations (3.1.5) - (3.1.6). Indeed, (3.1.5) is clear, and if we
consider

C = {T ∈ I} ∈ σ(T ),
↑

I ∈ B(R)

then

E[X 1C ] = E[X · 1I ◦ T ] =
∫∫

x · 1I(t) f(x, t)dxdt

=
∫
ϕ(t) · 1I(t)×

∫

R
f(u, t)du

︸ ︷︷ ︸
density of T

dt = E[ϕ(T ) 1I ◦ T ] = E[Z · 1C ] .

�

We have just seen two examples in which the conditional expectation of a random
variable X given the information of a certain sub-σ-algebra (= σ(T )) of A was defined.
Our goal now is to give a general construction, and then to study its properties.

Theorem 3.2. Let X be an integrable random variable on (Ω,A, P ), and F a sub-σ-
algebra of A. Then there exists a random variable Z such that

Z is F-measurable and integrable,(3.1.12)

E[X · 1F ] = E[Z · 1F ] for all F ∈ F .(3.1.13)

Z is uniquely determined, up to sets with P -measure zero, by (3.1.12) - (3.1.13). Moreover,

(3.1.14) if X ≥ 0, then also Z ≥ 0 P -a.s.
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Notation: Z = E[X|F ] “the conditional expectation of X given F”.

Proof.

a) Existence:

- Consider firstX ≥ 0. The property is an application of the Radon-Nikodym theorem:
let Q be a measure on (Ω,A) defined by

(3.1.15) Q(A) =
∫

A
X dP

(
i.e.

dQ

dP
= X

)
.

Since F ⊆ A, we can introduce the restrictions Q̃ and P̃ of, respectively, Q and P
to (Ω,F). For F ∈ F with P̃ (F ) = 0, one has

P̃ (F ) = P (F ) = 0 =⇒ Q̃(F ) = Q(F ) =
∫

F
X dP = 0 ,

i.e. Q̃≪ P̃ (“Q̃ is absolutely continuous with respect to P̃”).

Radon-Nikodym
theorem=⇒ there exists a Z ≥ 0 in L1(Ω,F , P̃ ) such that

Q̃
||

E[X 1F ]

(F ) =
∫

F︸︷︷︸
F-measurable

Z︸︷︷︸
ւ

dP̃

(P and P̃

coincide on F)
=

∫

F
Z dP ,

i.e. Z satisfies (3.1.12) - (3.1.13). Of course, one also has (3.1.14).

- General case:

We write X = X+ − X−, where X+ = max(X, 0), X− = max(−X, 0). Then, the
construction above produces Z+, Z− satisfying (3.1.12) - (3.1.13) with respect to
X+,X−. Hence, Z = Z+ − Z− satisfies (3.1.12) - (3.1.13) with respect to X =
X+ −X−.

b) Uniqueness:

Let Z1, Z2 be given that both satisfy (3.1.12) - (3.1.13). Consider D = Z1 − Z2. Then
D satisfies (3.1.12) and E[D · 1F ] = 0, ∀F ∈ F =⇒ 0 = E[D · Y ] = E[|D|] for Y =
1{D > 0} − 1{D < 0}. This implies that D = 0, P -a.s.

Example 3.3. 1) Let Ai ∈ A, 1 ≤ i ≤ N ≤ ∞, be pairwise disjoint events with P (Ai) > 0
and

⋃
Ai = Ω. Set F = σ(Ai, 1 ≤ i ≤ N) (F is the family of sets

⋃
i∈I Ai, where

I ⊆ {1, . . . , N}). Consider X ∈ L1(Ω,A, P ) and Z = E[X|F ].

Thanks to (3.1.12), Z is F-measurable =⇒ Z = ai on Ai,∀i, and using (3.1.13):

ai P [Ai] = E[Z 1Ai
]
(3.1.13)

= E[X 1Ai
] =⇒ ai = E[X 1Ai

]/P [Ai] = E[X|Ai] .
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Hence,

(3.1.16) E[X|F ] =
N∑

i=1

E[X|Ai] 1Ai
.

2) Special case:

For F = {φ,Ω} (i.e. A1 = Ω, N = 1),

(3.1.17) E[X|F ] = E[X]

“the best prediction of X, when one has no information, is E[X]”.

3) X and F are independent. Then for F ∈ F , E[X 1F ] = E[X] · P [F ]. Hence,

(3.1.18) E[X|F ] = E[X] P -a.s.

�
We now investigate a few properties of the conditional expectation.

Expectation:

For F = Ω ∈ F , (3.1.13) implies that

(3.1.19) E
[
E[X|F ]

]
= E

[
E[X|F ] · 1Ω

]
= E[X · 1Ω] = E[X] ,

in other words, E[X|F ] has the same expectation as X.

Linearity:

For all a, b ∈ R, X,Y ∈ L1(Ω,A, P ), one has

(3.1.20) E
[
aX + bY |F

]
= aE

[
X|F

]
+ bE

[
Y |F

]
P -a.s.

(this is clear from the definition).

Jensen’s inequality:

Let ϕ: R → R be a convex function, X a random variable on (Ω,A, P ) with E[|X|] and
E[|ϕ(X)|] <∞, and F a sub-σ-algebra of A. Then

(3.1.21) ϕ
(
E[X|F ]

)
≤ E

[
ϕ(X)|F

]
P -a.s.

Proof. a) Let us consider ϕ(x) = ax+ b. Then it is clear that

E
[
aX + b|F

]
= aE

[
X|F

]
+ bE

[
1|F

]

= aE
[
X|F

]
+ b = ϕ

(
E
[
X|F

])
P -a.s.

(3.1.22)

b) General case:

One can write ϕ(x) = supn≥1 ϕn(x), with ϕn of the form ϕn(x) = anx + bn for some
an, bn ∈ R (see Figure): for example, when ϕ is not an affine function, introduce

Hϕ = {(a, b) ∈ R2 : ∀x ∈ R, ϕ(x) ≥ ax+ b} ,
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and check (using the fact that ϕ is continuous, and lies above its “support lines”) that

∀x ∈ R, ϕ(x) = sup
(a,b)∈Hϕ

(ax+ b) = sup
(a,b)∈Hϕ∩Q2

(ax+ b) .

0

ϕ(·)

Fig. 3.1

Then, for all n ≥ 1,

E
[
ϕ(X)|F

] (3.1.14)

≥
P -a.s.

E
[
ϕn(X)|F

] (3.1.22)

≥
P -a.s.

ϕn

(
E
[
X|F

])
.

It follows that P -a.s. (here, we use the fact that the supremum is over a countable family),

E
[
ϕ(X)|F

]
≥ sup

n
ϕn

(
E
[
X|F

])
= ϕ

(
E
[
X|F

])
.

Corollary 3.4. Consider X ∈ Lp(Ω,A, P ), 1 ≤ p ≤ ∞, and F a sub-σ-algebra of A, then

(3.1.23) E[X|F ] ∈ Lp(Ω,A, P ), and
∥∥E[X|F ]

∥∥
p
≤
∥∥X
∥∥
p
.

Proof. For p ∈ [1,∞), the claim follows from (3.1.21). For p =∞, it comes from

P -a.s. −M ≤ X ≤M, where M = ‖X‖∞, and (3.1.14) .

Theorem 3.5. Consider X ∈ L1(Ω,A, P ), and Y an F-measurable random variable with
E[|XY |] <∞. Then

(3.1.24) E
[
XY |F

] P -a.s.= E
[
X|F

]
Y .

Proof. a) Special case Y = 1B:

In this case, E[X|F ] · Y is F-measurable and integrable, so that for C ∈ F ,

E
[
XY · 1C

]
= E

[
X1B∩C︸︷︷︸

∈F

] (3.1.13)
= E

[
E[X|F ] 1B∩C

]
= E

[
E[X|F ]Y · 1C

]
.

Hence, E[X|F ]Y satisfies (3.1.12), (3.1.13), and (3.1.24) holds.
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b) X ≥ 0, Y ≥ 0.

We consider an increasing sequence Yn of F-measurable step functions with Yn ↑ Y .
Thanks to a), one has, for C ∈ F ,

E
[
X · Yn · 1C

]
= E

[
E[X|F ]Yn · 1C

]

monotone
convergence

yn→∞
y

n→∞ monotone convergence,
using (3.1.14) to prove that
the sequence is non-decreasing

E
[
X · Y · 1C

]
= E

[
E[X|F ]Y · 1C

]
.

For C = Ω ∈ F , we obtain E[X|F ]Y ∈ L1(Ω,F , P ), and for a general C ∈ F , we see that
(3.1.13) is satisfied. Hence, (3.1.24) holds true.

c) General case:

We set X = X+ −X−, Y = Y + − Y −, where X+ = max(X, 0), X− = max(−X, 0), and
likewise for Y : (3.1.24) then follows by using b).

A simple application of the last theorem is the following

Special case:

Let (Ω,A, P ) be a probability space, F ⊆ A a sub-σ-algebra, and X an F-measurable
integrable random variable. Then

(3.1.25) E[X|F ] P -a.s.= X .

A further application is the

Theorem 3.6. Consider X ∈ L2(Ω,A, P ) and F a sub-σ-algebra of A, then

(3.1.26)
E[X|F ] is the orthogonal projection of X onto

the sub-Hilbert space L2(Ω,F , P ) of L2(Ω,A, P ) .

Proof. Set Z = E[X|F ] ∈ L2(Ω,F , P ), using (3.1.23). It suffices to show that

(3.1.27) E
[
(X − Z)2

]
≤ E

[
(X − Z ′)2

]
for Z ′ ∈ L2(Ω,F , P ) .

Analogously to (3.1.8), one has

E
[
(X − Z ′)2

]
= E

[
(X − Z)2

]
+ 2E

[
(X − Z)(Z − Z ′)

]
+ E

[
(Z − Z ′)2

]
,

and
E
[
X · (Z − Z ′)

] (3.1.19)
= E

[
E[X · (Z − Z ′

︸ ︷︷ ︸
F-measurable and |X · (Z − Z′)| ∈ L1

)|F ]
]

(3.1.24)
= E

[
E[X|F ](Z − Z ′)

]
= E

[
Z · (Z − Z ′)

]
.

It follows that E
[
(X − Z)(Z − Z ′)

]
= 0, and

E
[
(X − Z ′)2

]
= E

[
(X − Z)2

]
+ E

[
(Z − Z ′)2

]
≥ E

[
(X − Z)2

]
.
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Remark 3.7. (3.1.26) can be interpreted as “E[X|F ] is the best prediction of X
among the F-measurable functions in L2”. �

As a last property, we consider the so-called tower property of conditional expectations

Proposition 3.8. Let F1 ⊂ F2 be sub-σ-algebras of A, and X ∈ L1(Ω,A, P ), then

E
[
E[X|F2]|F1

]
= E[X|F1] P -a.s. (tower property)(3.1.28)

E
[
E[X|F1]|F2

]
= E[X|F1] P -a.s.(3.1.29)

Proof.

• (3.1.28): Consider F ∈ F1 ⊆ F2, then

E
[
E[X|F2] · 1F

] (3.1.13)
= E

[
X · 1F

] (3.1.13)
= E

[
E[X|F1] · 1F

]
.

Hence, E[X|F1] satisfies (3.1.12) and (3.1.13) with respect to E[X|F2], and (3.1.28)
follows.

• (3.1.29): using (3.1.25) and F1 ⊆ F2, one has P -a.s.

E
[
E[X|F1]|F2

] (3.1.25)
= E

[
X|F1

]
.

3.2 Martingales

Terminology:

Let (Ω,A, P ) be a probability space. An increasing sequence Fn, n ≥ 0, of sub-σ-algebras
of A (i.e. F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ A) is called a filtration.

Example 3.9. Consider a sequence Xn, n ≥ 0, of random variables on (Ω,A, P ). We
define the sub-σ-algebras Fn, n ≥ 0, of A by

(3.2.1) Fn = σ(X0,X1, . . . ,Xn), n ≥ 0 .

Fn corresponds to the information that is contained in the random variables X0,X1, . . . ,Xn,
in other words, to the information that is available at time n: the filtration so-obtained is
called the filtration generated by the random variables Xn, n ≥ 0.

A sequence Xn, n ≥ 0, of random variables is said to be Fn-adapted if for all n ≥ 0,
Xn is Fn-measurable (this is automatically satisfied if we take Fn to be the filtration
generated by the Xn). �

Definition 3.10. Let (Ω,A, P ) be a probability space, and Fn, n ≥ 0, a filtration. An Fn-
adapted sequence Xn, n ≥ 0, of integrable random variables is called a martingale (resp.
supermartingale, resp. submartingale) if

∀n ≥ 0, E
[
Xn+1|Fn

]
= Xn P -a.s. (martingale) ,(3.2.2)

∀n ≥ 0, E
[
Xn+1|Fn

]
≤ Xn P -a.s. (supermartingale) ,(3.2.3)

∀n ≥ 0, E
[
Xn+1|Fn

]
≥ Xn P -a.s. (submartingale) .(3.2.4)
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Example 3.11. 1) Consider Xi, i ≥ 1, independent and identically distributed, with
E[|Xi|] <∞ and E[Xi] = 0. Let Sn, n ≥ 0, be the random walk

S0 = 0, Sn = X1 + · · · +Xn, n ≥ 1 ,

F0 = {φ,Ω}, Fn = σ(X1, . . . ,Xn), n ≥ 1 .

Then Sn, n ≥ 0, is Fn-adapted, and for n ≥ 0 one has

(3.2.5)

E
[
Sn+1|Fn

]
= E

[
Sn +Xn+1|Fn

]

= E
[
Sn|Fn

]
+ E

[
Xn+1|Fn

] (3.1.18)−(3.1.24)
= Sn + E[Xn+1] = Sn .

↑
Fn−measurable

↑
independent of Fn

Hence,

(3.2.6) Sn is an Fn-martingale .

2) Same setting as in 1), but now with E[X2
i ] = σ2 <∞. Set

(3.2.7) Mn = S2
n − nσ2, n ≥ 0 .

Mn, n ≥ 0, is Fn-adapted, integrable, and

E
[
Mn+1 −Mn|Fn

]
= E

[
S2
n+1 − S2

n − σ2|Fn

]

= E
[
(Sn +Xn+1)2 − S2

n − σ2|Fn

]
= E

[
2 Sn︸︷︷︸

Fn−measurable

· Xn+1 +X2
n+1 − σ2|Fn

]

տ ↑
independent of Fn

= 2SnE
[
Xn+1|Fn

]
+ E

[
X2

n+1|Fn

]
− σ2

= 2SnE[X
||

0

n+1] + σ2 − σ2 = 0 .

Hence, E
[
Mn+1|Fn

]
= E

[
Mn|Fn

]
= Mn, n ≥ 0.

(3.2.8)
Mn is an Fn-martingale, and

S2
n is an Fn-submartingale .

3) We consider now the asymmetric simple random walk on Z: Xi, i ≥ 1, are inde-
pendent and identically distributed, with P [Xi = 1] = p, P [Xi = −1] = 1 − p, for some
p 6= 1

2 .

1− p p

−1 0 1

Fig. 3.2
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Sn and Fn, n ≥ 0, are defined as in 1). Set

(3.2.9) Mn =
(1− p

p

)Sn

.

Mn is Fn-adapted, and integrable (since |Sn| ≤ n). One also has

E[Mn+1|Fn] =E
[
Mn ·

(1− p
p

)Xn+1

︸ ︷︷ ︸

∣∣∣Fn

]
= Mn E

[(1− p
p

)X1]
,

↑
Fn-measurable

↑
independent of Fn

where
E
[(1− p

p

)X1]
= p
(1− p

p

)
+ (1− p) p

1− p = 1 .

From this, we conclude that

(3.2.10) Mn is an Fn-martingale .

Note also that for p > 1
2 , (1−p

p ) < 1 and Sn → +∞ P -a.s. In the same way, for p < 1
2 , one

has 1−p
p > 1 and Sn → −∞ P -a.s. Hence, we see that

(3.2.11) Mn −→ 0 P -a.s. ,

even though E[Mn] = E[Mn−1] = · · · = E[M0] = 1, thanks to (3.2.10).

4) Radon-Nikodym derivatives:

Let (Ω,F) be a measurable space, and Fn, n ≥ 0, a filtration with σ(
⋃

n≥0Fn) = F .
Also, let µ and ν be two probability measures on (Ω,F) with restrictions µn, resp. νn, on
(Ω,Fn). We assume that

(3.2.12) µn ≪ νn ,

and define

(3.2.13) Mn =
dµn
dνn

, n ≥ 0 .

Then Mn, n ≥ 0, is an Fn-adapted sequence of integrable random variables on (Ω,F , ν).
Moreover, one has for n ≥ 0 and A ∈ Fn,

∫

A∈Fn

Mn+1︸ ︷︷ ︸
Fn+1-measurable

dν =
∫

A
Mn+1 dνn+1 =

∫

A

dµn+1

dνn+1
dνn+1 = µn+1(A)

= µn(A) =
∫

A

dµn
dνn

dνn =
∫

A
Mn dνn =

∫

A
Mn dν .

This means that

(3.2.14) Mn is an Fn-martingale (for ν) .
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As a concrete example, consider: Ω = [0, 1), F = B([0, 1)),

Fn = σ
([

0,
1
2n
)
,
[ 1

2n
,

2
2n
)
, . . . ,

[2n − 1
2n

, 1
))
, ν = Lebesgue-measure ,

and µ any probability measure on (Ω,F) (the condition µn ≪ νn is then automatically
satisfied). �

We now give a few direct consequences of Definitions (3.2.2) - (3.2.4):

Proposition 3.12. Let (Ω,A, P ) be a probability space, and (Fn)n≥0 a filtration. Also,
let Mn, n ≥ 0, be an Fn-supermartingale. One has P -a.s.

(3.2.15) E
[
Mn|Fm

]
≤Mm, for 0 ≤ m ≤ n .

Analogously, for an Fn-submartingale Mn, one has P -a.s.

(3.2.16) E
[
Mn|Fm

]
≥Mm, for 0 ≤ m ≤ n ,

and for an Fn-martingale Mn, P -a.s.

(3.2.17) E
[
Mn|Fm

]
= Mm, 0 ≤ m ≤ n .

Proof. Let us first make the following simple remarks:

Mn is a submartingale ⇐⇒ −Mn is a supermartingale ,(3.2.18)

Mn is a martingale ⇐⇒Mn is a sub- and a supermartingale .(3.2.19)

Hence, we can obtain (3.2.16) and (3.2.17) as consequences of (3.2.15).

Proof of (3.2.15): We proceed by induction. For n = m, (3.2.15) holds. If we now assume
that (3.2.15) holds for n = m+ k, then one also has

P -a.s. E
[
Mm+k+1|Fm

] (3.1.28)
= E

[
E[Mm+k+1|Fm+k]|Fm

]

≤ E
[
Mm+k|Fm

]
induction
hypothesis
≤ Mm ,

and our claim (3.2.15) follows.

Proposition 3.13. Let Mn, n ≥ 0, be an Fn-martingale, and ϕ a convex function with
E
[
|ϕ(Mn)|

]
<∞ for all n ≥ 0. Then

(3.2.20) ϕ(Mn) is an Fn-submartingale .

Proof. One has, for all n ≥ 0,

(3.2.21) P -a.s. E
[
ϕ(Mn+1) | Fn

]
Jensen′s
inequality
≥ ϕ

(
E[Mn+1|Fn]

)

= ϕ(Mn) .
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Special case:

(3.2.22)
Consider 1 ≤ p <∞, and Mn, n ≥ 0, a martingale in Lp,

then |Mn|p, n ≥ 0, is a submartingale .

A similar result holds if Mn is only a submartingale, with the further assumption that ϕ
is non-decreasing.

Proposition 3.14. Let Mn, n ≥ 0, be a submartingale, and ϕ a convex non-decreasing
function with E

[
|ϕ(Mn)|

]
<∞, for all n ≥ 0. Then

(3.2.23) ϕ(Mn) is an Fn-submartingale .

Proof. same as in (3.2.21).

Special case:

Let Mn be a submartingale ,(3.2.24)
then Mn ∨ b def.= max(Mn, b) is a submartingale ,

Let Mn be a supermartingale ,(3.2.25)
then Mn ∧ a def.= min(Mn, a) is a supermartingale .

Remark 3.15. The assumption “ϕ non-decreasing” in the previous proposition is impor-
tant, as the following example shows. Consider

(3.2.26) Mn = − 1
n
, n ≥ 1, M0 = −1 (deterministic variables!) .

This is certainly a submartingale, but

(3.2.27) M2
n =

1
n2
, n ≥ 1, M2

0 = 1 ,

is a supermartingale! �

3.3 Stopping times

We now discuss the notion of stopping times, which plays an important role when studying
martingales and Markov chains. We have already seen an example of a stopping time in the
proof of Kolmogorov’s inequality (Section 1.4). In what follows, we consider a probability
space (Ω,A, P ), equipped with a filtration Fn, n ≥ 0.

Definition 3.16. A random variable N : Ω −→ N∪ {∞} is called an Fn-stopping time if

(3.3.1) for all n <∞, {N = n} ∈ Fn .

“The decision to stop at time n depends only on the information up to time n”.
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Example 3.17. 1) A fixed time N(ω) ≡ n0 is a stopping time, since for each n, one has
{N = n} = ∅ or Ω (and these two sets belong to Fn, since it is a σ-algebra).

For the next examples, we consider a sequence Xn, n ≥ 0, of Fn-adapted random
variables.

2) Let us consider the “first time at which Xn becomes strictly positive” (i.e. first visit
to (0,+∞)),

(3.3.2) N(ω) def.= inf{n ≥ 0 ; Xn(ω) > 0}
(defined as +∞ if: ∀n ≥ 0, Xn(ω) ≤ 0). This is a stopping time, since

{N = 0} = {X0 > 0} ∈ F0, and for n ≥ 1, n < +∞,

{N = n} = {X0 ≤ 0, X1 ≤ 0, X2 ≤ 0, . . . ,Xn−1 ≤ 0, Xn > 0} ∈ Fn .

Generalization: For A ∈ B(R), one can define the first visit time of Xn to A as

(3.3.3) TA(ω) def.= inf{n ≥ 0 ;Xn(ω) ∈ A}
(again, = +∞ if: ∀n ≥ 0, Xn(ω) /∈ A). This is a stopping time, for analogous reasons.

3) The first visit time of Xn to B(∈ B(R)) strictly after visiting A(∈ B(R)),

(3.3.4) T (ω) def.= inf{n > TA(ω) ;Xn(ω) ∈ B} ,
defined as +∞ if TA(ω) = +∞, or if TA(ω) < +∞ and Xn(ω) /∈ B for all n > TA(ω), is a
stopping time since

{T = 0} = ∅ ∈ F0, and for all n ≥ 1,

{T = n} =
n−1⋃

m=0

(
{TA = m}︸ ︷︷ ︸
∈Fm⊆Fn

∩ {Xm+1 /∈ B, . . . ,Xn−1 /∈ B,Xn ∈ B}︸ ︷︷ ︸
∈Fn

)
∈ Fn .

4) Consider Ω = RN∗ , A =
⊗

i≥1 B(R), P arbitrary, Xi(ω) = ωi, and the “last time at
which Xn is non-negative” (i.e. last visit of Xn to [0,+∞)),

(3.3.5) S(ω) def.= sup{n ≥ 1 ;Xn(ω) ≥ 0} ,
defined as 0 if Xn(ω) < 0 for all n. This is not a stopping time: indeed,

{S = 1} = {X1 ≥ 0} ∩ ⋂
i≥2
{Xi < 0} /∈ F1 = σ(X1) .

�

One also defines the so-called σ-algebra of the stopping time N , denoted by FN , that
contains all information known up to time N(ω) (which is random):

(3.3.6) FN
def.= {A ∈ A ; for all n ≥ 0, A ∩ {N = n} ∈ Fn} .

When A ∈ FN , the trace of A on {N = n} depends only on Fn, i.e. it depends only on
the information available at time n.

Remark 3.18. For a fixed stopping time N ≡ n0 ∈ N, one has FN = Fn0 (clear from
(3.3.6)). �
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3.4 Convergence theorem

We start with a characterization of the submartingale property.

Proposition 3.19. (Doob’s Decomposition)

Xn, n ≥ 0, is an Fn-submartingale ⇐⇒ Xn, n ≥ 0, is of the form:

(3.4.1) Xn = Mn +An, n ≥ 0,

(3.4.2) where Mn is an Fn-martingale,

(3.4.3)
An is Fn−1-measurable and integrable for all n ≥ 1,

and 0 = A0 ≤ A1 ≤ A2 ≤ . . . P -a.s.

Moreover, Mn and An are uniquely determined by (3.4.1), (3.4.2), and (3.4.3) (up to sets
of P -measure zero).

Proof.

a) =⇒ Uniqueness:

For n ≥ 0, one has necessarily (P -a.s.):

E
[
Xn+1 −Xn|Fn

]
= E

[
Mn+1 −Mn|Fn

]
+ E

[
An+1 −An|Fn

]

||
E
[
Xn+1|Fn

]
−Xn

||
0

|| (3.2.8)

An+1 −An .

Hence,

(3.4.4) A0 = 0 and An+1 −An = E[Xn+1|Fn]−Xn for n ≥ 0 ,

and Mn = Xn −An =⇒Mn and An are uniquely determined.

Existence:

With the help of (3.4.4), we define An, n ≥ 0, by A0 = 0 and for n ≥ 0, An+1 − An =
E[Xn+1|Fn] −Xn ≥ 0, P -a.s. (since Xn is a submartingale), and Mn = Xn − An. Then
(3.4.1) and (3.4.3) are satisfied. Furthermore, one also has, for n ≥ 0,

E
[
Mn+1 −Mn|Fn

]
= E

[
Xn+1 −Xn − (An+1 −An)|Fn

]

(3.4.3)
= E

[
Xn+1|Fn

]
−Xn − (An+1 −An) = 0

so that Mn, n ≥ 0, is an Fn-martingale.

b) ⇐= Each Xn = Mn + An for which (3.4.2), (3.4.3) are satisfied is, of course, an
Fn-submartingale.

In Doob’s decomposition, the non-decreasing sequence (An)n≥0 satisfies the condition

An is Fn−1-measurable (and A0 = 0) .

This brings us to the following definition.
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Definition 3.20. Let (Ω,F) be a measurable space, and Fn, n ≥ 0, a filtration. A sequence
Hn, n ≥ 1, of random variables is said to be predictable if

(3.4.5) ∀n ≥ 1, Hn is Fn−1-measurable .

Example 3.21. Let T : Ω→ N ∪ {∞} be an Fn-stopping time.

(3.4.6)
Hn

def.= 1{T ≥ n}, n ≥ 1, is predictable, since:

{T ≥ n}c = {T ≤ n− 1} ∈ Fn−1 . �

Let Mn, n ≥ 0, be an Fn-sub- (resp. super-) martingale, and Hn, n ≥ 1, a predictable
sequence. Let us introduce the new sequence

(H ·M)n =
n∑

m=1

Hm(Mm −Mm−1) (n ≥ 1) ,

= 0 (n = 0) .

(3.4.7)

(H ·M)n, n ≥ 0, is a discrete version of what is called a stochastic integral “
∫ t
0 Hs dMs”.

First interpretation of (3.4.7) as “gambling winnings”

We consider a coin flipping game:

Xn = 1 if the coin comes up Tails on the nth throw (n ≥ 1) ,
= −1 if the coin comes up Heads on the nth throw (n ≥ 1) .

In the nth period of time, the gambler plays with a stake of Hn SFr. If the coin shows
Tails, then he wins Hn SFr., and if the coin shows Heads, then he loses Hn SFr.

Let us consider the simple random walk with increments Xi, i ≥ 1:

Mn = X1 + · · ·+Xn (n ≥ 1) ,

= 0 (n = 0) .

The information that is available to the player at time n (≥ 1) (right before playing) is
described through the σ-algebra

Fn−1 = σ(X1, . . . ,Xn−1) .

The hypothesis that Hn, n ≥ 1, is a predictable sequence (Hn is a “strategy”) is then a
natural assumption: at each time, the player can only use the information that is available
to him in order to decide his next move.

The winnings of the player at time n are given by

Wn = H1X1 +H2X2 + · · · +HnXn =
n∑

m=1

Hm(Mm −Mm−1)

= (H ·M)n .
(3.4.8)
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Second interpretation, in terms of financial mathematics

Assume Mn is the value of a US dollar in Swiss francs on day n (we assume that Mn ≥ 0
holds). On day n, an investor possesses Fn Swiss francs and Hn dollars. On day n = 0,
his entire fortune is invested in Swiss francs, i.e. H0 = 0.

His fortune on day n is then (in Swiss francs)

(3.4.9) Vn = Fn +HnMn .

At the end of each day, the investor chooses a new distribution for his fortune Vn (in SFr.
and dollars): he decides, at the end of day n, to have Hn+1 as a new account balance in
dollars, having thus Fn+1, Hn+1 as new balances in SFr and USD at the end of day n.
One has:

(3.4.10) Vn = Fn +Hn ·Mn = Fn+1 +Hn+1 ·Mn

(here, Fn ≤ 0 or Hn ≤ 0 are possible, and correspond to a loan on the associated account).

The choice of Hn+1 as a new balance in dollars is made with the help of the information
that is available to the investor at the end of day n. Hence, we assume that

(3.4.11) Hn, n ≥ 1, is predictable .

Note also that (3.4.9), (3.4.10) imply, for n ≥ 0,

Vn+1 − Vn = Hn+1Mn+1 + Fn+1 −Hn+1Mn − Fn+1

= Hn+1(Mn+1 −Mn) .

Hence,

Vn = (Vn − Vn−1) + (Vn−1 − Vn−2) + · · ·+ (V1 − V0) + V0

= V0 +
n∑

m=1

Hm(Mm −Mm−1)

= V0 + (H ·M)n .

(3.4.12)

In other words, V0 + (H · M)n is the fortune of the investor on day n (in SFr).
Hn, n ≥ 1, is then his investment strategy (in dollars).

A usual restriction on valid investment strategies is the following: only predictable
Hn, n ≥ 1, for which

(3.4.13) V0 + (H ·M)n ≥ 0 for all n ≥ 0

are allowed.

Theorem 3.22. Let Xn, n ≥ 0, be a super- (resp. sub-) martingale, and Hn ≥ 0, n ≥ 1,
a predictable sequence of random variables with Hn bounded for each n ≥ 1. Then

(3.4.14) (H ·X)n is a super- (resp. sub-) martingale .
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Proof. We assume that Xn is a supermartingale (the case of a submartingale is handled
in an analogous way). For n ≥ 0,

E
[
(H ·X)n+1 − (H ·X)n | Fn

]
= E

[
Hn+1︸ ︷︷ ︸

Fn-measurable

(Xn+1 −Xn) | Fn

]

= Hn+1
≥0

E
[
Xn+1 −Xn| Fn

]
︸ ︷︷ ︸

≤0 (Xn is a supermartingale)

≤ 0 .

Consequently, (H ·X)n, n ≥ 0, is a supermartingale.

Corollary 3.23. Let Xn, n ≥ 0, be a martingale, and Hn, n ≥ 1, predictable, with Hn

bounded for all n. Then (H ·X)n is a martingale.

Corollary 3.24. (Optional Stopping Theorem (first version))

Let Xn, n ≥ 0, be an Fn- (resp. super-, resp. sub-) martingale, and N an Fn-stopping
time. Then

(3.4.15) XN∧n is a (resp. super-, resp. sub-) martingale .

Proof. We consider only the case when Xn is a supermartingale. Set Hn = 1{N ≥ n},
n ≥ 1. Then, for n ≥ 1,

(3.4.16)
(H ·X)n =

n∑

m=1

1{N ≥ m}(Xm −Xm−1) = XN∧n −X0

Mn ≡ X0, ∀n ≥ 0, is, of course, a martingale and
XN∧n = (H ·X)n +Mn is a supermartingale, thanks to (3.4.14) .

The next result gives a useful estimate for the possible fluctuations of a super- (resp.
sub-) martingale during a time interval [0, u]. We first need some notation.

y =

Xn

b

a

N1 N2 N3 N4 N5
n

Ua,b
n = 2

Fig. 3.3
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Consider a < b in R, and Xn, n ≥ 0, an Fn-submartingale. We define an increasing
sequence of Fn-stopping times Nj = N

X,[a,b]
j by

N1 = inf{m ≥ 0, Xm ≤ a}
(N1(ω) =∞ if {. . . } = ∅)

N2 = inf{m > N1, Xm ≥ b}
(N2 =∞ if N1 =∞ or {m > N1(ω),Xm(ω) ≥ b} = ∅)

N 2k−1
(k≥2)

= inf{m > N2k−2, Xm ≤ a}
(where N2k−1(ω) =∞ if N2k−2(ω) =∞ or {. . . } = ∅)

N2k = inf{m > N2k−1, Xm ≥ b}
(where N2k(ω) =∞ if N2k−1 =∞ or {. . . } = ∅)

(3.4.17)

The Nj , j ≥ 1, are Fn-stopping times (see Example 3 above, (3.3.4)).

We define the number of upward crossings (“upcrossings”) of [a, b] during the time
interval [0, n] by

(3.4.18) Ua,b
n (ω) = sup{k ≥ 1, N2k(ω) ≤ n} (= 0 if {. . . } = ∅) .

Proposition 3.25. (Upcrossing Inequality)

Consider a submartingale Xn, n ≥ 0. Then for all a < b in R,

(3.4.19) (b− a) E
[
Ua,b
n

]
≤ E

[
(Xn − a)+

]
− E

[
(X0 − a)+

]
.

Proof. We set Yn = (Xn − a)+. Thanks to (3.2.24), Yn stays a submartingale. One has of
course

N
X,[a,b]
j = N

Y,[0,b−a]
j , j ≥ 1 ,

and Ua,b,X
n = U0,b−a,Y

n .

In other words, we can consider the upward crossings of [0, b− a] by the random variables
Yn, n ≥ 0.

We consider the following sequence of random variables

(3.4.20) Hm =





1 on
⋃
k≥1

{N2k−1 < m ≤ N2k} ,

0 otherwise .

Note that
stopping time
ւ

{N2k−1 < m ≤ N2k} = {N2k−1 ≤ m− 1} ∩ {N2k ≤ m− 1}c ∈ Fm−1.
տ
stopping time
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Hence, Hm is a predictable sequence (the interpretation of H as an investment strategy is
the following: one buys 1 USD when the value of a dollar falls below a, and one sells this
dollar when its value goes above b). One has

(3.4.21) (b− a)Un ≤

profit at time n
↓︷ ︸︸ ︷

(H · Y )n
(

=
n∑

m=1

Hm(Ym − Ym−1)
)
,

since with each upward crossing of [0, b − a], one makes a profit ≥ (b − a), and there
may also be an incomplete final upcrossing, which provides a positive contribution (since
Yn ≥ 0). One has

Yn = Y0 + ((1−H) · Y )n + (H · Y )n
(3.4.21)

≥ Y0 + ((1−H) · Y )n + (b− a) Un .

Using (3.4.14), we obtain

(3.4.22) E
[
((1−H) · Y )n

]
≥ 0 .

Hence,
(b− a) E[Un] ≤ E[Yn]−E[Y0] .

This proves (3.4.19).

Remark 3.26. It is remarkable that for the opposite investment strategy Kn = 1−Hn,
one also has E[(K · Y )n] and E[(K · X)n] ≥ 0. In this case, one keeps 1 USD until the
price falls below level a, one then sells this dollar, waits until it becomes more expensive
than b, and buys the dollar back, and so on. On average, one still makes a profit, if “the
price of a USD is a submartingale”. �

Application of the upcrossing inequality:

Theorem 3.27. (Martingale Convergence Theorem)

Let Xn, n ≥ 0, be a submartingale with supn≥0E[X+
n ] <∞, then

(3.4.23)
the sequence Xn(ω) converges P -a.s.,

to some X(ω) with E[|X|] <∞ .

Proof. Consider a < b in R. Due to (3.4.19), one has, for n ≥ 0,

(3.4.24) E[Ua,b
n ] ≤ E[(Xn − a)+]

b− a ≤ E[X+
n ] + |a|
b− a ≤ cst <∞ .

If we define, analogously to (3.4.18), the total number of upward crossings of [a, b] by the
random variables Xn as

(3.4.25) Ua,b
∞ (ω) = sup{k ≥ 1, N2k(ω) <∞},

95



then one has Ua,b
∞ (ω) = lim

n
↑ Ua,b

n (ω). Using (3.4.24), we obtain

E[Ua,b
∞ ]

monotone
convergence= lim

n
↑ E[Ua,b

n ] ≤ cst .

Hence, P
[
{Ua,b

∞ <∞}
]

= 1, and

(3.4.26) P

[ ⋂
a<b
a,b∈Q

{Ua,b
∞ <∞}

]
= 1 .

Note that {
lim Xn < a < b < lim Xn

}
⊆ {Ua,b

∞ =∞},
and that

{
lim Xn < lim Xn

}
=

⋃
a<b
a,b∈Q

{
lim Xn < a < b < lim Xn

}
⊆ ⋃

a<b
a,b∈Q

{Ua,b
∞ =∞}

has probability 0, thanks to (3.4.26). Hence, Xn(ω) converges P -a.s. to some X(ω).
Furthermore,

E[X0] ≤ E[Xn] = E[X+
n ]− E[X−

n ] ,

and thus
E[X−

n ] ≤ E[X+
n ]− E[X0] ≤ cst =⇒ sup

n
E
[
|Xn|

]
<∞ .

Fatou’s lemma then implies

E
[
|X|
]
≤ lim E

[
|Xn|

]
<∞ .

The convergence theorem thus follows.

Corollary 3.28. Let Xn ≥ 0 be a supermartingale, then

(3.4.27) Xn converges P -a.s. to some X ≥ 0, with E[X] ≤ E[X0] .

Proof. Yn = −Xn is a submartingale with Y +
n = 0. Using the convergence theorem,

Xn → X P -a.s., and furthermore,

E[X] ≤
Fatou

lim E[Xn] ≤
supermartingale

E[X0] .

Remark 3.29. In general, the hypotheses of the convergence theorem are not enough to
show that Xn converges to X in L1. For instance, we have seen (Example 3 above) that
Mn = (1−p

p )Sn is a martingale when Sn is an asymmetric random walk on Z (P [Xi = 1] = p,
P [Xi = −1] = 1− p, p 6= 1

2 ).

We have also seen that Mn → 0 P -a.s. But one has ‖Mn‖1 = E[Mn] = E[M0] = 1, so
Mn does not converge to 0 in L1. �
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3.5 Some examples and applications

In this section, we want to discuss a few examples and applications of the optional stopping
theorem, and the convergence theorem.

A) Branching process: the Galton-Watson chain

The Galton-Watson chain is a model that describes the evolution of a population.

At time 0, there is one particle. This particle has then a certain number of descendants,
the first generation. The distribution of this number of descendants is called ν (ν is a
probability measure on N). Each particle of the first generation has then, independently
of the other ones, a number of descendants with distribution ν. These descendants form
the second generation, and so on. If a generation happens to have no descendants, then
the population dies out (the numbers of particles in the later generations are all equal to
0).

6

6

7

11

number of particles

0

1

1

2

3

3

4

5

common ancestor generation

Fig. 3.4

A natural question is then: how does the number of particles in the nth generation behave
asymptotically, for large n?

Mathematical construction of the model:

We consider independent ν-distributed random variables ξni , i, n ≥ 1. We define the
number of particles in the nth generation Zn, n ≥ 0, as:

Z0 = 1 ,

and Zn+1 = ξn+1
1 + ξn+1

2 + · · ·+ ξn+1
Zn

if Zn > 0 ,

= 0 if Zn = 0 .

(3.5.1)

- Zn, n ≥ 0, is the so-called Galton-Watson chain (we will see later that Zn, n ≥ 0, is
a Markov chain).

- ν is the distribution of the number of descendants for a single individual (sometimes
called offspring distribution).
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Fig. 3.5: An (atypical) simulation of a branching process
(offspring distribution 1

2 δ0 + 1
2 δ2)

We assume that

(3.5.2) ν(0) 6= 1 and ν(1) 6= 1

(otherwise, the model is trivial), and that the mean number of descendants of a particle
satisfies

(3.5.3) m =
∞∑

k=0

k ν(k) <∞ .

We define the filtration Fn, n ≥ 0, as

(3.5.4) F0 = {∅,Ω}, Fn = σ (ξli, 1 ≤ l ≤ n, i ≥ 1) .

Proposition 3.30.

(3.5.5) Mn
def.=

Zn

mn
is an Fn-martingale .

Proof. Thanks to (3.5.1), (3.5.3), Zn is Fn-measurable and integrable. One has

E
[
Zn+1|Fn

]
= E

[ ∞∑

k=0

Zn+1 1{Zn = k}|Fn

]

monotone
convergence=

∞∑

k=0

E
[
Zn+1 1{Zn = k}|Fn

]
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(here, we are actually using an analogue of the usual monotone convergence theorem, for
conditional expectations: the proof is left as an exercise).
Using (3.5.1), we find

E
[
Zn+1|Fn

]
=

∞∑

k=1

E
[
(ξn+1

1 + · · ·+ ξn+1
k ) 1{Zn = k}︸ ︷︷ ︸

Fn-measurable

|Fn

]

=
∞∑

k=1

1{Zn = k} E
[

(ξn+1
1 + · · ·+ ξn+1

k )︸ ︷︷ ︸
independent of Fn

|Fn

]

=
∞∑

k=1

mk · 1{Zn = k} = mZn .

(3.5.6)

Hence, Mn, n ≥ 0, is a non-negative martingale. Thanks to (3.4.27), Mn then converges
P -a.s. to M∞ ≥ 0, with E[M∞] ≤ 1 = E[M0].

Subcritical case: 0 < m < 1

Mn =
Zn

mn

P -a.s.−→ M∞ ∈ [0,∞) .

Note that Zn > 0 implies that Mn ≥ 1
mn , and 1

mn ↑ +∞ as n→∞, so

(3.5.7) in the case 0 < m < 1, Zn = 0 for n large enough, P -a.s.

Critical case: m = 1

N ∋ Zn(ω) = Mn(ω) P -a.s.−→ M∞ ∈ [0,∞) .

In other words,

(3.5.8) Zn(ω) = M∞(ω) ∈ N for n large enough, P -a.s.

One also has, for k ≥ 1, n0 ≥ 0,

(3.5.9)

P

[ ⋂
n≥n0

{Zn = k}
]

= P
[
{Zn0 = k} ∩ ⋂

n>n0

{ξn1 + · · ·+ ξnk = k}
]

independence= P [Zn0 = k] · ∏
n>n0

P [ξn1 + · · · + ξnk = k]︸ ︷︷ ︸
< 1 thanks to (3.5.2)

= 0

(because of (3.5.2) and m = 1, the distribution ν cannot be concentrated on a single
value, and P [ξn1 + · · · + ξnk = k] = 1 is impossible). Thanks to (3.5.8), (3.5.9), one has
P [M∞ ≥ 1] = 0, and thus

(3.5.10) in the case m = 1, Zn = 0 for n large enough, P -a.s.
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Supercritical case: m > 1

Consider the “generating function”

(3.5.11) ϕ(s) def.=
∞∑

k=0

sk ν(k)
(

=
∫

N
sx dν(x)

)
, s ∈ [0, 1] .

The function ϕ is continuous, non-decreasing on [0, 1], and one has, for s ∈ [0, 1),

ϕ′(s) =
∞∑

k=1

ksk−1ν(k), ϕ′′(s) =
∞∑

k=2

k(k − 1) sk−2ν(k) ≥ 0 .

Hence, lim
s→1

ϕ′(s) = m > 1 (and ϕ′(0) = ν(1)).

ν(0)

0 ρ

ϕ(·)

ϕ′(1) = m > 1

1

Fig. 3.6

Furthermore, ϕ′(1) = m > 1 and ϕ(1) = 1 =⇒ ϕ(1− ǫ) < 1− ǫ for ǫ > 0 small. Moreover,
ϕ(0) = ν(0) ≥ 0, so there exists a ρ ∈ [0, 1) with ρ = ϕ(ρ), and ρ is unique, since ϕ is
strictly convex (ϕ′′(s) > 0 for s ∈ (0, 1)).

Let us set θn = P [Zn = 0], n ≥ 0. Obviously, {Zn = 0} ⊆ {Zn+1 = 0}, and θn is
non-decreasing in n. Intuitively speaking, it is clear that conditionally on Z1 = k ≥ 1,
Zn+1 is distributed as the sum of k independent copies of Zn. This claim follows
by induction, using (3.5.1). Consequently,

θn+1 = E
[
E
[
1{Zn+1 = 0}|Z1

]]
= ν(0) +

∞∑

k=1

ν(k) θkn

= ϕ(θn), n ≥ 0 .

(3.5.12)

Hence, θ0 = 0 ≤ θ1 = ν(0) ≤ ρ induction=⇒ θn ↑ and θn ≤ ρ.

We deduce convergence: θm → θ∞ = P
[⋃

n≥1{Zn = 0}
]
≤ ρ, where θ∞ satisfies

θ∞ = ϕ(θ∞). It follows that

(3.5.13) P

[ ⋃
n≥1
{Zn = 0}

]
= ρ ∈ [0, 1) .
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To summarize, with a positive probability 1−ρ, the population of particles never dies out,
and we also know that Zn

mn →M∞ P -a.s.

Let us finally mention that Kesten and Stigum have shown that
∫

N
x(log x)+ ν(dx) <∞ =⇒ P [M∞ > 0] = 1− ρ > 0 .

B) Asymmetric random walk

We keep the notations of Example 3 in Section 3.2: we denote the random walk by
Sn, n ≥ 0 (with S0 = 0), and we suppose that

p = P [Xi = 1] = 1− P [Xi = −1] ∈
(

1
2
, 1
)
.

b0

p

−a

1− p

Fig. 3.7

Consider a, b ≥ 1, and

(3.5.14) T = inf{n ≥ 0, Sn = −a or b}

the exit time of Sn from (−a, b).
We know from (3.2.9) - (3.2.10) that h(Sn) is a martingale, where

(3.5.15) h(x) =
(1− p

p

)x
, x ∈ Z .

4

x

h(x)

−2 −1 0 1 2 3

Fig. 3.8
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The optional stopping theorem implies that:

1 = E
[
h(S0)

]
= E

[
h(ST∧n)

]
and 0 ≤ h(ST∧n) ≤ h(−a)

y n→∞ (dominated convergence)

E
[
h(ST )

]
= h(−a)P [ST = −a] + h(b)P [ST = b] .

It follows that 1 = h(−a)P [ST = −a] + h(b)(1 − P [ST = −a]), and thus

P [ST = −a] =
1− h(b)

h(−a)− h(b)
=

1− rb
r−a − rb ,

P [ST = b] =
h(−a)− 1
h(−a)− h(b)

=
r−a − 1
r−a − rb ,

(3.5.16)

with r = 1−p
p ∈ (0, 1).

If we choose a = 1, and let b→∞, we obtain

(3.5.17) P [T−1 <∞] = lim
b→∞

↑ P [ST = −1] = r =
1− p
p

< 1 ,

where T−1 = inf{n ≥ 0, Sn = −1}.

C) Call options: the Cox Ross Rubinstein model

We keep the same notations as in Section 3.2: Mn, n ≥ 0, describes the price of a risky
asset on day n (for example, 1 USD in SFr). We assume that there exist 0 < a < b such
that

(3.5.18)
Mn+1

Mn

def.= Dn+1 ∈ {a, b}, 0 ≤ n, n+ 1 ≤ N ,

and M0 = 1. Our space Ω is simply Ω = {a, b}N (N ≥ 1).

A call option is a contract between A and B, that gives A the possibility to buy 1
USD from B at a stipulated price v on day N . Of course, in the case when MN < v,
A does not exercise his right to buy. In the case when MN > v, A buys 1 USD from
B at price v, and then he sells this USD at price MN , making in this way a profit
of MN − v. In other words, the contract for A corresponds to a profit potential of
(MN − v)+.

Question: what is the “fair price” for such a contract? How much should A pay B on
day 0, so that the contract is fair? Before we handle this question, we will make a few
preliminary remarks.

For an initial fortune V0 ∈ R, and a valid (or admissible) investment strategy Hn,
1 ≤ n ≤ N , i.e. a predictable sequence with

(3.5.19) V0 + (H ·M)n ≥ 0, 0 ≤ n ≤ N ,
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the fortune obtained on day N is equal to, thanks to (3.4.12):

(3.5.20) VN = V0 + (H ·M)N .

If 1 < a < b, then an initial fortune V0 = 0 allows one to obtain “without any risk” VN > 0.
Indeed, by (3.5.18), if we choose Hn = 1, 1 ≤ n ≤ N , then VN =

∑N
n=1(Mn −Mn−1

>0
) > 0

(and Hn is valid).

Analogously, if a < b < 1, then Hn = −1 is a valid investment strategy, and

Vn =
n∑

m=1

(Mm−1 −Mm)
>0

> 0, 1 ≤ n ≤ N .

In both cases, one can obtain safely a positive fortune on day N , without investing any
capital. One speaks here of arbitrage.

On the contrary, if a < 1 < b, a real risk subsists (theoretically). We can define a
(purely artificial) probability measure Q on Ω, such that under Q, Mn, 0 ≤ n ≤ N , is a
martingale: we simply choose Dn, 1 ≤ n ≤ N , independent with distribution ν, where

(3.5.21) ν =
b− 1
b− a δa +

1− a
b− a δb (it satisfies the condition

∫
x dν(x) = 1) .

In principle, this probability measure Q has nothing to do with the description of the real
statistical properties of Mn. It is a “purely mathematical construction”.

In parallel, we have a description of Mn, 0 ≤ n ≤ N : we write P for the corresponding
probability measure (one should be careful not to confuse P and Q).

Due to (3.4.14), (H ·M)n is a Q-martingale for each investment strategy Hn, 1 ≤ n ≤
N . It follows that

V0 = EQ
[
V0 + (H ·M)N

]
= EQ[VN ] .

Hence, if we find (V0,H) such that VN = (MN − v)+, then V0 = EQ[(MN − v)+] as well.
In other words: in order to obtain (MN − v)+ as a capital on day N through (V0,H), the
initial fortune must be equal to EQ[(MN − v)+].

Proposition 3.31. There exists a unique valid investment strategy H with initial fortune
V0 = EQ[(MN − v)+] such that

(3.5.22) EQ
[
(MN − v)+

]
+ (H ·M)N = (MN − v)+ .

Proof.

Uniqueness: Define the martingale

(3.5.23) Zn = EQ
[
(MN − v)+|Fn

]
, 0 ≤ n ≤ N .

Then (using Dn = Mn/Mn−1),

Zn = EQ

[(
Mn ·

N∏
k=n+1

Dk − v
)

+

|Fn

]
.
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Now,
∏N

k=n+1Dk is independent of Fn, and one has

(3.5.24) Zn = c(n,Mn) ,

where

c(n, x) = EQ
[(
x

N∏

k=n+1

Dk − v
)
+

]

=
N−n∑

j=0

(
N − n
j

)
ν(a)j ν(b)N−n−j(xaj bN−n−j − v)+ .

(3.5.25)

Using (3.5.24), we obtain:

Hn(Mn −Mn−1) = Zn − Zn−1 = c(n,Mn)− c(n− 1,Mn−1)

=⇒ HnMn−1(Dn − 1) = c(n,Mn−1Dn)− c(n− 1,Mn−1) .

Since Hn and Mn−1 are Fn−1-measurable, and do not depend on Dn,

(3.5.26)

{
HnMn−1(b− 1) = c(n,Mn−1 b)− c(n− 1,Mn−1)

HnMn−1(a− 1) = c(n,Mn−1 a)− c(n − 1,Mn−1)

and we obtain, by subtraction,

(3.5.27) Hn =
c(n,Mn−1 b)− c(n,Mn−1 a)

(b− a)Mn−1
, 1 ≤ n ≤ N .

This proves uniqueness.

Existence:

We define the predictable sequence Hn, 1 ≤ n ≤ N , via (3.5.27). Then, for n ∈ {1, . . . , N},

(b− 1)HnMn−1 =
(b− 1)
(b− a)

(
c(n,Mn−1 b)− c(n,Mn−1 a)

)

= ν(a)
(
c(n,Mn−1 b)− c(n,Mn−1 a)

)

= c(n,Mn−1 b)− ν(b) c(n,Mn−1 b)− ν(a) c(n,Mn−1 a)

= c(n,Mn−1 b)− EQ
[
c(n,Mn)︸ ︷︷ ︸

‖

Zn

|Fn−1

]

= c(n,Mn−1 b)− Zn−1

= c(n,Mn−1 b)− c(n − 1,Mn−1) .
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Analogously,

(a− 1)HnMn−1 =
(a− 1)
(b− a)

(
c(n,Mn−1 b)− c(n,Mn−1 a)

)

= c(n,Mn−1 a)− ν(b) c(n,Mn−1 b)− ν(a) c(n,Mn−1 a)

= c(n,Mn−1 a)− c(n − 1,Mn−1) .

In other words, we obtain that (3.5.26) holds, so

Hn(Mn −Mn−1) = Zn − Zn−1 ,

and V0 + (H ·M)n = Zn ≥ 0, 0 ≤ n ≤ N, since V0 = Z0 .

Hence, H is valid, and (3.5.22) holds.

Before we come back to the question of a “fair price” for the call option, it is of
interest to describe explicitly the investment strategy determined in (3.5.22) - (3.5.27) in
the special case N = 1.

Special case N = 1:

We have c(1, x) = (x− v)+, and thanks to (3.5.27) and M0 = 1,

H1 =
(
(b− v)+ − (a− v)+

)
/(b− a) ,

V0 =
(
(1− a)(b− v)+ + (b− 1)(a− v)+

)
/(b− a) .

(3.5.28)

• In the case v > b, the profit potential of the call option is (M1 − v)+ = 0 (the right
to buy is never exercised!), and H1 = V0 = 0.

• In the case a > v, the profit potential of the call option is (M1 − v)+ = M1 − v (the
right to buy is always exercised), V0 = 1− v, H1 = 1 (one buys 1 USD “at the end
of day 0”).

• In the case a < v < b, the right to buy is exercised only part of the time. One has

V0 =
1− a
b− a · (b− v), H1 =

b− v
b− a (< 1) ,

and (3.5.22) is simply

(M1 − v)+ = (1− a)
b− v
b− a +

b− v
b− a (M1 − 1

‖

M0

) .

Interpretation of the proposition:

With an initial fortune of V0 = EQ[(MN−v)+], one can always achieve the profit potential
(MN − v)+ of the call option on day N , by using the investment strategy (3.5.27) (“exact
replication strategy”). It follows that V0 = EQ[(MN − v)+] can be interpreted as the fair
price of the call option.

In a certain sense, V0 is the price of “total safety”, the statistical description P of the
model does not play any role here!
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3.6 Doob’s inequality, convergence in L
p

In this section, we would like to discuss the convergence properties of martingales in Lp

spaces. We start with a generalization of Kolmogorov’s inequality (see (1.4.4)): let Xi be
independent random variables with E[X2

i ] <∞, E[Xi] = 0, then for all u > 0,

P
[

max
1≤k≤n

|Sk| ≥ u
]
≤ 1
u2

Var(Sn).

Doob’s inequality: Let Xm,m ≥ 0, be a submartingale, and λ > 0. Then

(3.6.1) λP (A) ≤ E[Xn 1A] ≤ E[X+
n ] ,

where A = { max
0≤m≤n

Xm ≥ λ}.

Proof. Define T = inf{m ≥ 0,Xm ≥ λ}. Then Hn = 1{T < n}, n ≥ 1, is a predictable
sequence with values in [0, 1]. Thanks to (3.4.14), (H · X)n, n ≥ 0, is a submartingale.
We have

(H ·X)n =
n∑

m=1

1{T < m}(Xm −Xm−1) = Xn −XT∧n, n ≥ 0 ,

and we obtain in this way, for n ≥ 0,

(3.6.2) E
[
(H ·X)n

]
= E[Xn]− E[XT∧n] ≥ 0 .

Note that on A, XT∧n ≥ λ, and on Ac, T ∧ n = n. Using (3.6.2), we obtain

E[Xn 1A] + E[Xn 1Ac ] ≥ E[XT∧n 1A]︸ ︷︷ ︸
≥λP [A]

+E[Xn 1Ac ] .

It follows that
λP [A] ≤ E[Xn 1A] ≤ E[X+

n ] .

Remark 3.32.

• (3.6.1) is a maximal inequality: it allows one to estimate max0≤m≤n Xm with the
help of the final value Xn.

• Kolmogorov’s inequality is a consequence of (3.6.1): simply choose Xn = S2
n, which

is a submartingale, and λ = u2 in (3.6.1). �

Doob’s inequality allows us to investigate the convergence properties of martin-
gales in Lp, p > 1.

Proposition 3.33. Let Xn be a submartingale, and p ∈ (1,∞). Set Xn = max
0≤m≤n

X+
m,

then

(3.6.3)
∥∥Xn

∥∥
p
≤
( p

p− 1

) ∥∥Xn

∥∥
p

(i.e. Xn ∈ Lp =⇒ Xn ∈ Lp and (3.6.3)).
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Corollary 3.34. (p > 1). Let Xn be a martingale with supnE[|Xn|p] < ∞. Then
Xn → X∞ P -a.s. and in Lp. Furthermore,

∥∥ sup
n
|Xn|

∥∥
p
≤ p

p−1 sup
n
‖Xn‖p.

Proof of Corollary 3.34. Thanks to the convergence theorem (3.4.23), Xn → X∞ P -a.s.
Furthermore, |Xn| is a submartingale, and using (3.6.3), one has (monotone convergence)

E
[(

sup
n
|Xn|

)p]
= lim

n
↑ E
[(

sup
0≤m≤n

|Xm|
)p]
≤ sup

n

( p

p− 1

)p
E
[
|Xn|p

]
<∞ .

It follows from Lebesgue’s theorem that

lim
n

E
[
|X∞ −Xn|p︸ ︷︷ ︸
≤2p sup

m≥0
|Xm|p

]
= 0 .

�

Proof of Proposition 3.33. Without loss of generality, we assume that Xn ∈ Lp, and,
thanks to (3.2.24), that Xn = X+

n and (3.2.23) that Xm ∈ Lp for 0 ≤ m ≤ n. Then one
has

E
[
(Xn)p

]
= E

[ ∫ Xn

0
pλp−1dλ

]

= E

[ ∫ ∞

0
pλp−11{Xn ≥ λ}dλ

]

Fubini=
∫ ∞

0
pλp−1 P

[
Xn ≥ λ

]
dλ .

We know that for λ > 0, λP [Xn ≥ λ] ≤ E[Xn 1{Xn ≥ λ}] holds (using (3.6.1)). Hence,

E
[
(Xn)p

]
≤

∫ ∞

0
pλp−2E[Xn 1{Xn ≥ λ}] dλ

Fubini=
( p

p− 1

)
E
[
Xn

∫ Xn

0
(p− 1)λp−2dλ

]

=
( p

p− 1

)
E
[
Xn(Xn)p−1

]

Hölder
≤

( p

p− 1

)
· ‖Xn‖p · E

[
(Xn)p

](1− 1
p
)
.

Consequently, either we have E[(Xn)p] = 0, or we can divide the previous inequality by
‖Xn‖p−1

p . In both cases, it follows that

‖Xn‖p ≤
( p

p− 1

)
‖Xn‖p .

Our claim (3.6.3) follows. �

The following theorem and the subsequent proposition describe the convergence prop-
erties of martingales in Lp, p > 1.
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Theorem 3.35. (1 < p <∞)

Let Xn, n ≥ 0, be an (Fn)-martingale. The following properties are equivalent:

sup
n≥0
‖Xn‖p <∞ ,(3.6.4)

E
[

sup
n≥0
|Xn|p

]
<∞ ,(3.6.5)

Xn converges in Lp,(3.6.6)

there exists X ∈ Lp such that for all n ≥ 0, Xn = E
[
X | Fn

]
.(3.6.7)

Proof. (3.6.4) =⇒ (3.6.5) and (3.6.5) =⇒ (3.6.6): see corollary below (3.6.3).

(3.6.6) =⇒ (3.6.7): choose 0 ≤ n ≤ m, and A ∈ Fn, then:

E[Xm 1A] = E[Xn 1A] .

For m→∞, Xm converges in Lp to X∞. Hence,

(3.6.8) E[X∞ 1A] = E[Xn 1A], for all A ∈ Fn,

and (P -a.s.)
E[X∞ | Fn] = Xn, n ≥ 0 .

This proves (3.6.7).

(3.6.7) =⇒ (3.6.4): see (3.1.23).

The connection between X in (3.6.7) and X∞ is explained in the next proposition.

Proposition 3.36. (1 < p <∞)

In the case when Xn = E[X | Fn], n ≥ 0, with X ∈ Lp, then

(3.6.9)
Xn converges P -a.s. and in Lp to X∞,

where X∞ = E
[
X | F∞

]
P -a.s., with F∞ = σ

( ⋃
n≥0
Fn

)
.

Proof. We already know that Xn converges P -a.s. and in Lp. Using (3.6.8), one also has,
for n ≥ 0 and A ∈ Fn,

E[X∞ 1A] = E[Xn 1A] = E
[
E[X | Fn] 1A

]
= E[X 1A] .

Using Dynkin’s lemma (1.3.9), it follows that

E[X∞ 1A] = E[X 1A], for all A ∈ σ
( ⋃

n≥0
Fn

)
= F∞ ,

and (3.6.9) is thus proved.
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Example 3.37. Let us consider the Galton-Watson chain. We keep the same notations
as in Section 3.5, and we also assume that the distribution ν of the number of descendants
has a finite second moment, i.e.

∑∞
0 k2 ν(k) <∞, m =

∑∞
k=0 kν(k).

We consider the martingale Mn = Zn/m
n. The following computations show (by

induction) that Mn actually lies in L2:

(3.6.10)

E
[
(Mn −Mn−1)2|Fn−1

]
= E

[( Zn

mn
− Zn−1

mn−1

)2
|Fn−1

]

= m−2nE
[
(Zn −mZn−1)2|Fn−1

]

monotone
convergence= m−2n

∞∑

k=0

E
[
(Zn −mZn−1)21{Zn−1 = k}|Fn−1

]

= m−2n
∞∑

k=0

E
[
( ξn1 + · · · + ξnk︸ ︷︷ ︸

independent of Fn−1

−mk)2 1 {Zn−1 = k}︸ ︷︷ ︸
Fn−1-measurable

|Fn−1

]

= m−2n
∞∑

k=0

1{Zn−1 = k} E
[

(ξn1 + · · · + ξnk −mk)2︸ ︷︷ ︸
=((ξn1 −m)+···+(ξnk−m))2

]

= m−2n
∞∑

k=0

kσ2 1{Zn−1 = k} = m−2n σ2 Zn−1 = m−(n+1)σ2Mn−1 ,

where σ2 = Var(ξ), and furthermore, one has (this computation holds for a general mar-
tingale in L2)

E
[
M2

n|Fn−1

]
= E

[
M2

n−1 + 2(Mn −Mn−1)Mn−1 + (Mn −Mn−1)2|Fn−1

]

= M2
n−1 + 2Mn−1E

[
(Mn −Mn−1)

‖

0 (martingale)

|Fn−1

]

+ E
[
(Mn −Mn−1)2|Fn−1

]

= M2
n−1 + E

[
(Mn −Mn−1)2|Fn−1

]
.

(3.6.11)

Using (3.6.10), we obtain

E
[
M2

n|Fn−1

]
= M2

n−1 +
σ2

mn+1
Mn−1, n ≥ 1 .

Consequently,

E[M2
n] = E[M2

n−1] +
σ2

mn+1

induction= E[M2
0 ] + σ2

n∑

k=1

1
mk+1

= 1 + σ2
n+1∑

k=2

m−k .

(3.6.12)

In the supercritical case m > 1, we obtain from (3.6.12)

supE[M2
n] <∞

corollary
=⇒ Mn

P -a.s.−→
L2

M∞ ≥ 0 , with E[M∞] = 1 = E[M0] .
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In particular, M∞ is not P -a.s. = 0, and one has

(3.6.13)
Zn

mn
(= Mn) P -a.s.−→ M∞ .

Of course,
⋃

n≥1{Zn = 0} ⊆ {M∞ = 0}. One can show (see Durrett, ex. 5.3.12) that

⋃
n≥1
{Zn = 0} P -a.s.= {M∞ = 0}

(i.e. the symmetric difference between the two sides has P -measure zero). In other words:
in the supercritical case, either the population dies out, or it grows in a geometric way,
like mn, P -a.s. �

We would like now to examine the convergence properties of martingales in L1.
Contrary to the case p ∈ (1,∞), there exist martingales Mn, n ≥ 0, that converge in L1

without having supn |Mn| ∈ L1 (see exercises). The key concept here is a property called
uniform integrability.

Definition 3.38. A family of random variables Xi, i ∈ I, on (Ω,A, P ) is said to be
uniformly integrable if

(3.6.14) lim
M→∞

sup
i∈I

E
[
|Xi| 1{|Xi|>M}

]
= 0 .

In particular, a finite family of L1 random variables is uniformly integrable (the proof
is left as an exercise).

Example 3.39. Let Xi, i ∈ I, be a family of random variables on (Ω,A, P ) with supI

E
[
ϕ(|Xi|)

]
= A < ∞, where ϕ(·): R+ → R+ is measurable, and limu→∞ ϕ(u)/u = +∞.

Then Xi, i ∈ I, is uniformly integrable. Indeed, choose ǫ > 0, then there exists M > 0
such that

(3.6.15) inf
u≥M

ϕ(u)
u
≥ A

ǫ
.

Hence, for i ∈ I,

E
[
|Xi| 1{|Xi| > M}

]
≤ ǫ

A
E
[ϕ(|Xi|)
|Xi|

· |Xi| 1{|Xi| > M}
]

≤ ǫ

A
E
[
ϕ(|Xi|)

]
≤ ǫ .

(3.6.14) thus follows. �

A further example of uniformly integrable random variables is provided by the following
result.

Proposition 3.40. Consider X ∈ L1(Ω,A, P ). The family

(3.6.16)
{
E[X|F ]; F sub-σ-algebra of A

}

is uniformly integrable.
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Proof. We first note that

(3.6.17) lim
η→0

sup
A∈A,P [A]≤η

E
[
|X| 1A

]
= 0 .

Indeed, for M > 0,

E
[
|X| 1A

]
≤ E

[
|X| 1{|X| > M}

]
+M P [A]︸ ︷︷ ︸

≤Mη

,

and Lebesgue’s theorem implies lim
M→∞

E
[
|X| 1{|X| > M}

]
= 0, hence (3.6.17) follows by

choosing M = η−1/2.

Moreover, one has, for F a sub-σ-algebra of A, and M > 0,

E
[∣∣E[X|F ]

∣∣ 1
{
|E[X|F ]| > M

}] Jensen
≤ E

[
E
[
|X| |F

]
1
{
E[|X| |F ] > M

}
︸ ︷︷ ︸

∈F

]

= E
[
|X| 1

{
E[|X| |F ] > M

}]

and

P
[
E[|X| |F ] > M

] Chebyshev
≤ 1

M
E
[
E[|X| |F ]

]
=
E[|X|]
M

.

If we choose η = E[|X|]
M , our claim (3.6.16) follows thanks to (3.6.17).

We will need the following proposition:

Proposition 3.41. Let Xn, n ≥ 0, and X be random variables such that Xn → X P -a.s.
The following three properties are then equivalent:

(3.6.18) {Xn, n ≥ 0} is uniformly integrable ,

(3.6.19) Xn
L1
−→ X ,

(3.6.20) (∞ >) E
[
|Xn|

]
−→
n→∞

E
[
|X|
]
<∞ .

Proof. (3.6.18) =⇒ (3.6.19): for M > 0, one has

(3.6.21)
E
[
|Xn −X|

]
≤ E

[
|Xn −X| 1{|Xn| ≤M, |X| ≤M}

]

+3E
[
|Xn| 1{|Xn| > M}

]
+ 3E

[
|X| 1{|X| > M}

]
.

Consider ǫ ∈ (0, 1). Thanks to (3.6.18), we can choose M0 such that

(3.6.22) M ≥M0 =⇒ sup
n

E
[
|Xn| 1{|Xn| > M}

]
≤ ǫ

6
.

Fatou’s lemma implies

E
[
|X|
]
≤ lim E

[
|Xn|

]
≤ ǫ

2
+M0 ≤M0 + 1 .
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We can thus choose M > 0 such that the sum of the last two terms in (3.6.21) is smaller
than ǫ uniformly in n. It follows that

lim E
[
|Xn −X|

]
≤ lim

n
E
[
|Xn −X| 1{|Xn| ≤M, |X| ≤M}

]
+ ǫ

y Lebesgue

0

= ǫ, ǫ > 0 arbitrary .

(3.6.19) =⇒ (3.6.20): this follows from
∣∣E
[
|Xn|

]
− E

[
|X|
]∣∣ ≤ E

[
|Xn −X|

]
.

(3.6.20) =⇒ (3.6.18): take ǫ > 0, and define, for M > 1, the continuous function ψM (.)
satisfying

ψM (x) =





x for x ∈ [0,M − 1],
0 for x ≥M ,
linear for x ∈ [M − 1,M ].

ψM (·)

M − 1 M

x

Fig. 3.9

Choose M0 such that 0 ≤ E
[
|X|
]
− E

[
ψM0(|X|)

]
≤ ǫ

2 . Lebesgue’s theorem implies that

(3.6.23) lim
n

E
[
ψM0(|Xn|)

]
= E

[
ψM0(|X|)

]
.

Then,

(3.6.24)

lim
n
E
[
|Xn| 1{|Xn| > M0}

]
≤ lim

n

(
E
[
|Xn|

]
− E

[
ψM0(|Xn|)

])

= lim
n

E
[
|Xn|

]
− lim

n
E
[
ψM0(|Xn|)

]

(3.6.20)−(3.6.23)
= E

[
|X|
]
− E

[
ψM0(|X|)

]
≤ ǫ

2
.
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Xn ∈ L1 for all n, and thanks to (3.6.24) and Lebesgue’s theorem, we can choose M ≥M0

such that supn E
[
|Xn| 1{|Xn| > M}

]
≤ ǫ.

As an application of the notion of uniform integrability, we have the following theorem
for martingales:

Theorem 3.42. Let Mn, n ≥ 0, be a martingale. The following three properties are
equivalent:

(3.6.25) {Mn, n ≥ 0} is uniformly integrable ,

(3.6.26) Mn converges in L1 ,

(3.6.27) there exists X ∈ L1(Ω,A, P ) with Mn = E[X|Fn] for all n ≥ 0 .

Proof. (3.6.25) =⇒ (3.6.26): Thanks to (3.6.25), one has supn E[|Mn|] < ∞ (see for
instance (3.6.22)). Hence, Mn →M∞ P -a.s. (convergence theorem), and (3.6.26) follows,
using (3.6.19).

(3.6.26) =⇒ (3.6.27): Consider n < m, and A ∈ Fn. One has:

E[Mn 1A] = E[Mm 1A]
(3.6.26)−→ E[M∞ 1A] ,

from which it follows that

(3.6.28) Mn = E[M∞|Fn], n ≥ 0 .

(3.6.27) =⇒ (3.6.25): this follows from (3.6.16).

In a very similar way to (3.6.9), one has the following proposition:

Proposition 3.43. Assume that Mn = E[X | Fn], n ≥ 0, with X ∈ L1. One has

(3.6.29)
Mn converges P -a.s. and in L1 to M∞,

and M∞ = E[X | F∞], where F∞ = σ
( ⋃

n≥0
Fn

)
.

Proof. same as for (3.6.9).

Example 3.44. (Radon-Nikodym derivative)

We keep the same notations as in Section 4.2, Example 4). We assume that

(3.6.30) µ≪ ν on (Ω,F),

and we define
X =

dµ

dν
,
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then condition (3.2.12) is automatically satisfied (µn ≪ νn on (Ω,Fn)). Furthermore (see
the proof of existence for the conditional expectation),

(3.6.31) Mn
def.=

dµn
dνn

= Eν [X|Fn], n ≥ 0 .

Using (3.6.29), one has

Mn
ν-a.s.−→
L1

X
(

since F = σ
( ⋃

m≥0
Fm

))
.

In the case when (3.2.12) holds, but (3.6.30) is not satisfied, one can show that Mn
ν-a.s.−→

X ∈ L1(Ω,F , ν), and

(3.6.32) ∀A ∈ F , µ(A) =
∫

A
X dν + µ

(
A ∩

{
lim
n
Mn =∞

}

︸ ︷︷ ︸
set with ν-measure equal to 0

)
,

see Durrett, p.242 (it uses the Radon-Nikodym decomposition of µ with respect to ν).
Of course, Mn does not converge in L1 to X when (3.6.30) is not satisfied (otherwise, we
would have µ = X · ν =⇒ µ≪ ν !). �
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4 Random walks, Markov chains

4.1 Random walks

In this section, we study random walks, which are paths

(4.1.1) S0, S1, S2, . . . , Sn, . . . ,

where S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1, and the Xi, i ≥ 1, are independent, identically
distributed random variables (possibly with values in Rd).

n

Sn

6 7 80 4321 5

Fig 4.1

Unlike in previous chapters, we are no longer interested in the behavior of the distribution
of Sn for large n, but rather in analyzing the path

(
Sn(ω)

)
n∈N, for a “typical” ω in Ω.

Here are some examples of questions we are interested in:

- Case d = 1: does Sn(ω) converge, for a typical ω, to +∞ or −∞? Could the path
display a different behavior, and how?

- Case d ≥ 1: does Sn(ω) come back infinitely often near 0, for a typical ω (this is
called the recurrence property)?

The Law of Large Numbers already provides a partial answer to such questions, at least
in certain cases.

Example 4.1. We assume that the Xi, i ≥ 1, have distribution

(4.1.2) P [Xi = 1] = p, P [Xi = −1] = 1− p ,

for some fixed parameter p ∈ (0, 1). In the case p = 1
2 ,
(
Sn(ω)

)
n∈N is called the (sym-

metric) simple random walk on Z.
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In the case p 6= 1
2 , one has E[X1] = 1 · p − 1 · (1 − p) = 2p − 1 6= 0, and the Law of

Large Numbers readily implies that

(4.1.3)
Sn(ω)
n

−→
n→∞

2p− 1 P -a.s. ,

so in particular
Sn(ω) −→

n→∞
+∞ P -a.s. if p > 1

2
,

and Sn(ω) −→
n→∞

−∞ P -a.s. if p < 1
2
.

The case p = 1
2 (simple random walk) is somewhat less clear. In this case, (4.1.3) does

not give any direct answer to the question “does Sn converge to +∞ or −∞?”.

We will see that for p = 1
2 , one has:

lim
n
Sn(ω) = +∞ , lim

n
Sn(ω) = −∞ ,

and Sn(ω) visits 0 infinitely often, P -a.s. (i.e. for a typical ω). �

Random walks play a particularly important role in probability theory, they constitute
fundamental examples of Markov chains and (in the case when E[|Xi|] <∞, and E[Xi] =
0) martingales.

4.1.1 Hewitt-Savage 0-1 Law

We now prove a 0-1 law for random walks, the Hewitt-Savage 0-1 law. In order to present
it, we will construct the independent random variables X1, . . . ,Xn, . . . on a specific
probability space. We introduce

(4.1.4) Ω = RN∗ = {(ω1, ω2, . . . ), ωi ∈ R} ,

and we equip Ω with the product σ-algebra

(4.1.5)
A = the smallest σ-algebra containing all sets of the form

B1 × · · · ×Bm × R× · · · × R× · · · = {ω : ωi ∈ Bi, 1 ≤ i ≤ m} ,
with m arbitrary , Bi ∈ B(R) (1 ≤ i ≤ m) .

We consider on (Ω,A) the canonical coordinate functions Xi, i ≥ 1:

(4.1.6) Xi(ω) = ωi .

The Xi are then random variables on (Ω,A), since:

{Xi ∈ B} = R× R× · · · ×Bi × R× · · · × R× · · · .
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Let µ be a probability measure on (R,B(R)), and let us consider, on any probability space
(Ω̃, Ã, P̃ ), some independent random variables X̃i, i ≥ 1, with distribution µ. We can
then define the map Φ from Ω̃ to Ω:

(4.1.7)
ω̃ ∈ Ω̃ 7−→ Φ(ω̃) = (X̃1(ω̃), X̃2(ω̃), . . .) ∈ Ω = RN∗

“the sequence of values X̃i(ω̃)” .

Φ is measurable from (Ω̃, Ã) to (Ω,A) since

Φ−1(B1 × · · · ×Bm × R× · · · × R× · · · ) =
m⋂
i=1
{X̃i ∈ Bi} ∈ Ã ,

and consequently, using the same argument as in Chapter 1, (1.1.7), one has: Φ−1(A) ∈ Ã
for all A ∈ A.

As a probability measure on (Ω,A), we consider the image measure of P̃ under Φ:

(4.1.8) P = Φ ◦ P̃ .

Then one has, for all m ≥ 1, B1, . . . , Bm ∈ B(R),

(4.1.9)

P [B1 × · · · ×Bm × R× · · · × R× · · · ]
(4.1.6)

= P [X1 ∈ B1, . . . ,Xm ∈ Bm]

= P̃
[
Φ−1(B1 × · · · ×Bm × R× · · · × R× · · · )

]

= P̃

[
m⋂
i=1
{X̃i ∈ Bi}

]
=

m∏
i=1

µ(Bi) .

Note that the family of all sets of the form B1× · · · ×Bm×R× · · · ×R× · · · with m ≥ 1,
Bi ∈ B(R), 1 ≤ i ≤ m, forms a π-system, and this π-system generates A by definition.

As a consequence of (4.1.9), we see that P is uniquely determined by µ, and that
the Xi, i ≥ 1, on (Ω,A, P ) are independent random variables with distribution µ.

Notation: The standard notation for A in (4.1.5) and P in (4.1.8) is

(4.1.10)

A =
⊗
i≥1
B(R) and P =

⊗
i≥1

µ .

↑
“infinite product probability measure”

(Ω,A, P ) is called “infinite product probability space”.

Remark 4.2.

1) In the construction above, one can of course replace the space (R,B(R)) by (Rd,B(Rd)),
when the distribution µ is d-dimensional.

2) If we consider functions of the path, such as lim S̃n or lim S̃n

n , their distributions do
not depend on the probability space (Ω̃, Ã, P ) on which the independent random variables
X̃i with distribution µ are considered. Indeed,

(4.1.11) X̃i(ω̃) = Xi ◦ Φ(ω̃), i ≥ 1 =⇒ S̃n(ω̃) = Sn ◦ Φ(ω̃),
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and thus, for example, lim S̃n = lim Sn ◦ Φ. Using P = Φ ◦ P̃ , it follows that lim S̃n and
lim Sn have the same distribution.

Let µ be a distribution on R (or Rd), and (Ω,A, P ) be the infinite product probability
space, as above. We now introduce the symmetric events of A. �

Definition 4.3. A ∈ A is said to be symmetric if for all m ≥ 1 and σ ∈ Sm (def.= set of
all permutations of {1, . . . ,m}), one has:

(4.1.12)
ω = (ω1, ω2, . . . , ωm, . . . ) ∈ A⇐⇒

σ.ω
def.= (ωσ(1), . . . , ωσ(m), ωm+1, ωm+2, . . . ) ∈ A

(in other words: A =inverse of A under σ.
‖

(Notation) (σ.)−1(A)) .

It is clear from the definition that the family of all symmetric events P forms a
sub-σ-algebra of A, since one has:

(σ.)−1(Ω) = Ω, (σ.)−1(Ac) =
(
(σ.)−1(A)

)c for all A ∈ A ,

and (σ.)−1

(⋃

i≥1

Ai

)
=
⋃

i≥1

(σ.)−1(Ai) for all Ai ∈ A, i ≥ 1 .

We now present a few examples of symmetric events.

Example 4.4.

1) Let Sn = X1 + · · ·+Xn, n ≥ 1 (see (4.1.6)), in the case d = 1, and B ∈ B(R). Then

(4.1.13) lim sup
n≥1

{Sn ∈ B} = {ω ∈ Ω : Sn(ω) ∈ B infinitely often}

is symmetric, since for σ ∈ Sm, ω = (ω1, ω2, . . . ), and n ≥ m,

Sn(σ. ω) = ωσ(1) + · · ·+ ωσ(m) + ωm+1 + · · ·+ ωn

= Sn(ω) .
(4.1.14)

2) Thanks to (4.1.14), one has, for ω ∈ Ω and σ ∈ Sm,

(4.1.15) lim supSn(ω) = lim supSn(σ.ω),

and for B ∈ B([−∞,+∞]),

(4.1.16) {lim supSn ∈ B} ∈ P

(in other words, lim supSn is measurable from (Ω,P) to ([−∞,+∞], B([−∞,+∞]))).
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3) Let F∞ = ∩n≥1 σ(Xn,Xn+1, . . . ) be the asymptotic σ-algebra associated with the
random variables Xi. Then

(4.1.17) F∞ ⊆ P ,

since for σ ∈ Sm, one has F∞ ⊆ Fm+1 = σ(Xm+1,Xm+2, . . . ), and for B ∈ Fm+1,

ω ∈ B ⇐⇒ σ. ω = (ωσ(1), . . . , ωσ(m), ωm+1, ωm+2, . . . ) ∈ B

“B does not depend on the first m components”.

Note also that F∞ ( P, since

A
def.= lim inf{Sn = 0} = {ω : Sn(ω) = 0 for n large enough} ∈ P ,

thanks to (4.1.15), but A /∈ F2 = σ(X2,X3, . . . ), since

ω = (0, 0, 0, . . .) ∈ A but (1, 0, 0, . . .) /∈ A

“A depends on the first component ω1 of ω”. �

In the case of an infinite product probability space (Ω,A, P ), the Hewitt-Savage 0-1
law generalizes Kolmogorov’s 0-1 law:

Theorem 4.5. (Hewitt-Savage 0-1 law) Let d ≥ 1,

(4.1.18) for A ∈ P, one has either P (A) = 0 or 1 .

We first discuss an application of the Hewitt-Savage 0-1 law, to analyze the asymptotic
behavior of the 1-dimensional random walk.

Theorem 4.6. Let Sn, n ≥ 0, be a random walk on R. Then, one of the following four
possibilities holds:

(4.1.19)

a) ∀n ≥ 0, Sn = 0 P -a.s.,

b) lim
n→∞

Sn = +∞ P -a.s.,

c) lim
n→∞

Sn = −∞ P -a.s.,

d) lim
n→∞

Sn = −∞ and lim
n→∞

Sn = +∞ P -a.s.

Proof. It follows from (4.1.16) that lim
n
Sn is P-measurable, and thanks to (4.1.18), there

exists one c ∈ [−∞,+∞] for which

(4.1.20) lim
n
Sn = c P -a.s.
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(c is simply the same as inf{a ∈ [−∞,+∞]; P [lim Sn ≤ a] = 1}). Note that Sn+1 =
X1 + S′

n, where S′
n = X2 + · · · + Xn+1, n ≥ 1, is also a random walk, with the same

distribution as Sn. Consequently (see Remark 2 above),

(4.1.21) c
P -a.s.= lim

n
Sn+1 = X1 + lim S′

n
P -a.s.= X1 + c .

If we have c ∈ R, then

(4.1.22)
c
P -a.s.= X1 + c =⇒ X1

P -a.s.= 0

=⇒ ∀n ≥ 0, Sn = 0 =⇒ a) holds .

In the case when c = ±∞, then in particular X1 is not P -a.s. = 0. We can argue similarly
with limn Sn, and find that limn Sn

P -a.s.= c′ ∈ [−∞,+∞]. From the condition that X1 is
not P -a.s. = 0, it follows, as in (4.1.22), that c′ /∈ R, i.e. c′ = ±∞.

In other words: if c ∈ {+∞,−∞}, then one also has c′ ∈ {+∞,−∞}. It follows that
we are in one of cases b), c), or d).

Example 4.7.

1) X1 and −X1 have the same distribution, and X1 is not P -a.s. = 0. Then
−Sn, n ≥ 1, and Sn, n ≥ 1, are two random walks with the same distribution. We have

lim
n
Sn

P -a.s.= c ∈ {+∞,−∞}, and lim
n

(−Sn) P -a.s.= −lim
n
Sn.

Hence, limn Sn
P -a.s.= −limn Sn = −c ∈ {+∞,−∞} =⇒ c = +∞, and (4.1.19) d)

holds.

In particular, this holds for the simple random walk on Z.

2) X1 = 1 + X′
1, where X′

1 is Cauchy distributed, that is, µX′
1
(dx) = 1

π
1

1+x2 dx.
Note that E[|X1|] =∞, so we are not allowed to use the Law of Large Numbers!

Define S′
n = X ′

1 + · · ·+X ′
n, then S′

n

n is Cauchy distributed as well, since

ϕS′
n
n︸︷︷︸

characteristic function

(t) independence= ϕX′
1

( t
n

)n
= exp

{
− n

∣∣∣
t

n

∣∣∣
}

= ϕX′
1
(t) .

Hence, one has

P [Sn ≥ 0] ≥ P [S′
n ≥ 0] = P

[S′
n

n
≥ 0
]

=
1
2
,

and P [Sn ≤ 0] = P
[S′

n

n
≤ −1

]
= P [X ′

1 ≤ −1] > 0 .

(4.1.19) b) and c) are not possible: indeed, in case b),

Sn
P -a.s.−→ +∞ =⇒ P [Sn ≤ 0] Lebesgue−→

n→∞
0 ,
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which is a contradiction, and similarly, in case c),

Sn
P -a.s.−→ −∞ =⇒ P [Sn ≥ 0] −→

n→∞
0 .

Hence, (4.1.19) d) holds:

(4.1.23) Sn is of the same type d) as S′
n!

�

Let us now turn to the proof of the Hewitt-Savage 0-1 law.

Proof. Consider a symmetric event A ∈ P, it suffices to show that

(4.1.24) P (A)2 = P (A) ,

since then it would follow that P (A) = 0 or 1. We need the following approximation
result.

Lemma 4.8. Let B ∈ A, then one has:

(4.1.25) for any ǫ > 0, there exists C ∈ ⋃
n≥1

σ(X1, . . . ,Xn) with E[|1B − 1C |] ≤ ǫ .

Proof. Let D be the class of all B ∈ A for which (4.1.25) is satisfied. Then D is a Dynkin
system:

• Ω ∈ D is clear.

• For B ∈ D and ǫ > 0, let C ∈ ⋃n≥1 σ(X1, . . . ,Xn) be as in (4.1.25). Then one has
E[|1Bc − 1Cc |] = E[|1B − 1C |] ≤ ǫ. Hence, Bc ∈ D.

• Let Bi ∈ D be pairwise disjoint events, ǫ > 0, and Ci ∈
⋃

n≥1 σ(X1, . . . ,Xn) with
E[|1Bi

− 1Ci
|] ≤ ǫ

2i+1 .

Note that for m ≥ 1, one has

(4.1.26)
∣∣∣1 m⋃

i=1
Bi

− 1 m⋃
i=1

Ci

∣∣∣ ≤
m∑

i=1

|1Bi
− 1Ci

|,

since x ∈
m⋃
i=1

Bi and x /∈
m⋃
i=1

Ci =⇒ ∃j ∈ {1, . . . ,m} with x ∈ Bj\Cj , and analogously,

x ∈
m⋃
i=1

Ci and x /∈
m⋃
i=1

Bi =⇒ ∃k ∈ {1, . . . ,m} with x ∈ Ck\Bk.

Let us choose m such that
∑∞

i=m+1 P (Bi) ≤ ǫ
2 . Then one has, thanks to (4.1.26),

E
[∣∣∣1 ∞⋃

i=1
Bi

− 1 m⋃
i=1

Ci

∣∣∣
]
≤

∞∑

i=m+1

P [Bi] +
m∑

i=1

E
[
|1Bi
− 1Ci

|
]

≤ ǫ

2
+ ǫ

m∑

i=1

1
2i+1

≤ ǫ =⇒
∞⋃
i=1

Bi ∈ D .
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Clearly, D contains the π-system
⋃

n≥1 σ(X1, . . . ,Xn). Dynkin’s lemma (1.3.9) thus im-
plies that D = A(= σ(

⋃
n≥1 σ(X1, . . . ,Xn))). This establishes (4.1.25).

Let ǫ > 0. Using (4.1.25), there exist n ≥ 1 and Ã ∈ σ(X1, . . . ,Xn) such that

E[|1A − 1Ã|] ≤ ǫ.

Let σ be the permutation on {1, . . . , 2n} defined by

j ∈ {1, . . . , n} 7→ σ(j) = j + n,

j ∈ {n + 1, . . . , 2n} 7→ σ(j) = j − n.

1 n

n+ 1

2n

Fig. 4.2

Note that the image of P =
⊗

i≥1 µ under σ. is exactly P , since

P [(σ.)−1(B1 × · · · ×B2n × · · · ×Bm × R× . . .R)]

= P [Xσ(1) ∈ B1, . . . ,Xσ(2n) ∈ B2n, X2n+1 ∈ B2n+1, . . . ,Xm ∈ Bm]
independence=

m∏
i=1

µ(Bi) .

Then,

(4.1.27)

ǫ ≥ E
[
|1A − 1Ã|

]
= E

[
|1A − 1Ã| ◦ σ.

]

= E
[
|1A ◦ σ. − 1Ã ◦ σ.|

]
= E

[
|1A − 1(σ.)−1(Ã)|

]
.

տ ր
A is symmetric

Now, it follows from the construction of σ, and Ã ∈ σ(X1, . . . ,Xn), that B̃ def.= (σ−1
. )(Ã) ∈

σ(Xn+1, . . . ,X2n). Hence, Ã and B̃ are independent. The triangle inequality thus implies
that

(4.1.28)
|P (A) − P (A)2 − (P (Ã)− P (Ã)P (B̃))|
≤ 2|P (A) − P (Ã)|+ |P (A) − P (B̃)| ≤ 3ǫ ,

and
P (Ã)− P (Ã)P (B̃) independence= P (Ã)− P (Ã ∩ B̃) .
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However,
∣∣1

Ã∩B̃ −
1A︷ ︸︸ ︷

1A · 1A
∣∣ ≤ |1

B̃
(1

Ã
− 1A)|+ |1A(1

B̃
− 1A)|

≤ |1
Ã
− 1A|+ |1B̃ − 1A| .

It follows from (4.1.27) that

|P (Ã)− P (Ã ∩ B̃)| ≤ 3ǫ

(triangle inequality). Using (4.1.28), we finally obtain

|P (A) − P (A)2| ≤ 3ǫ + 3ǫ = 6ǫ,

where ǫ > 0 is arbitrary. This completes the proof of (4.1.24).

4.1.2 Strong Markov property, Wald’s identity

Stopping times play a particularly important role when studying random walks. As we
now explain, if N is a finite stopping time, then the “random walk after time N”, i.e.
(SN+n−SN)n≥0, has the same distribution as the original random walk (Sn)n≥0, and it is
independent of FN . This property satisfied by the random walk (Sn)n≥0 is known as the
strong Markov property.

1

0 n

simple random walk Sn

N(ω)

SN+n − SN

Fig. 4.3

Let us consider Xi, i ≥ 1, some independent random variables on (Ω,A, P ) with distri-
bution µ. In what follows, we will always consider the natural filtration (Fn), defined
by

F0 = {φ,Ω} “trivial σ-algebra” ,

Fn = σ(X1,X2, . . . ,Xn), n ≥ 1 .
(4.1.29)

Theorem 4.9. Let N be an (Fn)-stopping time such that P (N <∞) > 0, then

(4.1.30)
on {N <∞}, the random variables XN+n, n ≥ 1 ,
are independent, µ-distributed, and independent of FN .
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In other words, the random variables XN+n, n ≥ 1, on the probability space

(“new space”︷ ︸︸ ︷
{N <∞} , A ∩ {N <∞}, Q(·) def.=

1
P [N <∞]

· P [· ∩ {N <∞}]
)

are independent, µ-distributed random variables, which are independent of FN∩{N <∞}.
Hence,

(4.1.31)
on {N <∞}, (SN+n − SN )n≥0 is independent of FN , and

it possesses the same distribution as the random walk (Sn)n≥0 .

Proof. (4.1.31) follows directly from (4.1.30): indeed, on {N <∞}, one has SN+n−SN = 0
for n = 0, and SN+n − SN = XN+1 + · · ·+XN+n for n ≥ 1.

Proof of (4.1.30). It is enough to show that for A ∈ FN and for B1, . . . , Bk ∈ B(R), k ≥ 1,
one has

(4.1.32) Q

(
A ∩ {N <∞} ∩

k⋂

j=1

{XN+j ∈ Bj}
)

= Q(A ∩ {N <∞})
k∏

j=1

µ(Bj) .

For n ∈ N, one has

(4.1.33)

Notation for “
⋂

”y
P
[
A ∩ {N = n}︸ ︷︷ ︸

∈Fn

, Xn+j ∈ Bj , 1 ≤ j ≤ k
]

independence= P
[
A ∩ {N = n}

]
P
[
Xn+j ∈ Bj , 1 ≤ j ≤ k

]

= P
[
A ∩ {N = n}

] k∏
j=1

µ(Bj) .

By summing over n, we obtain

P
[
A ∩

( ⋃
n≥0
{N = n}

)
, XN+j ∈ Bj, 1 ≤ j ≤ k

]

=
∑

n≥0

P
[
A ∩ {N = n}, XN+j ∈ Bj , 1 ≤ j ≤ k

]

=
∑

n≥0

P
[
A ∩ {N = n}, Xn+j ∈ Bj, 1 ≤ j ≤ k

]

(4.1.33)
=

∑

n≥0

P
[
A ∩ {N = n}

] k∏
j=1

µ(Bj) = P
[
A ∩ {N <∞}

] k∏
j=1

µ(Bj) .

This proves (4.1.32). �
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We now prove a useful identity, which is specific to random walks.

Theorem 4.10. (Wald’s identity).

If E[|X1|] <∞, and N is an (Fn)-stopping time with E[N ] <∞, then

(4.1.34) E
[
|SN |

]
<∞ , and E[SN ] = E[X1]E[N ] .

Proof. This follows from the optional stopping theorem, since (Sn − nE[X1]), n ≥ 0,
is an (Fn)-martingale. This uses the fact that (Fn) is the filtration generated by the
independent random variables Xi, i ≥ 1: Xn+1 is thus independent of Fn, which implies
E[Xn+1|Fn] = E[Xn+1] = E[X1].

Note that in the previous proof, it is important that N is a stopping time for the
natural filtration (Fn) (generated by the Xi). Wald’s identity does not necessarily hold
true if N is a stopping time with respect to a larger filtration (the key property that Xn+1

is independent of Fn would be sufficient).

Example 4.11.

1) Let Sn be the simple random walk, and define N = inf{n ≥ 0, Sn = 1}.
We know that N <∞ P -a.s., but one also has

(4.1.35) E[N ] =∞ !

Otherwise, we could write

1 = E[SN ] = E[X1] · E[N ] = 0 · E[N ] = 0 ,

which is obviously a contradiction.

2) Let Sn be the simple random walk. Let us also consider a, b ∈ Z with a < 0 < b, and

N = inf{n ≥ 0, Sn /∈ (a, b)} = inf{n ≥ 0, Sn = a or b} .

ba 0

Fig. 4.4

Then E[N ] <∞, since for k ≥ 0, one has

{Xk+1 = 1, . . . ,Xk+b−a = 1} ⊆ {N ≤ k + (b− a)}
“b− a successive increments = 1 =⇒ the random walk exits from (a, b)” .

Hence,
{
N > n(b− a)

}
⊆

n−1⋂
ℓ=0

{
Xℓ(b−a)+1 = 1, . . . ,X(ℓ+1)(b−a) = 1

}c
,
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and

(4.1.36)

P [N > n(b− a)]
independence

≤
n−1∏
ℓ=0

(
1− P

[
Xℓ(b−a)+1 = 1, . . . ,X(ℓ+1)(b−a) = 1

])

=
(
1− 2−(b−a)

)n

(note that since the trials are independent, the geometric distribution arises). This implies

E[N ] =
∞∑

k=1

P [N ≥ k] <∞ .

Thanks to (4.1.34), one has

(4.1.37) E[SN ] = E[X1] E[N ] = 0 ,

and one can also write

E[SN ] = aP [SN = a] + bP [SN = b] = aP [SN = a] + b(1− P [SN = a]) .

Hence,

(4.1.38) P [SN = a] =
b

b− a, P [SN = b] =
−a
b− a

(which can also be obtained directly via martingale techniques).

3) Renewal process (see Section 1.5)

We consider Xi > 0 with E[Xi] <∞, Tn = X1+· · ·+Xn “arrival time of the nth customer”
(with the convention T0 = 0), and Nt = sup{n ≥ 0, Tn ≤ t} “number of customers up to
time t (≥ 0)”.

4 = Nt + 1

T3 T4T20 t

time
T1

Fig. 4.5

S
def.= inf{n ≥ 0, Tn > t} = Nt + 1 is a stopping time since

{S = 0} = ∅, and {S = n} = {T1 ≤ t, . . . , Tn−1 ≤ t, Tn > t} ∈ Fn .

Analogously to (4.1.36), one can show that E[S] <∞, and one has the identity

(4.1.39) E[TNt+1] = E[X1]
(
E[Nt] + 1

)
.

�
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4.1.3 Recurrence vs transience

We consider a random walk Sn, n ≥ 0, on Rd, d ≥ 1:

S0 = 0 , Sn = X1 + · · ·+Xn ,

where the Xi, i ≥ 1, are independent with distribution µ on Rd.

Thanks to the Hewitt-Savage 0-1 law, we know that for B ∈ B(Rd),

(4.1.40) lim sup
n≥1

{Sn ∈ B} =
{
ω ∈ Ω : Sn(ω) ∈ B infinitely often

}

has either probability 0 or 1.

If P
[

lim supn≥1{Sn ∈ B}
]

= 1, then “the random walk visits the set B infinitely
often” P -a.s., which brings us to the following definition. We use the notation: for x ∈ Rd,
‖x‖ = sup1≤i≤d |xi|.

Definition 4.12.

• x ∈ Rd is called a recurrence value of the random walk Sn, n ≥ 0, if

(4.1.41) ∀ǫ > 0, P

[
lim sup

n≥1

{
‖Sn − x‖ < ǫ

}]
= 1 .

Notation: R = set of all recurrence values.

• x ∈ Rd is called a possible value of the random walk Sn, n ≥ 0, if

(4.1.42) ∀ǫ > 0, ∃n ≥ 0 with P
[
‖Sn − x‖ < ǫ

]
> 0 .

Notation: M = set of all possible values.

Example 4.13. Let us consider the simple random walk on Zd, obtained for

µ(dy) =
1
2d

∑

e∈Zd

|e|=1

δe(dy).

e2

0
−e1 e1

−e2

Fig. 4.6
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If at time n, the random walk is at position Sn, then it jumps at time n+ 1 to one of the
2d neighboring sites.

a possible path ofS3S2

S4

S6 S7 S8

Sn, 0 ≤ n ≤ 8

0

S1 = S5

Fig. 4.7

Note that each x ∈ Zd is a possible value, and that Sn ∈ Zd P -a.s., for all n ≥ 0. Hence,
M = Zd. �

The set R of recurrence values is somewhat more complicated to determine. At this
point, we know that in the case of dimension d = 1, one has R = Z since

P

[
lim
n→∞

Sn = −∞, lim
n→∞

Sn = +∞
]

= 1

(see Example 1) after the Hewitt-Savage 0-1 law, Section 3.2).

We start with a theorem that describes the structure of the set R of recurrence values.
Note that R ⊆M (the set of possible values).

Theorem 4.14. One has either

(4.1.43)
i) R = ∅,

or ii) R is a closed subgroup of Rd .

Moreover, in case ii), one has R =M (set of possible values).

Proof. R is closed, since x /∈ R =⇒ ∃ǫ0 > 0 such that

P
[

lim sup
{
‖Sn − x‖ < ǫ0

}]
= 0 ,

and so B(x, ǫ0) ⊆ Rc.

We now assume that R 6= ∅, and we show

(4.1.44) x ∈ R, y ∈ M =⇒ x− y ∈ R .
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Our result (4.1.43) ii) will then follow, since (i) for x = y ∈ R, one has x − y = 0 ∈ R,
(ii) 0 − y = −y ∈ R (i.e. the inverse stays in R), and (iii) for x, y ∈ R, one also has
−x︸︷︷︸
∈R
−y = −(x+ y) ∈ R =⇒ x+ y ∈ R.

Consequently, R is a closed subgroup of Rd. In addition, for x = 0 ∈ R, y ∈ M, one
obtains −y ∈ R, and so y ∈ R. This implies M = R, which completes the proof.

Proof of (4.1.44). Consider ǫ > 0, x ∈ R, y ∈ M. Then one has, for an n0 ≥ 0,

P
[
‖Sn0 − y‖ < ǫ

]
> 0 .

Since x ∈ R, one also has, for m ≥ 0,

0 = P
[
‖Sn − x‖ > ǫ, ∀n ≥ n0 +m

]

≥ P
[
{‖Sn0 − y‖ < ǫ} ∩ {‖Sn0+k − Sn0 − (x− y)‖ ≥ 2ǫ, ∀k ≥ m}

]

(4.1.31)
= P

[
‖Sn0 − y‖ < ǫ

]
· P
[
‖Sk − (x− y)‖ ≥ 2ǫ, ∀k ≥ m

]
.

Hence, for m ≥ 0,
P
[
‖Sk − (x− y)‖ ≥ 2ǫ, ∀k ≥ m

]
= 0 ,

and so
P

[
lim sup

k

{
‖Sk − (x− y)‖ < 2ǫ

}]
= 1 ,

where ǫ > 0 is arbitrary. Our claim (4.1.44) follows. �

Remark 4.15.

• A closed subgroup of R is either equal to R, or to aZ = {a ·k; k ∈ Z} for some a ≥ 0.

• A closed subgroup of Rd is “of the form Rp × Zq with p+ q ≤ d”, i.e.

{ d∑

i=1

ti ei; where ti ∈ R, 1 ≤ i ≤ p, ti ∈ Z, p+ 1 ≤ i ≤ p+ q

}
,

for some basis (ei)1≤i≤d of Rd (see Bourbaki, Topologie Générale VII, 2).

Terminology:

• In the case (4.1.43) i) (i.e. R = ∅), the random walk is called transient.

• In the case (4.1.43) ii), the random walk is called recurrent. �

Now, we would like to present a concrete criterion to decide whether a random walk
is recurrent or transient.
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Theorem 4.16. Let Sn, n ≥ 0, be a random walk on Rd. One has either

(4.1.45)

i)
∑

n≥0

P
[
‖Sn‖ < ǫ

]
<∞, ∀ǫ > 0 ,

or ii)
∑

n≥0

P
[
‖Sn‖ < ǫ

]
=∞, ∀ǫ > 0

(with ‖ · ‖ the sup-norm).

(4.1.46) The random walk is transient in case i), and it is recurrent in case ii).

Proof. We first show (4.1.45).

It is enough to prove that for any ǫ0 > 0,

(4.1.47)
∑

n≥0

P
[
‖Sn‖ < ǫ0

]
<∞ =⇒ ∀M ≥ 1,

∑

n≥0

P
[
‖Sn‖ < Mǫ0

]
<∞ .

Indeed, since the function φ: ǫ > 0 7→ ∑
n≥0 P

[
‖Sn‖ < ǫ

]
∈ [0,∞] is non-decreasing, it

follows from (4.1.47) that either φ(ǫ) <∞, ∀ǫ > 0, or φ(ǫ) =∞, ∀ǫ > 0.

Our claim (4.1.47) is a consequence of the following lemma.

Lemma 4.17. Consider ǫ > 0 and M ≥ 2, then

(4.1.48)
∞∑

n=0

P
[
‖Sn‖ < Mǫ

]
≤ (2M)d

∞∑

n=0

P
[
‖Sn‖ < ǫ

]
.

Proof.

(4.1.49)
∞∑

n=0

P
[
‖Sn‖ < Mǫ

]
≤

∞∑

n=0

∑

k∈{−M,...,M−1}d
P
[
Sn ∈ kǫ+ [0, ǫ)d

]
.

Let us fix some k ∈ {−M, . . . ,M−1}d. Defining the stopping time Tk = inf
{
m ≥ 0, Sm ∈

kǫ+ [0, ǫ)d
}

, we obtain

(4.1.50)

∞∑

n=0

P
[
Sn ∈ kǫ+ [0, ǫ)d

]
=

∞∑

n=0

n∑

m=0

P
[
Sn ∈ kǫ+ [0, ǫ)d, Tk = m

]

Fubini=
∞∑

m=0

∑

n≥m

P
[
Sn ∈ kǫ+ [0, ǫ)d︸ ︷︷ ︸

⊆ {‖Sn − Sm‖ < ǫ} (on the event {Tk = m})

, Tk = m
]

≤
∞∑

m=0

∑

n≥m

P
[
‖Sn − Sm‖ < ǫ, Tk = m︸ ︷︷ ︸

∈Fm

]

independence=
∞∑

m=0

∑

n≥m

P
[
‖Sn − Sm‖ < ǫ

]
· P [Tk = m]

=
∞∑

n=0

P
[
‖Sn‖ < ǫ

]
·

∞∑

m=0

P [Tk = m]

︸ ︷︷ ︸
≤1

≤
∞∑

n=0

P
[
‖Sn‖ < ǫ

]
.
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Fig. 4.8: Path of a symmetric random walk
(starting point in the middle of the picture, 107 steps)

Fig. 4.9: Path of a three-dimensional symmetric random walk
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It follows from (4.1.49) - (4.1.50) that

∞∑

n=0

P
[
‖Sn‖ < Mǫ

]
≤
∣∣ {−M, . . . ,M − 1}d︸ ︷︷ ︸

=(2M)d

∣∣
∞∑

n=0

P
[
‖Sn‖ < ǫ

]
.

We now show (4.1.46).

In case (4.1.45) i), one has P
[

lim sup{‖Sn‖ < ǫ}
]

= 0 for all ǫ > 0 (using the first
Borel-Cantelli lemma), which implies 0 /∈ R, and thus, using (4.1.43), that R = ∅: the
random walk is transient.

There remains to prove that in case (4.1.45) ii), the random walk is recurrent, which
will come from the following lemma.

Lemma 4.18. Let ǫ > 0,

(4.1.51)
∑

n≥0

P
[
‖Sn‖ < ǫ

]
=∞ =⇒ P

[
lim sup

{
‖Sn‖ < 2ǫ

}]
= 1 .

Proof. One has

lim inf
{
‖Sn‖ ≥ ǫ

}
=

∞⋃
m=0

{
‖Sm‖ < ǫ, ‖Sn‖ ≥ ǫ, ∀n ≥ m + 1

}
︸ ︷︷ ︸

pairwise disjoint events

“m is the last time at which ‖Sn‖ < ǫ holds”. Hence,

1 ≥
∞∑

m=0

P
[
‖Sm‖ < ǫ, ‖Sn‖ ≥ ǫ, ∀n ≥ m+ 1

]

≥
∞∑

m=0

P
[ {
‖Sm‖ < ǫ

}
︸ ︷︷ ︸
independent

∩
{
‖Sn − Sm‖ ≥ 2ǫ, ∀n ≥ m+ 1︸ ︷︷ ︸

independent

}]

=
∞∑

m=0

P
[
‖Sm‖ < ǫ

]

︸ ︷︷ ︸
= ∞ by assumption

· P
[
‖Sℓ‖ ≥ 2ǫ, ∀ℓ ≥ 1

]
.

(4.1.52)

Hence, P [‖Sℓ‖ ≥ 2ǫ, ∀ℓ ≥ 1] = 0. In the same way, define for k ≥ 2, m ≥ 0,

Am =
{
‖Sm‖ < ǫ, ‖Sn‖ ≥ ǫ, ∀n ≥ m+ k

}
.

For ω ∈ Am, the last time m0(ω) at which ‖Sm‖ < ǫ is finite, and

m ≤ m0(ω) < m+ k =⇒ m0(ω)− k < m ≤ m0(ω)

=⇒ k ≥
∞∑

m=0

1Am(ω), ∀ω ∈ Ω .
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We thus obtain, analogously to (4.1.52),

(4.1.53) k ≥
∞∑

m=0

P [Am] ≥
∞∑

m=0

P
[
‖Sm‖ < ǫ

]

︸ ︷︷ ︸
=∞

· P
[
‖Sℓ‖ ≥ 2ǫ, ∀ℓ ≥ k

]
.

It follows that P
[
‖Sℓ‖ ≥ 2ǫ, ∀ℓ ≥ k

]
= 0. Hence, P

[
lim infℓ ‖Sℓ‖ ≥ 2ǫ

]
= 0, from which

(4.1.51) follows.

Special case:

(4.1.54) the distribution µ of the Xi, i ≥ 1, is concentrated on Zd, i.e. µ(Zd) = 1 .

In this case, M⊆ Zd. One has either

∞ >
∑

n≥0

P
[
‖Sn‖ < 1

] (4.1.54)
=

∑

n≥0

P [Sn = 0]

and the random walk is transient, or

∞ =
∑

n≥0

P
[
‖Sn‖ < 1

]
=
∑

n≥0

P [Sn = 0]

and the random walk is recurrent.

In other words: from the convergence (resp. divergence) of the series
∑

n≥0 P [Sn = 0],
one can deduce the transience (resp. the recurrence) of Sn.

The following lemma provides a convenient way to estimate P [Sn = 0].

Lemma 4.19. Let µ be given satisfying (4.1.54), and let ϕ be the characteristic function
of µ:

(4.1.55) ϕ(t) =
∫

Zd

exp{it · x}µ(dx), t ∈ Rd .

Then,

(4.1.56) P [Sn = 0] =
1

(2π)d

∫

(−π,π)d
ϕ(t)ndt, n ≥ 1 .

Proof. Note that the characteristic function of Sn is equal to ϕ(t)n. It is thus enough to
show (4.1.56) for n = 1. Now,

1
(2π)d

∫

(−π,π)d
ϕ(t)dt =

1
(2π)d

∫

(−π,π)d

∫

Zd

eit·x µ(dx) dt

Fubini=
∫

Zd

(
1

(2π)d

∫

(−π,π)d
eit·x dt

)
µ(dx) .
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Moreover, for k ∈ Z,

1
2π

∫

(−π,π)
eit·k dt =





1 for k = 0 ,

(eiπk − e−iπk)
ik

= 0 for k 6= 0 .

Hence,
1

(2π)d

∫

(−π,π)d
eit·x dt =

{
1 for x = 0

0 for x ∈ Zd\{0} ,

which implies
1

(2π)d

∫

(−π,π)d
ϕ(t) dt = µ({0}) .

Example 4.20. For the simple random walk,

µ(dx) =
1
2d

∑

e∈Zd

|e|=1

δe(dx) ,

and

(4.1.57) ϕ(t) =
1
2d

∑

e∈Zd

|e|=1

eit·e =
1
d

d∑

i=1

cos ti , where t = (t1, . . . , td) .

Using (4.1.56), we obtain

P [Sn = 0] =
1

(2π)d

∫

(−π,π)d
ϕ(t)n dt .

For r ∈ (0, 1), we can then consider the (summable) series

(4.1.58)

∑

n≥0

rn P [Sn = 0] =
∑

n≥0

1
(2π)d

rn
∫

(−π,π)d
ϕ(t)n dt

Lebesgue=
1

(2π)d

∫

(−π,π)d

∑

n≥0

rn ϕ(t)n dt =
1

(2π)d

∫

(−π,π)d

1
1− rϕ(t)

dt

=
1

(2π)d

∫

(−π,π)d

1

1− r
d

d∑
i=1

cos ti

dt .

We now let r ↑ 1 in this equality. On the one hand,

lim
r↑1

∑

n≥0

rn P [Sn = 0]
monotone
convergence=

∑

n≥0

P [Sn = 0] .

↑
possibly +∞
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On the other hand, let us divide the integral on the right-hand side into two parts: one
has

lim
r↑1

∫

(−π,π)d\(−π
2 ,

π
2 )

d

1

1− r
d

d∑
i=1

cos ti

dt

↑
cos ti ≤ 0 for at least one i

dominated
convergence=

∫

(−π,π)d\(−π
2 ,

π
2 )

d

1

1− 1
d

d∑
i=1

cos ti

dt

(the integrand can be dominated by 1
1− d−1

d

= d), and the monotone convergence theorem
implies that

lim
r↑1

∫

(−π
2 ,

π
2 )

d

1

1− r
d

d∑
i=1

cos ti

dt =
∫

(−π
2 ,

π
2 )

d

1

1− 1
d

d∑
i=1

cos ti

dt

↑
possibly +∞

(the integrand is non-decreasing in r since all cos ti ≥ 0). We thus obtain the identity

(4.1.59)
∑

n≥0

P [Sn = 0] =
1

(2π)d

∫

(−π,π)d

1

1− 1
d

d∑
i=1

cos ti

dt ,

where both sides can be equal to +∞. Now, for t→ 0,

1− 1
d

d∑

i=1

cos ti ∼
1
2d
|t|2 =

1
2d

(t21 + · · ·+ t2d) .

As a consequence, the integral in (4.1.59) converges for d ≥ 3, and it diverges for d ≤ 2.
In other words:

(4.1.60)
the simple random walk is recurrent for d = 1, 2 ,

transient for d ≥ 3 .

�

Further applications of (4.1.45) - (4.1.46) can be found in the exercises.

Remark 4.21. As a conclusion, let us mention a final (somewhat surprising) example.
We know that in dimension one, for the symmetric stable distribution µ with parameter
α ∈ (0, 2) (i.e. ϕ(t) = exp{−c |t|α}, c > 0 fixed), one has, for symmetry reasons (see
(4.1.19)): P -a.s., lim Sn = +∞ and lim Sn = −∞.

Nevertheless, one can show that for α < 1, the random walk is transient on R!
“The random walk passes over 0 by making large jumps”. �
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4.2 Markov chains: an introduction

Markov chains are stochastic processes X0, . . . ,Xn, . . . taking values in a state space S
(equipped with a σ-algebra S) such that: for each n, the best forecast of the future after
time n, given the past up to this time n, depends only on the information contained in
Xn. More precisely, one has:

E
[
f(Xn, . . . ,Xn+k) | Fn

]
= E

[
f(Xn, . . . ,Xn+k) |σ(Xn)

]
P -a.s.,

for all n, k ≥ 0, and all bounded measurable functions f : Sk+1 → R, where Fn =
σ(X0, . . . ,Xn) contains the information on the past up to time n.

4.2.1 Stochastic kernels

Stochastic kernels play an important role in the construction of canonical Markov chains,
and also of general canonical stochastic processes.

Definition 4.22. Let (Ω1,A1) and (Ω2,A2) be two measurable spaces. A stochastic kernel
K from (Ω1,A1) to (Ω2,A2) is a map from Ω1 ×A2 to [0, 1] such that

for all A ∈ A2, ω1 ∈ Ω1 7→ K(ω1, A) is A1-measurable,(4.2.1)

for all ω1 ∈ Ω1, the map A ∈ A2 7→ K(ω1, A) ∈ [0, 1](4.2.2)

is a probability measure on (Ω2,A2).

Notation: K(ω1, dω2) (due to (4.2.2)).

Example 4.23.

1) Ω1 = Ω2 = Z, A1 = A2 = P(Z) (the power set of Z). Then

(4.2.3) K(x, dy) = 1
2

(
δx+1(dy) + δx−1(dy)

)
, for x ∈ Z ,

is a stochastic kernel from Z to Z. This kernel is directly related to the simple random
walk on Z.

2) Ω1 = Ω2 = N (= {0, 1, . . . }), A1 = A2 = P(N), ν a distribution on N. Then

K(x, dy) = δ0(dy) if x = 0,

= P [ξ1 + · · ·+ ξx ∈ dy] if x ≥ 1 ,
(4.2.4)

where ξi, i ≥ 1, are i.i.d. random variables with distribution ν, is a stochastic kernel from
N to N. This kernel is directly related to the Galton-Watson chain, see (3.5.1).

3) (Ωi,Ai) measurable spaces (i = 1, 2), ν a probability measure on (Ω2,A2), and f(ω1, ω2) ≥
0 a measurable function on Ω1 × Ω2, with

∫
f(ω1, ω2) dν(ω2) = 1 for all ω1 ∈ Ω1. Then

(4.2.5) K(ω1, dω2) = f(ω1, ω2) ν(dω2), ω1 ∈ Ω1

(i.e. K(ω1, A) =
∫
A f(ω1, ω2) dν(ω2) for A ∈ A2) is a stochastic kernel from (Ω1,A1) to

(Ω2,A2). �
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Proposition 4.24. Let P1 be a probability measure on (Ω1,A1), and K a stochastic
kernel from (Ω1,A1) to (Ω2,A2). Then, there exists a unique probability measure P on
(Ω1 × Ω2,A1 ⊗A2) such that

(4.2.6) P [A1 ×A2] =
∫

A1

K(ω1, A2)P1(dω1) for all A1 ∈ A1, A2 ∈ A2 .

Furthermore, a measurable function f : Ω1 × Ω2 → R is P -integrable if and only if

(4.2.7)
∫

Ω1

(∫

Ω2

|f(ω1, ω2) |K(ω1, dω2)
)
P1(dω1) <∞ ,

and in this case,

(4.2.8)
∫

Ω1×Ω2

f dP =
∫

Ω1

( ∫

Ω2

f(ω1, ω2)K(ω1, dω2)
)
P1(dω1) .

Notation: P = P1 ×K, P is called semi-product of P1 and K.

Proof.

• The uniqueness of P is clear, as the collection {A1 × A2;A1 ∈ A1, A2 ∈ A2} is a
π-system that generates A1 ⊗A2 (see Dynkin’s lemma, (1.3.9)).

• Existence: Using Dynkin’s lemma, one sees that

(4.2.9) for all A ∈ A1 ⊗A2, ω1 7→
∫

Ω2

1A(ω1, ω2)K(ω1, dω2) is A1-measurable .

If we set

(4.2.10) P [A] =
∫

Ω1

(∫

Ω2

1A(ω1, ω2)K(ω1, dω2)
)
P1(dω1) for A ∈ A1 ⊗A2 ,

then
P [Ω1 × Ω2] = 1 ,

and for a sequence of pairwise disjoint Ai, i ≥ 1, with Ai ∈ A1⊗A2 for all i ≥ 1, we obtain

P

( ⋃
i≥1

Ai

)
=

∫

Ω1

( ∫

Ω2

∑

i≥1

1Ai
(ω1, ω2)K(ω1, dω2)

)
P1(dω1)

σ-additivity
=

∫

Ω1

∑

i≥1

(∫

Ω2

1Ai
(ω1, ω2)K(ω1, dω2)

)
P1(dω1)

monotone
convergence

=
∑

i≥1

∫

Ω1

(∫

Ω2

1Ai
(ω1, ω2)K(ω1, dω2)

)
P1(dω1)

=
∑

i≥1

P (Ai) .
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In other words, P is a probability measure on (Ω1 × Ω2,A1 ⊗ A2). Using an approxi-
mation by a non-decreasing sequence of step functions, we can then obtain the following
generalization of (4.2.10):

(4.2.11)

∫

Ω1×Ω2

f dP =
∫

Ω1

(∫

Ω2

f(ω1, ω2)K(ω1, dω2)
)
dP1(ω1)

for all f ≥ 0 measurable on Ω1 × Ω2 .

The remaining claims of the proposition then follow as in the proof of (1.2.16), (1.2.17).

Remark 4.25. In the case when K(ω1, dω2) = P2(dω2) (i.e. the kernel K does not
depend on ω1), the measure P in the previous proposition (see (4.2.6)) is simply the
product measure P1 ⊗ P2. �

Stochastic kernels are also useful to compute conditional expectations, as we now
explain. Let Z1, Z2 be measurable maps on (Ω,A, P ):

(4.2.12) Z1 : (Ω,A)→ (S1,S1), Z2 : (Ω,A)→ (S2,S2) .

We denote by P1 the distribution of Z1 on (S1,S1) under P , and we assume that the
distribution Q of Z = (Z1, Z2) on (S = S1 × S2,S1 ⊗ S2) is of the form

(4.2.13) Q = P1 ×K ,

where K is a stochastic kernel from (S1,S1) to (S2,S2).

Proposition 4.26. (under (4.2.12), (4.2.13)) Let f : (S,S1 ⊗ S2) → R be a measurable
function such that f(Z1, Z2) ∈ L1(Ω,A, P ). Then,

(4.2.14) EP
[
f(Z1, Z2) |σ(Z1)

] P -a.s.=
∫

S2

f(Z1(ω), s2)K(Z1(ω), ds2) .

Proof. Thanks to (1.2.16) and (4.2.7), one has f ∈ L1(S,Q), and
∫
|f | dQ =

∫

S1

(∫

S2

|f(s1, s2) |K(s1, ds2)
)
P1(ds1) <∞ .

Hence, φ : S1 → R defined by

s1 7→ φ(s1) =
∫

S2

f(s1, s2)K(s1, ds2) if
∫

S2

|f(s1, s2) |K(s1, ds2) <∞ ,

= 0 if
∫

S2

|f(s1, s2) |K(s1, ds2) =∞ ,

(4.2.15)

is an S1-measurable function, and
∫
S2
|f(s1, s2)|K(s1, ds2) = ∞ holds only on a set with

P1-measure zero. Moreover, φ is P1-integrable. Hence, φ(Z1) is σ(Z1)-measurable, and
P -integrable. We also know that σ(Z1) = {Z−1

1 (B); B ∈ S1}, and for B ∈ S1, we obtain

EP
[
f(Z1, Z2) 1B ◦ Z1

] (1.2.17)
=

∫

S
f(s1, s2) 1B(s1) dQ(s1, s2)

(4.2.13)
=

(4.2.8)

∫

S1

1B(s1)
(∫

S2

f(s1, s2)K(s1, ds2)
)
P1(ds1) =

∫

S1

1B φdP1
(1.2.17)

= EP
[
φ(Z1) 1B ◦ Z1

]
.

This equality shows that EP [f(Z1, Z2)|σ(Z1)] P -a.s.= φ(Z1), and (4.2.14) follows.
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Example 4.27. Let X1,X2 be independent random variables with distribution µ, resp.
ν. Consider a µ⊗ ν-integrable function f on R2, then

(4.2.16) E
[
f(X1,X2) |σ(X1)

]
=
∫

R
f(X1, y) dν(y) P -a.s.

�

A further connection with conditional expectations leads to the following definition.

Definition 4.28. Let (Ω,A, P ) be a probability space, and F a sub-σ-algebra of A. A
stochastic kernel K from (Ω,F) to (Ω,A) is called a regular conditional probability of P
given F if

(4.2.17) K(ω,A) = E
[
1A | F

]
P -a.s. for all A ∈ A ,

and there exists N ∈ F with P (N) = 0 such that

(4.2.18) K(ω,F ) = 1F (ω) for all F ∈ F and ω ∈ Ω\N .

Example 4.29. Let µ be a distribution on R, and K a stochastic kernel from R to R. We
define a probability measure on (R2,B(R2)) by P = µ×K, and we denote by X1,X2 the
canonical coordinates on R2. Define F = σ(X1), A = B(R2), and let R be the stochastic
kernel from (R2,F) to (R2,A) defined by

(4.2.19) R(ω,A) =
∫

1A(X1(ω), y) K(X1(ω), dy) for all A ∈ B(R2) .

Using (4.2.14) (in the case X1 = Z1, X2 = Z2, P = Q, 1A = f on R2), R satisfies (4.2.17).
Furthermore, for all F ∈ σ(X1), one has 1F = 1C ◦X1 for some C ∈ B(R), and so

R(ω,F ) =
∫

1C ◦X1(ω)K(X1(ω), dy) = 1C ◦X1(ω) = 1F (ω)

for ω ∈ Ω. Hence, (4.2.18) holds, and

(4.2.20) R is a regular conditional probability of P given σ(X1) .
�

Remark 4.30. In the case when Ω is a Polish space (i.e. (Ω, C) is a topological space,
and the topology C is generated by a metric d such that (Ω, d) is complete and separable),
A is the Borel σ-algebra on Ω, and F is generated by a countable collection, then there
exists a regular conditional probability of P (on (Ω,A)) given F (see Stroock: “Probability
Theory: an Analytic View”, p.256). �

4.2.2 Ionescu-Tulcea theorem, construction of Markov chains

We start with a general result (the Ionescu-Tulcea theorem) that can be used to construct
stochastic processes X0, . . . ,Xn, . . . . The idea of the construction is the following.

If a kernel Kn is associated with each time n ≥ 1, describing the distribution of Xn

given X0, . . . ,Xn−1, and if an initial distribution is also chosen for X0, then the theorem
constructs a probability measure corresponding to the distribution of the Xn, n ≥ 0.
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More precisely, we consider a sequence of measurable spaces

(4.2.21) (Si,Si)i≥0 ,

and we define the sequence of successive product spaces

(4.2.22)

Ω0 = S0, Ω1 = S0 × S1, . . . Ωn = S0 × S1 × · · · × Sn, . . .

A0 = S0, A1 = S0 ⊗ S1, . . . An = S0 ⊗ S1 ⊗ · · · ⊗ Sn︸ ︷︷ ︸
product σ-algebra

, . . .

We are also given

• an initial distribution on S0:

(4.2.23) P0 probability measure on (S0,S0) ,

• a sequence of kernels:

(4.2.24) Kn stochastic kernel from (Ωn−1,An−1) to (Sn,Sn), n ≥ 1 .

Furthermore, we define by induction, by means of (4.2.6),

(4.2.25)
Q0 = P0 on (Ω0 = S0, A0 = S0), and for n ≥ 0,

Qn+1 = Qn ×Kn+1 on (Ωn+1,An+1) .

We obtain in this way a sequence Qn, n ≥ 0, of probability measures on (Ωn,An), and we
consider the infinite product space

(4.2.26) Ω =
∞∏

i=0

Si = {ω = (x0, x1, x2, . . . ) : xi ∈ Si, ∀i ≥ 0} ,

the canonical coordinates

(4.2.27) Xi(ω) = xi ∈ Si for ω = (x0, x1, x2, . . . ) ∈ Ω, i ≥ 0 ,

the product σ-algebra

A = σ(Xn, n ≥ 0)

= σ(A0 × · · · ×Ak × Sk+1 × Sk+2 × . . . ; k ≥ 0, Ai ∈ Si, 0 ≤ i ≤ k)

= σ(A× Sk+1 × Sk+2 × . . . ; k ≥ 0, A ∈ Ak) ,

(4.2.28)

and the projections

πn : Ω→ Ωn, with πn(ω) = (x0, . . . , xn) for ω = (x0, x1, x2, . . . ) ∈ Ω, n ≥ 0 .(4.2.29)
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Theorem 4.31. (Ionescu-Tulcea)

There exists a unique probability measure Q on (Ω,A) such that for all n ≥ 0,

(4.2.30) πn ◦Q = Qn (see (4.2.25)) .

In particular, for any bounded random variable f on (Ωn,An), one has

(4.2.31)
EQ
[
f(X0,X1, . . . ,Xn)

]

=
∫

S0

P0(dx0)
∫

S1

K1(x0, dx1) . . .
∫

Sn

Kn(x0, x1, . . . , xn−1, dxn) f(x0, . . . , xn) .

Proof. (4.2.31) is a direct consequence of (4.2.30), using (1.2.17), (4.2.8), and (4.2.25). Let
us show (4.2.30).

Uniqueness of Q: Thanks to (4.2.30), Q is uniquely determined on

(4.2.32) B = {A× Sk+1 × Sk+2 × . . . : k ≥ 0, A ∈ Ak} .

Since B is a π-system and σ(B) = A, Q is uniquely determined on A thanks to Dynkin’s
lemma, cf. (1.3.9).

Existence: We define Q on B, cf. (4.2.32), by

Q(A× Sk+1 × Sk+2 × . . . ) = Qk(A) for all k ≥ 0, A ∈ Ak .(4.2.33)

Then Q is well-defined on B through (4.2.33).(4.2.34)

Indeed, consider 0 ≤ ℓ ≤ n, and A ∈ Aℓ, B ∈ An, with

A× Sℓ+1 × · · · = B × Sn+1 × . . .

In the case when n = ℓ, one has A = B and Qℓ(A) = Qn(B). If n > ℓ, then

Qℓ+1(A× Sℓ+1)
(4.2.25)

= Qℓ ×Kℓ+1(A× Sℓ+1)

(4.2.8)
=

∫

A
Qℓ(dx0 . . . dxℓ) Kℓ+1(x0, . . . , xℓ, Sℓ+1)︸ ︷︷ ︸

‖

1= Qℓ(A) ,

Qn(A× Sℓ+1 × · · · × Sn) = Qℓ(A) holds by induction, and since A× Sℓ+1 × · · · × Sn = B,
(4.2.34) follows.

Moreover, (4.2.32) implies that

(4.2.35) B is an algebra on Ω

(i.e. Ω ∈ B, B ∈ B =⇒ Bc ∈ B, and it follows from B1, . . . , Bn ∈ B that
⋃n

i=1Bi ∈ B),
and one has, thanks to (4.2.33),

(4.2.36)
Q(Ω) = 1,

and Q(B1 ∪B2) = Q(B1) +Q(B2) when B1, B2 ∈ B with B1 ∩B2 = ∅ ,
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since we can find k ≥ 0, A1 ∈ Ak, A2 ∈ Ak, such that Bi = Ai × Sk+1 × Sk+2 × . . . for
i = 1, 2, and so

Q(B1 ∪B2)
(4.2.33)

= Qk(A1 ∪A2) = Qk(A1) +Qk(A2)
(4.2.33)

= Q(B1) +Q(B2) .

Carathéodory’s extension theorem (see lecture notes on measure theory, or Durrett p. 400)

implies the existence of a probability measure Q on σ(B)
(4.2.28)

= A as an extension of Q in
(4.2.33), as soon as we show the σ-additivity of Q on the algebra, i.e.

(4.2.37)
If Bi, i ≥ 1, and B are in B, with Bi, i ≥ 1, pairwise disjoint,

and B =
⋃
i≥1

Bi, then Q(B) =
∑

i≥1

Q(Bi) .

For B,Bi, i ≥ 1, as above, we can define B̃n = B\(⋃n
i=1Bi) ∈ B. Then, B̃n ↓ ∅, and using

(4.2.36) (“additivity of Q”),

Q(B) = Q(B̃n) +
n∑

i=1

Q(Bi) .

Hence, (4.2.37) follows from

For any decreasing sequence B̃n, n ≥ 1, with B̃n ∈ B,(4.2.38)

and
⋂
n≥1

B̃n = ∅, one has lim
n
Q(B̃n) = 0 .

Consider B̃n, n ≥ 1, as in (4.2.38), then we can construct a sequence

(4.2.39) Bk = Ak × Sk+1 × . . . , k ≥ 0, with Ak ∈ Ak, and Bk ↓ ∅ ,

such that B̃n = Bk(n) is a sub-sequence of Bk, k ≥ 0. The claim (4.2.38) follows if we
show that

(4.2.40) lim
k
Q(Bk) = 0 .

We show (4.2.40) by contradiction, assuming that

(4.2.41) inf
k≥0

Q(Bk) > ε > 0 .

Because of (4.2.39), one has

Ak+1 ⊆ Ak × Sk+1, for k ≥ 0, and Q(Bk)
(4.2.33)

= Qk(Ak)
(4.2.25)

=(4.2.42)
∫

S0

P0(dx0)
∫

S1

K1(x0, dx1) . . .
∫

Sk

Kk

(
(x0, . . . , xk−1), dxk

)
1Ak

(x0, . . . , xk)
︸ ︷︷ ︸

‖

f0,k(x0)

,
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and

Q(Bk+1) = Qk+1(Ak+1) =
∫

S0

P0(dx0)(4.2.43)

∫

S1

K1(x0, dx1) . . .
∫

Sk

Kk
(
(x0, . . . , xk−1), dxk

) ∫

Sk+1

Kk+1
(
(x0, . . . , xk), dxk+1

)
1Ak+1(x0, . . . , xk+1)

︸ ︷︷ ︸
‖

f0,k+1(x0)

.

Using (4.2.42), one has

1Ak+1(x0, . . . , xk+1) ≤ 1Ak
(x0, . . . , xk) 1Sk+1(xk+1),

and thus

(4.2.44) f0,k(x0) ≥ f0,k+1(x0) for all x0 ∈ S0, k ≥ 1 .

Using (4.2.41), (4.2.43), and monotone convergence, there exists x0 ∈ S0 such that

inf
k≥1

f0,k(x0)︸ ︷︷ ︸ > 0

‖
∫

S1

K1(x0, dx1)
∫

S2

K2

(
(x0, x1), dx2

)
. . .

∫

Sk

Kk

(
(x0, x1, . . . , xk−1), dxk

)
1Ak

(x0, x1, . . . , xk) .

(4.2.45)

In the same way, it follows from (4.2.45) that there exists x1 ∈ S1 such that

(4.2.46)

inf
k≥2

f1,k(x0, x1) > 0 , where f1,k(x0, x1) =

∫

S2

K2

(
(x0, x1), dx2

)
. . .

∫

Sk

Kk

(
(x0, x1, . . . xk−1), dxk

)
1Ak

(x0, x1, . . . , xk) .

By induction, we construct a sequence xℓ, ℓ ≥ 0, with xℓ ∈ Sℓ for ℓ ≥ 0, and

(4.2.47)
inf

k≥ℓ+1

∫

Sℓ+1

Kℓ+1

(
(x0, . . . , xℓ), dxℓ+1

)
. . .

∫

Sk

Kk

(
(x0, . . . , xℓ), xℓ+1, . . . , xk−1, dxk

)
1Ak

(x0, . . . , xℓ, xℓ+1, . . . , xk) > 0 .

In particular, for k = ℓ+ 1 and ℓ ≥ 0, we obtain

0 <
∫

Sℓ+1

Kℓ+1

(
(x0, . . . , xℓ), dxℓ+1

)
1Aℓ+1(x0, . . . , xℓ, xℓ+1)︸ ︷︷ ︸

≤1Aℓ
(x0,...,xℓ)

≤ 1Aℓ
(x0, . . . , xℓ)
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and so

(4.2.48) (x0, . . . , xℓ) ∈ Aℓ, for all ℓ ≥ 0 .

Thanks to (4.2.39), one has for all ℓ ≥ 0,

ω
def.= (x0, x1, . . . ) ∈ Bℓ ,

which is a contradiction, since
⋂
ℓ≥0

Bℓ
(4.2.39)

= ∅.

We have thus proved (4.2.40), and the existence of a probability measure Q on A =
σ(B), as an extension of Q from (4.2.33), follows.

Remark 4.32. Kolmogorov’s extension theorem (see Neveu “Probability Theory”, Chap.
3 §3) enables the construction of probability measures on arbitrarily large product spaces∏

i∈I Xi (I not necessarily countable). However, the (Xi,Bi), i ∈ I, must then satisfy a
certain regularity condition (e.g. that the Xi are Polish spaces, and for all i ∈ I, Bi is the
Borel σ-algebra on Xi). �

We now present some consequences of the Ionescu-Tulcea theorem.

1) Construction of product probability measures on
∏

i≥0 Si
∏

i≥0 Si
∏

i≥0 Si:

We consider (Si,Si) as in (4.2.21), and for all i ≥ 0, µi is a probability measure on (Si,Si).
We define Kn, cf. (4.2.24), by

(4.2.49) Kn

(
(x0, . . . , xn−1), dxn

)
= µn(dxn), n ≥ 1 .

Hence, it follows from (4.2.25) that

(4.2.50) Qn = µ0 ⊗ · · · ⊗ µn for all n ≥ 0 .

The Ionescu-Tulcea theorem produces a unique probability measure Q on (Ω =
∏∞

i=0 Si,
A), cf. (4.2.28), such that

(4.2.51) πn ◦Q = µ0 ⊗ · · · ⊗ µn for all n ≥ 0 .

Notation: Q =
∞⊗
i=0

µi “infinite product measure”.

2) Construction of canonical Markov chains

Now, (Si,Si) = (S,S) for all i ≥ 0, and we consider a probability measure µ on (S,S)
(the “initial distribution”) and a stochastic kernel K from (S,S) to (S,S) (the “transition
kernel”). We define, for n ≥ 1,

(4.2.52) Kn

(
(x0, x1, . . . , xn−1), dxn

)
= K(xn−1, dxn) .

The Ionescu-Tulcea theorem produces a unique probability measure Pµ on (Ω = SN,A)
such that for any bounded random variable f on

∏n
i=0 S, n ≥ 0, one has

(4.2.53)
EPµ

[
f(X0, . . . ,Xn)

]

=
∫

S
µ(dx0)

∫

S
K(x0, dx1) . . .

∫

S
K(xn−1, dxn) f(x0, . . . , xn) .
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Notation: Px
def.= Pδx , for x ∈ S.

(Ω,A, (Px)x∈S) is called the canonical (time-homogeneous) Markov chain with state space
S and transition kernel K. We denote by (θn)n≥0 the shift operators on Ω: for ω =
(x0, x1, x2, . . . ),

θn ω = (xn, xn+1, xn+2, . . . ) ∈ Ω ,

and by Fn = σ(X0,X1, . . . ,Xn), n ≥ 0, the canonical filtration on (Ω,A).

Proposition 4.33. The map

(4.2.54) (x,B) ∈ S ×A 7→ Px[B] is a stochastic kernel from (S,S) to (Ω,A) .

For all n ≥ 0, B ∈ A, one has

EPµ
[
1B ◦ θn | Fn

] Pµ-a.s.= PXn(ω) [B] .

տ
function of Xn(ω)

(4.2.55)

In particular, the Markov property holds:

(4.2.56) EPµ
[
1C | Fn

]
= EPµ

[
1C |σ(Xn)

]
Pµ-a.s.

for all C ∈ σ(Xn,Xn+1, . . . ).

Proof.

• (4.2.54): for all x ∈ S, B 7→ Px[B] is a probability measure on (Ω,A). For all
B ∈ σ(X0, . . . ,Xn), x ∈ S 7→ Px[B] is S-measurable, thanks to (4.2.53).

Since
⋃

n≥0 σ(X0, . . . ,Xn) def= B is a π-system with σ(B) = A, the claim follows by
using Dynkin’s lemma, (1.3.9).

• (4.2.55): Consider A ∈ Fn, then for any bounded random variable f :
∏k

i=0 S → R,

EPµ
[
1A f(Xn,Xn+1, . . . ,Xn+k)

]

(4.2.53)
= EPµ

[
1A EPXn [f(X0,X1, . . . ,Xk)]

]
.

In particular, for all B ∈ B,

(4.2.57) EPµ [1A 1B ◦ θn] = EPµ
[
1A PXn [B]

]
.

The collection of all B ∈ A satisfying (4.2.57) is a Dynkin system. Thanks to
Dynkin’s lemma, one has (4.2.57) for all B ∈ A. Since A ∈ Fn is arbitrary, we
obtain (4.2.55).

• (4.2.56): any C ∈ σ(Xn,Xn+1, . . . ) is of the form 1C = 1B ◦ θn, with B ∈ A.
Due to (4.2.55), EPµ [1B ◦ θn | Fn] is equal to a σ(Xn)-measurable function up to
Pµ-equivalence. We deduce (4.2.56).
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Intuitively speaking, the Markov property (4.2.56) means the following: the best fore-
cast for the future after time n of the sequence Xi, i ≥ 0, given the past up to time n,
depends only on the information that is contained in Xn.

Markov chains and martingales
We consider the canonical Markov chain with state space S, transition kernel K, and
initial distribution µ (see (4.2.53)). In this setting, we can construct a variety of (Fn)-
martingales.

Proposition 4.34. For f a bounded and measurable function on (S,S),

Mn = f(Xn)−
n−1∑

k=0

(Kf − f)(Xk) n ≥ 1 ,

= f(X0) n = 0 ,

(4.2.58)

where Kf(x) =
∫
S f(x′)K(x, dx′) for x ∈ S, is an (Fn)-martingale under Pµ.

Furthermore, if f is uniformly positive (i.e. f ≥ α > 0), then

In = f(Xn)
n−1∏

k=0

( f

Kf

)
(Xk) n ≥ 1 ,

= f(X0) n = 0 ,

(4.2.59)

is an (Fn)-martingale under Pµ.

Proof. (4.2.58): Mn is bounded and (Fn)-adapted. Moreover, for n ≥ 0,

EPµ
[
Mn+1 −Mn | Fn

]
= EPµ

[
f(Xn+1)− f(Xn)− (Kf − f)(Xn) | Fn

]

= EPµ
[
f(Xn+1) | Fn

]
−Kf(Xn)

(4.2.55)
= EPXn [f(X1)]−Kf(Xn) = 0 .

(4.2.59): In is bounded and (Fn)-adapted. Furthermore, for n ≥ 0,

EPµ
[
In+1 | Fn

]
= EPµ

[
f(Xn+1)
Kf(Xn)

In | Fn

]

=
In

Kf(Xn)
EPµ

[
f(Xn+1) | Fn

] (4.2.55)
= In .

Example 4.35. In the case of the simple random walk on Z, one hasKf(x) = f(x+1)+f(x−1)
2

for x in Z. Hence,

(4.2.60) Mn = f(Xn)−
n−1∑

k=0

1
2
[
f(Xk + 1) + f(Xk − 1)− 2f(Xk)

]
n ≥ 0 ,
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resp.

(4.2.61) In = f(Xn) exp
{
−

n−1∑

k=0

log
(f(Xk + 1) + f(Xk − 1)

2f(Xk)

)}
n ≥ 0 ,

is an (Fn)-martingale under each Px, x ∈ Z, if f is bounded, resp. bounded and uniformly
positive.

Furthermore, one has Px-a.s., |Xn −x| ≤ n for all n ≥ 0. From this, one can easily see
that the martingale property of (Mn)n≥0, resp. (In)n≥0, holds under all Px, for all, resp.
all uniformly positive, functions f . For instance, if f(x) = eαx, one sees from (4.2.61) that

(4.2.62) eαXn−n log coshα n ≥ 0 ,

is an (Fn)-martingale under each Px. �
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convergence properties in L1, 113
convergence properties in Lp, p > 1, 108

Martingale Convergence Theorem, 96
maximal inequality, 29, 107
monotone convergence, 13

normal distribution, 5

Optional Stopping Theorem, 93
order statistics, 47

Poisson approximation, 47
Poisson distribution, 6
predictable, 91
probability measure, 5
probability space, 5
product space, 6

Radon-Nikodym derivatives, 86
random variable, 7
random walks, 117
recurrent, 131, 137
renewal process, 40, 128

sample space, 5
Scheffé’s Lemma, 49

148



simple random walk, 117
stochastic kernel, 138
Stopping Theorem, 93
stopping time, 30, 88

σ-algebra of, 89
submartingale, 84
supermartingale, 84
symmetric events, 120
symmetric stable distributions, 63

Three-Series Theorem, 33
tight, 55
transient, 131, 137

uniform integrability, 110
Uniqueness Property, 58
Upcrossing Inequality, 94

variance, 12

Wald’s Identity, 127
weak convergence, 44

149


