Non-Life Insurance: Mathematics and Statistics

Exercise sheet 10

Exercise 10.1 Log-Linear Gaussian Regression Model (R Exercise)

Suppose that a car insurance portfolio of an insurance company has been divided according to two tariff criteria

- vehicle type: \{passenger car, delivery van, truck $\}=\{1,2,3\}$,
- driver age: $\{21-30$ years, 31-40 years, 41-50 years, $51-60$ years $\}=\{1,2,3,4\}$.

For simplicity, we set the number of policies $v_{i, j}=1$ for all risk classes $(i, j), 1 \leq i \leq 3,1 \leq j \leq 4$. Moreover, we assume that we work with a multiplicative tariff structure and that we observed the following claim amounts:

	$21-30 \mathrm{y}$	$31-40 \mathrm{y}$	$41-50 \mathrm{y}$	$51-60 \mathrm{y}$
passenger car	$2^{\prime} 000$	$1^{\prime} 800$	$1^{\prime} 500$	$1^{\prime} 600$
delivery van	$2^{\prime} 200$	$1^{\prime} 600$	$1^{\prime} 400$	$1^{\prime} 400$
truck	$2^{\prime} 500$	$2^{\prime} 000$	$1^{\prime} 700$	$1^{\prime} 600$

Table 1: Observed claim amounts in the $3 \cdot 4=12$ risk classes.
Calculate the tariffs using the log-linear Gaussian regression model.
(a) Determine the design matrix Z of the log-linear Gaussian regression model.
(b) Calculate the tariffs using the MLE method within the log-linear Gaussian regression model framework.
(c) Is there statistical evidence that the classification into different types of vehicles could be omitted?

Exercise 10.2 Method of Bailey \& Simon

Consider the same setup as in Exercise 10.1. Calculate the tariffs using the method of Bailey \& Simon. Comment on the results.

Exercise 10.3 Method of Bailey \& Jung

Consider the same setup as in Exercise 10.1. Calculate the tariffs using the method of Bailey \& Jung (i.e. the method of total marginal sums). Compare the results.

Exercise 10.4 Tweedie's Compound Poisson Model

Let $S \sim \operatorname{CompPoi}(\lambda v, G)$, where $\lambda>0$ is the unknown claim frequency parameter, $v>0$ the known volume and G the distribution function of a gamma distribution with known shape parameter $\gamma>0$ and unknown scale parameter $c>0$. Then, S has a mixture distribution with a point mass of $\mathbb{P}[S=0]$ in 0 and a density f_{S} on $(0, \infty)$.
(a) Calculate $\mathbb{P}[S=0]$ and the density f_{S} of S on $(0, \infty)$.
(b) Show that S belongs to the exponential dispersion family with

$$
\begin{aligned}
w & =v \\
\phi & =\frac{\gamma+1}{\lambda \gamma}\left(\frac{\lambda v \gamma}{c}\right)^{\frac{\gamma}{\gamma+1}}, \\
\theta & =-(\gamma+1)\left(\frac{\lambda v \gamma}{c}\right)^{-\frac{1}{\gamma+1}}, \\
\boldsymbol{\Theta} & =(-\infty, 0), \\
b(\theta) & =\frac{\gamma+1}{\gamma}\left(\frac{-\theta}{\gamma+1}\right)^{-\gamma}, \\
c(0, \phi, w) & =0 \text { and } \\
c(x, \phi, w) & =\log \left(\sum_{n=1}^{\infty}\left[\frac{(\gamma+1)^{\gamma+1}}{\gamma}\left(\frac{\phi}{w}\right)^{-\gamma-1}\right]^{n} \frac{1}{\Gamma(n \gamma) n!} x^{n \gamma-1}\right), \quad \text { if } x>0 .
\end{aligned}
$$

Exercise 10.5 Log-Linear Gaussian Regression Model (R Exercise)

Interpret the following R output of Exercise 10.1.

Listing 1: R output for Exercise 10.1.

```
Call:
lm(formula = observation ~ van + truck + X31_40y + X41_50y + X51_60y, data = data)
Residuals:
Min
Coefficients:
            Estimate Std. Error t value Pr(>!t!)
(Intercept) 7.68800 0.04233 181.610 1.88e-12 ***
van -0.05625 0.04233 -1.329 0.232227
truck 0.11342 0.04233 2.679 0.036575 *
X31_40y -0.21565 0.04888 -4.412 0.004511 **
X41_50y -0.37511 0.04888 -7.674 0.000256 ***
X51_60y -0.37381 0.04888 -7.647 0.000261 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.05987 on 6 degrees of freedom
Multiple R-squared: 0.941, Adjusted R-squared: 0.8918
F-statistic: 19.13 on 5 and 6 DF, p-value: 0.001261
```

