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This sheet contains material which is fundamental for this course and assumed to be known.
An exception to this are questions 4 and 5 which are technically more involved as well as the coding
question 6 which is not part of the examinable material. We consider questions 4, 5 and 6 as
BONUS problems. Results and facts from measure-theoretic probability theory will be often used in
the lectures and exercise classes. To get an idea of the prerequesites, read the Appendix of your
lecture notes (pages 129 to 136). The material should be familiar and in case it is not, you are
expected to catch up as quicly as possible. The book Probability Essentials by Jean Jacod and Philip
Protter contains all results needed and can be downloaded for free from Springer (within the ETH
network or using VPN). A possible alternative to the above textbook are the ETH lecture notes for
the standard course on Probability Theory, accessible from the MFF course website.
Please upload your solutions until Wednesday, 29/09/2021, 12:00 using the link on the course
website.

Exercise 1.1 Let (Ω,F , P ) be a probability space with Ω := {UU,UD,DD,DU}, F := 2Ω and P
defined by P [ω] := 1/4 for all ω ∈ Ω. Let Y1, Y2 : Ω→ R be two random variables with Y1(UU) =
Y1(UD) := 2, Y1(DD) = Y1(DU) := 1/2, Y2(UU) = Y2(DU) := 2 and Y2(DD) = Y2(UD) := 1/2.
Define the process X = (Xk)k=0,1,2 by

X0(ω) = 8 for all ω ∈ Ω,

Xk(ω) = X0(ω)
k∏

i=1
Yi(ω) for k = 1, 2.

(a) Write down explicitly the sequences of σ-fields F = (Fk)k=0,1,2 and G = (Gk)k=0,1,2 defined
by Fk := σ(Xi, 0 ≤ i ≤ k) and Gk := σ(Xk), k = 0, 1, 2.

(b) Show that Z : Ω→ R defined by Z(ω) := 2X1(ω) + 1 is G1-measurable.

(c) Are F and G filtrations on (Ω,F)? Why or why not?

(d) Is X adapted to F or G (in case any of the former is a filtration on (Ω,F))?

(e) Try to give financial interpretations for X and F.

Exercise 1.2 Let (Ω,F , P ) be a probability space and X : Ω→ R a random variable with X ≥ 0
P -a.s. Prove that E [X] = 0 implies that X = 0 P -a.s.
Hint: Find a way to use the monotone convergence theorem.

Exercise 1.3 Let (Ω,F , P ) be a probability space, X an integrable random variable and G ⊆ F a
σ-field. Then the P -a.s. unique random variable Z such that

• Z is G-measurable and integrable,

• E [X1A] = E[Z1A] for all A ∈ G,

is called conditional expectation of X given G and is denoted by E [X |G]. (This is the formal
definition of conditional expectation of X given G; see Section 8.2 in the lecture notes.)

(a) Use the definition above to show that if X is G-measurable, then E [X |G] = X P -a.s.

Updated: September 22, 2021 1 / 5



Mathematical Foundations for Finance, Autumn 2021 Exercise sheet 1

(b) Use the definition of conditional expectation to show that E [E [X |G]] = E [X].

(c) Use the definition of conditional expectation to show that if P [A] ∈ {0, 1} for all A ∈ G, i.e.
if G is P -trivial, then E [X |G] = E [X] P -a.s.

(d) Consider another integrable random variable Y on (Ω,F , P ), and two constants a, b ∈ R. Use
the definition of conditional expectation to show that E [aX + bY |G] = aE [X |G] + bE [Y |G]
P -a.s.

(e) Suppose that G is generated by a finite partition of Ω, i.e. there exists a collection (Ai)n
i=1

of sets Ai ∈ F such that
⋃n

i=1Ai = Ω, Ai ∩ Aj = ∅ for i 6= j and G = σ(A1, . . . , An).
Additionally, assume that P [Ai] > 0 for all i = 1, . . . , n. Use the definition of conditional
expectation to show that

E [X |G] =
n∑

i=1
E [X |Ai]1Ai

P -a.s.

Hint 1: Recall that E [X |Ai] = E [X1Ai
] /P [Ai] and try to write X as a sum of random

variables each of which only takes non-zero values on a single Ai.
Hint 2: Check that any set A ∈ G is of the form ∪j∈JAj for some J ⊆ {1, . . . , n}.

Exercise 1.4 Let (U, V ) be a two dimensional random vector. Suppose that the distribution of
(U, V ) admits a density function fU,V with respect to the Lebesgue measure. Let

fU (u) =
∫
R
fU,V (u, v)dv

denote the marginal distribution of U and define the conditional density of V given U by

fV |U (v|u) := fU,V (u, v)
fU (u) .

Consider a Borel measurable function h : R→ R such that h(V ) ∈ L1 and define

g(u) :=
∫
h(v)fV |U (v|u)dv.

Show that E [h(V ) |U ] = g(U).

Exercise 1.5 The goal of this exercise is to show existence and uniqueness of the conditional
expectation under the restrictive assumption of square integrability.

Let X ∈ L2(Ω,F ,P) and let G ⊆ F be a sub-sigma-algebra of F . Show that X admits a
P-almost surely unique conditional expectation, i.e that there exits a P-almost surely unique random
variable Y satisfying the following properties:

• Y is G-measurable and integrable,

• E [X1A] = E[Y 1A] for all A ∈ G.

The exercise involves Hilbert spaces and in particular an important result concerning orthogonal
projections on convex closed subsets of a Hilbert space. For the sake of completeness we recall the
definition of a Hilbert space and state this important result that you will need to use in question b).

A Hilbert space is a vector space H with an inner product 〈f, g〉 such that the norm defined by

||f || :=
√
〈f, f〉
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turns H into a complete metric space. In particular it can be shown that L2(Ω,F ,P) is a Hilbert
space with the inner product defined by

〈X,Y 〉 := E [XY ] .

Note that this integral is well defined by the Cauchy-Schwartz inequality and indeed defines an
inner product on L2(Ω,F ,P) (good bonus exercise). Equipped with the norm induced by this inner
product, it is not too difficult to show that L2 is complete and hence a Hilbert space. One of the
nicest properties of Hilbert spaces is that one can generalize the notion of orthogonal projections
from finite dimensional euclidiean vector spaces to (potentially) infinite dimensional Hilbert spaces
as suggested by the following theorem: Let Γ be a closed convex subset of a Hilbert space H. Then
for any point x ∈ H, there exists a unique point πΓ(x) ∈ Γ such that

||x− πΓ(x)|| = inf
g∈Γ
||x− g||.

Moreover x− πΓ(x) ∈ Γ⊥, where Γ⊥ denotes the orthogonal complement of Γ, i.e.

Γ⊥ = {x ∈ Hs.t.〈x, g〉 = 0 ∀g ∈ Γ}.

(a) Show that if two random variables Y1 and Y2 satisfy the above properties, then we have
P(Y1 = Y2) = 1. This shows the P-almost uniqueness.

Remains to show the existence. To do this we will apply the orthogonal projection theorem on
the closed convex subset L2(Ω,G,P) of the Hilbert space L2(Ω,F ,P).

(b) Show that L2(Ω,G,P) is convex in L2(Ω,F ,P).

(c) Show that L2(Ω,G,P) is closed in L2(Ω,F ,P).

(d) Deduce the existence of the conditional expectation of X given G.

(e) Give a geometric interpretation of the above construction.

Exercise 1.6 This is a bonus question on the Capital Asset Pricing Model (CAPM) and linear
regression. This question is not part of the examinable material; it’s purpose is just to motivate you
to improve your programming skills. Programming skills are becoming more and more important
especially for those of you wanting to work in the industry. The goal of the exercise is to compute
the beta of a stock using linear regression. The CAPM is a model that prices securities by examining
the relationship between expected returns and risk. More precisely the model states that the return
of a risky asset is given by

E[Ri] = r + βi(E[Rm]− r) (1)
where E[Ri] and E[Rm] are the expected returns of asset i and of the market respectively and r is
the risk-free rate of interest. One can show that βi has a closed from solution given by

βi = Cov(Ri, Rm)
Var(Rm)

The Beta of an asset is thus a measure of the sensitivity of its returns relative to a market benchmark
(usually a market index). We could in principle calculate the Beta of a given asset using the above
formula, however in practice it is easier to think of the Beta as the slope of the linear regression (1)
and estimate it using Ordinary Least Squares method.

In this exercise we will estimate the Beta of Facebook relative to the S&P500 market index
using historical data from 02/11/2014 to 19/11/2017. The data can be downloaded from the course
web page (’FB.csv’ and ’SP500.csv’). Your task is to complete either the below Python code or
the R code in order to perform an Ordinary Least Squares Regression with Statsmodel. If your
code works well, you should get a Beta value close to 0.58 which is the Beta value of Facebook
quoted on Yahoo Finance on the 19/11/2017.
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###### Python Code ########
# ##########################

# import libraries
import pandas as pd
import statsmodels .api as sm

’’’
Download monthly prices of Facebook and S&P 500 index from 2014 to 2017
CSV file downloaded from Yahoo File
start period : 02/11/2014
end period : 30/11/2017
period format : DD/MM/YEAR
’’’

# Step 1: Use pandas read_csv method to load the two csv files downloaded
from the course web page

fb = # TO DO #
sp_500 = # TO DO #

# joining the closing prices of the two datasets
monthly_prices = pd. concat ([fb[’Close ’], sp_500 [’Close ’]], axis =1)
monthly_prices . columns = [’FB’, ’SP500 ’]

# check the head of the dataframe
print( monthly_prices .head ())

# calculate monthly returns
monthly_returns = # TO DO #
clean_monthly_returns = monthly_returns . dropna (axis =0)

# split dependent and independent variable
X = # TO DO #
y = # TO DO #

# Add a constant to the independent value
X1 = sm. add_constant (X)

# make regression model
model = # TO DO #

# fit model and print results
results = # TO DO #
print( results . summary ())

###### R Code ########
# #####################

# CAPM linear regression
# read in the csv files
fb <- # TO DO #
sp_500 <- # TO DO #

# joining the closing prices of the two datasets
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monthly _ prices = cbind (fb[’Close ’], sp_500[ ’Close ’])
colnames ( monthly _ prices ) = c(’FB’, ’SP500 ’)

# check the head of the dataframe
head( monthly _ prices )

# calculate monthly returns
# Denote n the number of time periods :
n <- nrow( monthly _ prices )
monthly _ returns <- (( monthly _ prices [2:n, ] - monthly _ prices [1:(n -1) , ])/

monthly _ prices [1:(n -1) , ])
# note that this is already the clean _ monthly _ returns from the Python

code

# split dependent and independent variable
X = # TO DO #
y = # TO DO #

# the lm function automatically ads the intercept term
fit <- # TO DO #
summary (fit) # for interpretation see below
# Interpretation :
# FB_ returns = 0.020270 + 0.575091 * SP500_ returns

# visualize the results
coeff <- coefficients (fit)
plot(X,y, xlab = ’SP500 monthly returns ’, ylab = ’Facebook monthly

returns ’)
abline (a=coeff [1], b=coeff [2], col =2, lwd =2)

Make sure you understand the summary of the linear regression and that in particular you can
find the corresponding Beta value.
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