Non-Life Insurance: Mathematics and Statistics

Exercise sheet 7

Exercise 7.1 Re-Insurance Covers and Leverage Effect

In Figure 1 we compare the distribution function of a loss $Y \sim \Gamma(1, \frac{1}{400})$ (in black color) to the distribution function of the loss after applying different re-insurance covers to Y (in red color).

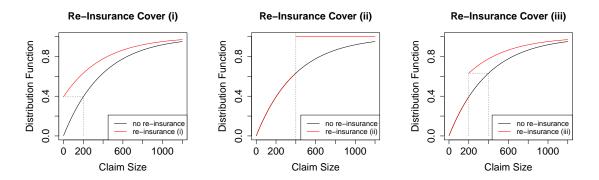


Figure 1: Distribution functions implied by re-insurance contracts (i), (ii) and (iii).

(a) Let d > 0. Show that Y satisfies

$$\mathbb{E}[(Y-d)_{+}] = \mathbb{P}[Y > d]\mathbb{E}[Y].$$

- (b) Can you explicitly determine the re-insurance covers from the graphs in Figure 1?
- (c) Calculate the expected values of these modified contracts.
- (d) Assume that a first claim Y_0 has the same distribution as Y, and that a second claim Y_1 fulfills $Y_1 \stackrel{(d)}{=} (1+i)Y_0$, for a constant inflation rate i > 0. Let d > 0. Show the leverage effect

$$\mathbb{E}[(Y_1 - d)_+] > (1+i)\mathbb{E}[(Y_0 - d)_+].$$

Give an appropriate explanation for this leverage effect.

Exercise 7.2 Inflation and Deductible

We assume that this year's claims in a storm insurance portfolio have been modeled by a Pareto distribution with threshold $\theta > 0$ and tail index $\alpha > 1$. The threshold θ can be understood as deductible. Suppose that the inflation in the next year is expected to be $100 \cdot r \%$ for some r > 0. By how much do we have to increase the deductible θ next year such that the average claim payment remains unchanged?

HS 2021 Exercise sheet 7

Exercise 7.3 Normal Approximation

Assume that the total claim amount S has a compound Poisson distribution with expected number of claims $\lambda v=1'000$ and claim sizes following a gamma distribution with shape parameter $\gamma=100$ and scale parameter $c=\frac{1}{10}$. Use the normal approximation to estimate the 0.95-quantile $q_{0.95}$ and the 0.99-quantile $q_{0.99}$ of S.

Exercise 7.4 Translated Gamma and Translated Log-Normal Approximation

Consider the same setup as in Exercise 7.3. This time we use the translated gamma and the translated log-normal approximation to estimate the quantiles $q_{0.95}$ and $q_{0.99}$ of the total claim amount S.

- (a) Use the translated gamma approximation to estimate $q_{0.95}$ and $q_{0.99}$.
- (b) Use the translated log-normal approximation to estimate $q_{0.95}$ and $q_{0.99}$.
- (c) Compare the results of (a) and (b) to the results found in Exercise 7.3, where we used the normal approximation.

Updated: November 1, 2021 2/2