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Solution 2.1 Maximum Likelihood and Hypothesis Test
(a) Since log Y1, . . . , log Y8 are independent random variables, the joint density fµ,σ2(x1, . . . , x8)

of log Y1, . . . , log Y8 is given by product of the marginal densities of log Y1, . . . , log Y8. We
have

fµ,σ2(x1, . . . , x8) =
8∏
i=1

1√
2πσ

exp
{
−1

2
(xi − µ)2

σ2

}
,

as log Y1, . . . , log Y8 are Gaussian random variables with mean µ and variance σ2.

(b) By taking the logarithm, we get

log fµ,σ2(x1, . . . , x8) =
8∑
i=1
− log

√
2π − log σ − 1

2
(xi − µ)2

σ2

= −8 log
√

2π − 8 log σ − 1
2σ2

8∑
i=1

(xi − µ)2.

(c) We have log fµ,σ2(x1, . . . , x8) < −8 log σ for all µ ∈ R. Hence, independently of the value
of µ, log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → ∞. Moreover, since for example x1 6= x2, there
exists a c > 0 with

∑8
i=1(xi − µ)2 > c and thus log fµ,σ2(x1, . . . , x8) < −8 log σ − c

2σ2

for all µ ∈ R. Since c
2σ2 goes much faster to ∞ than 8 log σ goes to −∞ if σ2 → 0, we

have log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → 0, independently of µ. Finally, if σ2 ∈ [c1, c2]
for some 0 < c1 < c2, we have log fµ,σ2(x1, . . . , x8) < −8 log c1 − 1

2c2

∑8
i=1(xi − µ)2. Hence,

independently of the value of σ2 in the interval [c1, c2], log fµ,σ2(x1, . . . , x8)→ −∞ if |µ| → ∞.
Since log fµ,σ2(x1, . . . , x8) is continuous in µ and σ2, we can conclude that it attains its global
maximum somewhere in R× R>0. Thus, µ̂ and σ̂2 as defined on the exercise sheet have to
satisfy the first order conditions

∂

∂µ
log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0 and

∂

∂(σ2) log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0.

We calculate
∂

∂µ
log fµ,σ2(x1, . . . , x8) = 1

σ2

8∑
i=1

(xi − µ),

which is equal to 0 if and only if µ = 1
8
∑8
i=1 xi. Moreover, we have

∂

∂(σ2) log fµ,σ2(x1, . . . , x8) = − 8
2σ2 + 1

2σ4

8∑
i=1

(xi − µ)2 = 1
2σ2

[
−8 + 1

σ2

8∑
i=1

(xi − µ)2

]
,

which is equal to 0 if and only if σ2 = 1
8
∑8
i=1(xi − µ)2. Since there is only one tuple in

R× R>0 that satisfies the first order conditions, we conclude that

µ̂ = 1
8

8∑
i=1

xi = 7 and σ̂2 = 1
8

8∑
i=1

(xi − µ̂)2 = 1
8

8∑
i=1

(xi − 7)2 = 7.
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Note that the MLE σ̂2 (considered as an estimator) is not unbiased. Indeed, if we replace
x1, . . . , x8 by independent Gaussian random variables X1, . . . , X8 with expectation µ ∈ R
and variance σ2 > 0, and write µ̂ for 1

8
∑8
i=1Xi, we can calculate

E[σ̂2] = E[σ̂2(X1, . . . , X8)] = E

[
1
8

8∑
i=1

(Xi − µ̂)2

]
= 1

8E
[ 8∑
i=1

(X2
i − 2Xiµ̂+ µ̂2)

]
.

By noting that
∑8
i=1Xi = 8µ̂ and that E[X2

1 ] = · · · = E[X2
8 ], we get

E[σ̂2] = 1
8E
[ 8∑
i=1

X2
i − 2 · 8 · µ̂2 + 8µ̂2

]
= E[X2

1 ]− E[µ̂2] = σ2 + E[X1]2 −Var(µ̂)− E[µ̂]2.

By inserting

Var(µ̂) = Var
(

1
8

8∑
i=1

Xi

)
=
(

1
8

)2 8∑
i=1

Var(Xi) = 1
8σ

2 and

E[µ̂]2 = E

[
1
8

8∑
i=1

Xi

]2

=
(

1
8

8∑
i=1

E[Xi]
)2

= E[X1]2,

we can conclude that

E[σ̂2] = σ2 + E[X1]2 − 1
8σ

2 − E[X1]2 = 7
8σ

2 6= σ2,

i.e. σ̂2 is not unbiased.

(d) Since the logarithms of the claim amounts are assumed to follow a Gaussian distribution
and the variance is unknown, we perform a t-test. Under H0, we have µ = 6. Thus, the test
statistic is given by

T = T (log Y1, . . . , log Y8) =
√

8
1
8
∑8
i=1 log Yi − 6
√
S2

,

where

S2 = 1
7

8∑
i=1

(
log Yi −

1
8

8∑
i=1

log Yi

)2

.

Note that S2 is an unbiased estimator for the variance σ2 of the logarithmic claim sizes.
Under H0, T follows a Student-t distribution with 7 degrees of freedom. With the data given
on the exercise sheet, the random variable S2 attains the value

1
7

8∑
i=1

(
xi −

1
8

8∑
i=1

xi

)2

= 1
7

8∑
i=1

(xi − 7)2 = 8.

Thus, for T we get the observation

T (x1, . . . , x8) =
√

8
1
8
∑8
i=1 xi − 6
√
S2

=
√

87− 6√
8

= 1.

The probability under H0 to observe a T that is at least as extreme as the observation 1 we
got above is

P[|T | ≥ 1] = P[T ≥ 1] + P[T ≤ −1] = 1− P[T ≤ 1] + 1− P[T ≤ 1] = 2− 2P[T ≤ 1],
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where we used the symmetry of the Student-t distribution around 0, i.e. P[T ≤ −1] =
1− P[T ≤ 1]. The probability P[T ≤ 1] is approximately 0.84, and the p-value is given by

P[|T | ≥ 1] = 2− 2P[T ≤ 1] ≈ 2− 2 · 0.84 = 0.32.

This p-value is fairly high, and we conclude that we can not reject the null hypothesis, for
example, at significance level of 5% or 1%.

Solution 2.2 Chebychev’s Inequality and Law of Large Numbers

(a) We have µ = E[X1] = 1’000 · 0.1 + 0 · 0.9 = 100.

(b) For n = 1 we get∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ = |X1 − 100| =
{

900, with probability 0.1,
100, with probability 0.9.

As both values 900 and 100 are bigger than 0.1µ = 10, we conclude that p(1) = 1. In
particular, if we only have n = 1 risk in our portfolio, then the corresponding claim amount
deviates from the mean claim size by at least 10% with probability equal to 1.

(c) For the n i.i.d. risks X1, . . . , Xn we define

S(n) =
n∑
i=1

Xi

1’000

to be the corresponding (random) number of bikes stolen. We note that S(n) has a binomial
distribution with parameters n and p = 0.1. In particular, we have

P[S(n) = k] =
(
n

k

)
pk (1− p)n−k,

for all k ∈ {0, . . . , n}. For n ∈ N we can now write

p(n) = P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]

= 1− P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ < 0.1µ
]

= 1− P

[
−0.1µ < 1

n

n∑
i=1

Xi − µ < 0.1µ
]

= 1− P

[
0.9nµ <

n∑
i=1

Xi < 1.1nµ
]

= 1− P

[
0.9nµ
1’000 <

n∑
i=1

Xi

1’000 <
1.1nµ
1’000

]
= 1− P

[
0.9nµ
1’000 < S(n) < 1.1nµ

1’000

]
.

For n = 1’000 we get

p(1’000) = 1− P
[

0.9 · 1’000 · 100
1’000 < S(1’000) < 1.1 · 1’000 · 100

1’000

]
= 1− P [90 < S(1’000) < 110]

= 1−
109∑
k=91

(
1’000
k

)
0.1k 0.91’000−k

≈ 0.32.

Thus, if we have n = 1’000 risks in our portfolio, then the sample mean of the claim amounts
deviates from the mean claim size by at least 10% with a probability of 0.32. In particular,
diversification led to a reduction of this probability.
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(d) As

E

[
1
n

n∑
i=1

Xi

]
= 1

n

n∑
i=1

E [Xi] = E[X1] = µ

and, using the independence of X1, . . . , Xn,

Var
(

1
n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var (Xi) = 1
n
Var(X1) = 1

n
E
[
(X1 − µ)2]

= 1
n

(
9002 · 0.1 + 1002 · 0.9

)
= 90’000

n
,

Chebychev’s inequality leads to

p(n) = P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]
≤

Var
( 1
n

∑n
i=1Xi

)
(0.1µ)2

90’000
n(0.1µ)2 = 900

n
.

We have
900
n

< 0.01 ⇐⇒ n > 90’000.

This implies that Chebychev’s inequality guarantees that if we have more than 90’000 risks,
then the probability that the sample mean of the claim amounts deviates from the mean claim
size by at least 10% is smaller than 1%. However, we remark that Chebychev’s inequality is
very crude. In fact, the true minimum number n of risks such that p(n) < 0.01 is given by
n ≈ 6’000, approximately, while for n = 90’000 we basically have p(n) ≈ 0.

(e) We have that X1, X2, ... are i.i.d. and that E[|X1|] = E[X1] = µ < ∞. Thus, we can apply
the strong law of large numbers, and we get

lim
n→∞

1
n

n∑
i=1

Xi −→ E[X1] = µ = 100, P-a.s.

Solution 2.3 Central Limit Theorem

(a) Let σ2 be the variance of the claim sizes and x > 0. We have

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
= P

[
1
n

n∑
i=1

Yi − µ <
x√
n

]
− P

[
1
n

n∑
i=1

Yi − µ ≤ −
x√
n

]

= P
[√

n
1
n

∑n
i=1 Yi − µ
σ

<
x

σ

]
− P

[√
n

1
n

∑n
i=1 Yi − µ
σ

≤ −x
σ

]
= P

[
Zn <

x

σ

]
− P

[
Zn ≤ −

x

σ

]
,

where
Zn =

√
n

1
n

∑n
i=1 Yi − µ
σ

.

According to the Central Limit Theorem, Zn converges in distribution to a standard Gaussian
random variable. Hence, if we write Φ for the distribution function of a standard Gaussian
random variable, we have the approximation

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
≈ Φ

(x
σ

)
− Φ

(
−x
σ

)
= 2Φ

(x
σ

)
− 1,
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where we used that Φ(− x
σ ) = 1−Φ( xσ ). On the one hand, as we are interested in a probabilty

of at least 95%, we have to choose x > 0 such that 2Φ( xσ )− 1 = 0.95. We have

2Φ
(x
σ

)
− 1 = 0.95 ⇐⇒ Φ

(x
σ

)
= 0.975.

Using Φ−1(0.975) = 1.96, this implies that
x

σ
= 1.96.

It follows that
x = 1.96 · σ = 1.96 ·Vco(Y1) · µ = 1.96 · 4 · µ. (1)

On the other hand, as we want the deviation of the empirical mean from µ to be less than
1%, we set

x√
n

= 0.01 · µ,

which implies

n = x2

0.012 · µ2 . (2)

Combining (1) and (2), we conclude that

nCLT = (1.96 · 4 · µ)2

0.012 · µ2 = 1.962 · 42 · 10’000 = 614’656.

(b) In this part we use Chebychev’s inequality instead of the Central Limit Theorem in order
to derive a minimum number of claims nChe such that with probability of at least 95% the
deviation of the sample mean 1

n

∑n
i=1 Yi from the mean claim size µ is less than 1%. We have

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < 0.01µ

]
≥ 0.95 ⇐⇒ P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ ≥ 0.01µ

]
≤ 0.05.

Similarly as in Exercise 2.2 we apply Chebychev’s inequality to get

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ ≥ 0.01µ

]
≤

Var( 1
n

∑n
i=1 Yi)

(0.01µ)2 = Var(Y1)
n · 0.012 · µ2 = Vco(Y1)2

n · 0.012 = 160’000
n

.

We have
160’000

n
≤ 0.05 ⇐⇒ n ≥ 3’200’000.

Thus, we get
nChe = 3’200’000 > 614’656 = nCLT.

This comparison confirms that Chebychev’s inequality is rather crude, see also Exercise 2.2.

Solution 2.4 Conditional Distribution and Variance Decomposition

(a) First, we write MΘ for the moment generating function of Θ. As Θ follows an exponential
distribution with parameter λ > 0, we know from Exercise 1.2 that

MΘ(r) = E
[
erΘ
]

= λ

λ− r
,

for all r < λ. As −v < 0 < λ, we calculate

P[N = 0] = E[P[N = 0|Θ]] = E
[
e−Θv] = MΘ(−v) = λ

λ+ v
.
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(b) According to the remark on the exercise sheet, we have E[N |Θ] = Θv. The tower property of
conditional expectation then leads to

E[N ] = E[E[N |Θ]] = E[Θv] = v

λ
,

as the expectation of an exponential distribution with parameter λ > 0 is equal to 1
λ , see

Exercise 1.2.

(c) Note that

E[N2] = E[E[N2|Θ]] = E[Var(N |Θ) + E[N |Θ]2] = E[Θv + (Θv)2] = v

λ
+ 2v2

λ2 < ∞,

where in the third equation we used that the expectation and the variance of a Poisson
distribution are equal to its frequency parameter, and in the fourth equation that the second
moment of an exponential distribution with parameter λ > 0 is equal to 2

λ2 , see Exercise 1.2.
In particular, the second moment of N , and thus the variance Var(N), exist. Now we have

E[Var(N |Θ)] = E[E[N2|Θ]− (E[N |Θ])2] = E[N2]− E[(E[N |Θ])2]

and
Var(E[N |Θ]) = E[(E[N |Θ])2]− E[E[N |Θ]]2 = E[(E[N |Θ])2]− E[N ]2.

Combining these two results, we get the variance decomposition formula

E[Var(N |Θ)] + Var(E[N |Θ]) = E[N2]− E[N ]2 = Var(N).

Using this formula, we can calculate

Var(N) = E[Var(N |Θ)] + Var(E[N |Θ]) = E[Θv] + Var(Θv) = v

λ
+ v2

λ2 ,

where in the last equation we used that the variance of an exponential distribution with
parameter λ > 0 is equal to 1

λ2 , see Exercise 1.2. In particular, we have

Var(N) = v

λ
+ v2

λ2 >
v

λ
= E[N ],

i.e. contrary to the (unconditional) Poisson distribution, the random variable N has a variance
which is bigger than the expectation.
Remark: The variance decomposition formula also holds in its general form

Var(X) = E[Var(X|G)] + Var(E[X|G]),

where X is a square-integrable random variable on a probability space (Ω,F ,P) and G any
sub-σ-algebra of F .
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