Non-Life Insurance: Mathematics and Statistics

Exercise sheet 13

Exercise 13.1 Chain-Ladder Algorithm

We write i = 1, ..., I for the accident years denoting the years of claims occurrence. For every accident year we consider development years j = 0, ..., J. For all i = 1, ..., I and j = 0, ..., J we write $C_{i,j}$ for the cumulative payments up to development year j for all claims that have occurred in accident year i. For simplicity, we set I = J + 1 = 10. Assume that we have observations

 $\mathcal{D}_{I} = \{ C_{i,j} \mid i+j \le I, \ 1 \le i \le I, \ 0 \le j \le J \}$

given by the following upper claims reserving triangle:

accident	development year j									
year i	0	1	2	3	4	5	6	7	8	9
1	5'946'975	9'668'212	10'563'929	10'771'690	10'978'394	11'040'518	11'106'331	11'121'181	11'132'310	11'148'124
2	6'346'756	9'593'162	10'316'383	10'468'180	10'536'004	10'572'608	10'625'360	10'636'546	10'648'192	
3	6'269'090	9'245'313	10'092'366	10'355'134	10'507'837	10'573'282	10'626'827	10'635'751		
4	5'863'015	8'546'239	9'268'771	9'459'424	9'592'399	9'680'740	9'724'068			
5	5'778'885	8'524'114	9'178'009	9'451'404	9'681'692	9'786'916				
6	6'184'793	9'013'132	9'585'897	9'830'796	9'935'753					
7	5'600'184	8'493'391	9'056'505	9'282'022						
8	5'288'066	7'728'169	8'256'211							
9	5'290'793	7'648'729								
10	5'675'568									

Table 1: Upper claims reserving triangle \mathcal{D}_I .

This data set can be downloaded from https://people.math.ethz.ch/~wueth/exercises2.html by clicking on "Data to the Examples".

(a) Use the chain-ladder (CL) method to predict the lower triangle

 $\mathcal{D}_{I}^{c} = \{ C_{i,j} \mid i+j > I, \ 1 \le i \le I, \ 0 \le j \le J \}.$

(b) Calculate the CL reserves $\widehat{\mathcal{R}}_i^{\text{CL}}$ for all accident years $i = 1, \ldots, I$.

Exercise 13.2 Bornhuetter-Ferguson Algorithm

Consider the same setup as in Exercise 13.1. We assume that we have prior informations $\hat{\mu}_1, \ldots, \hat{\mu}_I$ for the expected ultimate claims $\mathbb{E}[C_{1,J}], \ldots, \mathbb{E}[C_{I,J}]$ given by

accident year i	1	2	3	4	5
prior information $\hat{\mu}_i$	11'653'101	11'367'306	10'962'965	10'616'762	11'044'881
accident year <i>i</i>	6	7	8	9	10

Table 2: Prior informations $\hat{\mu}_1, \ldots, \hat{\mu}_I$.

- (a) Use the Bornhuetter-Ferguson (BF) method to calculate the BF reserves $\widehat{\mathcal{R}}_i^{\text{BF}}$ for all accident years $i = 1, \ldots, I$.
- (b) Explain why in this example we have $\widehat{\mathcal{R}}_i^{\text{CL}} < \widehat{\mathcal{R}}_i^{\text{BF}}$, for all accident years $i = 2, \ldots, I$, where $\widehat{\mathcal{R}}_i^{\text{CL}}$ denotes the CL reserves for accident year *i* calculated in Exercise 13.1.

Exercise 13.3 Over-Dispersed Poisson Model

Consider the same setup as in Exercise 13.1. This time we apply the over-dispersed Poisson (ODP) model. To this end, for all i = 1, ..., I and j = 0, ..., J, we write $X_{i,j}$ for all payments done in development year j for claims with accident year i. According to Model Assumptions 9.10 of the lecture notes (version of December 17, 2020), we assume that there exist positive parameters $\mu_1, ..., \mu_I, \gamma_0, ..., \gamma_J$ and ϕ such that all $X_{i,j}$ are independent (in i and j) with

$$\frac{X_{i,j}}{\phi} \sim \operatorname{Poi}(\mu_i \gamma_j / \phi)$$

for all i = 1, ..., I and j = 0, ..., J, and side constraint $\sum_{j=0}^{J} \gamma_j = 1$ holds.

- (a) Determine the MLEs of μ_1, \ldots, μ_I and $\gamma_0, \ldots, \gamma_J$.
- (b) Calculate the ODP reserves $\widehat{\mathcal{R}}_i^{\text{ODP}}$ for all accident years $i = 1, \ldots, I$. What do you observe?
- (c) Perform a GLM analysis for the payments $X_{i,j}$ using the ODP model in order to check the results obtained in part (b).

Exercise 13.4 Mack's Formula and Merz-Wüthrich (MW) Formula (R Exercise) Consider the same setup as in Exercise 13.1.

- (a) Write an R code using the R package ChainLadder in order to determine the following quantities:
 - the conditional mean square error of prediction

$$\operatorname{msep}_{C_{i,J}|\mathcal{D}_{I}}^{\operatorname{Mack}}\left(\widehat{C}_{i,J}^{\operatorname{CL}}\right),$$

given in formula (9.21) of the lecture notes, for all accident years i = 1, ..., I;

• the conditional mean square error of prediction for aggregated accident years

$$\operatorname{msep}_{\sum_{i=1}^{I} C_{i,J} \mid \mathcal{D}_{I}}^{\operatorname{Mack}} \left(\sum_{i=1}^{I} \widehat{C}_{i,J}^{\operatorname{CL}} \right),$$

given in formula (9.22) of the lecture notes;

• the one-year (run-off) uncertainty

$$\operatorname{msep}_{\operatorname{CDR}_{i,I+1}|\mathcal{D}_{I}}^{\operatorname{MW}}(0),$$

given in formula (9.34) of the lecture notes, for all accident years i = 1, ..., I;

• the one-year (run-off) uncertainty for aggregated accident years

$$\operatorname{msep}_{\sum_{i=1}^{I} \operatorname{CDR}_{i,I+1} \mid \mathcal{D}_{I}}^{\operatorname{MW}}(0),$$

given in formula (9.35) of the lecture notes.

The references for the four formulas above correspond to the version of the lecture notes of December 17, 2020.

- (b) Interpret the square-rooted conditional mean square errors of prediction relative to the claims reserves calculated in Exercise 13.1.
- (c) Interpret the square-rooted one-year (run-off) uncertainties relative to the square-rooted conditional mean square errors of prediction.