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Solution 4.1 Poisson Model and Negative-Binomial Model

(a) In the Poisson model we assume that N1, . . . , N10 are independent with Nt ∼ Poi(λvt) for all
t ∈ {1, . . . , 10}. We use Estimator 2.32 of the lecture notes (version of December 17, 2020) to
estimate the claim frequency parameter λ by

λ̂MLE
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

Let t ∈ {1, . . . , 10}. We have

E
[
Nt

vt

]
= E[Nt]

vt
= λvt

vt
= λ and Var

(
Nt

vt

)
= Var(Nt)

v2
t

= λvt

v2
t

= λ

vt
.

Note that for the random variable Nt ∼ Poi(λvt) we can write

Nt
(d)=

vt∑
i=1

Ñi,

where Ñ1, . . . , Ñvt
are i.i.d. random variables following a Poi(λ)-distribution. Thus, we can

use the Central Limit Theorem to get

Nt/vt − E [Nt/vt]√
Var (Nt/vt)

= Nt/vt − λ√
λ/vt

=⇒ Z,

as vt → ∞, where Z is a random variable following a standard normal distribution. This
leads to the approximation

P
[
λ−

√
λ/vt ≤ Nt/vt ≤ λ+

√
λ/vt

]
= P

[
−1 ≤ Nt/vt − λ√

λ/vt

≤ 1
]
≈ P(−1 ≤ Z ≤ 1) ≈ 0.7,

i.e. with a probability of roughly 70%, Nt/vt lies in the interval [λ−
√
λ/vt, λ+

√
λ/vt]. Since

λ is unknown, we replace it by the estimator λ̂MLE
10 to get the approximate prediction interval[

λ̂MLE
10 −

√
λ̂MLE

10
/
vt, λ̂

MLE
10 +

√
λ̂MLE

10
/
vt

]
≈ [9.90%, 10.54%],

which should contain roughly 70% of the observed claim frequencies Nt/vt. We have the
following observations of the claim frequencies:

t 1 2 3 4 5 6 7 8 9 10
Nt/vt 10% 9.97% 9.85% 9.89% 10.56% 10.70% 9.94% 9.86% 10.93% 10.54%

Table 1: Observed claim frequencies Nt/vt.

We observe that instead of the expected seven observations, only four observations lie in the
estimated interval. We conclude that the assumption of having Poisson distributions might
not be reasonable.
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(b) By equation (2.9) of the lecture notes (version of December 17, 2020), the test statistic

χ̂∗ =
10∑

t=1
vt

(
Nt/vt − λ̂MLE

10

)2

λ̂MLE
10

is approximately χ2-distributed with 10− 1 = 9 degrees of freedom. By inserting the numbers,
we get χ̂∗ ≈ 14.84. The probability that a random variable with a χ2-distribution with 9
degrees of freedom is greater than 14.84 is approximately equal to 9.55%. Hence we can reject
the null hypothesis of having Poisson distributions only at significance levels that are higher
than 9.55%. In particular, we can not reject the null hypothesis at significance level of 5%.

(c) In the negative-binomial model we assume that N1, . . . , N10 are independent with, condition-
ally given Θt, Nt ∼ Poi(Θtλvt) for all t ∈ {1, . . . , 10}, where Θ1, . . . ,Θ10

i.i.d.∼ Γ(γ, γ) for some
γ > 0. We use Estimator 2.28 of the lecture notes (version of December 17, 2020) to estimate
the claim frequency parameter λ by

λ̂NB
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

As in equation (2.8) of the lecture notes (version of December 17, 2020), we define

V̂ 2
10 = 1

9

10∑
t=1

vt

(
Nt

vt
− λ̂NB

10

)2
≈ 0.17 > λ̂NB

10 .

Let v = v1 = · · · = v10 = 10’000. Now we can use Estimator 2.30 of the lecture notes (version
of December 17, 2020) to estimate the dispersion parameter γ by

γ̂NB
10 =

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

1
9

( 10∑
t=1

vt −
∑10

t=1 v
2
t∑10

t=1 vt

)
=

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

(
10v − 10v2

10v

)
9 =

(
λ̂NB

10

)2
v

V̂ 2
10 − λ̂NB

10

≈ 1576.15.

For all t ∈ {1, . . . , 10} we have

E
[
Nt

vt

]
= E[Nt]

vt
= E[E[Nt|Θt]]

vt
= E[Θtλvt]

vt
= λvt

vt
= λ,

since E[Θt] = γ/γ = 1, and

Var
(
Nt

vt

)
= E[Var(Nt|Θt)] + Var(E[Nt|Θt])

v2
t

= E[Θtλvt] + Var(Θtλvt)
v2

t

= λ+ λ2vt/γ

vt
,

since Var(Θt) = γ/γ2 = 1/γ. Similarly as in part (a), we get the prediction intervalλ̂NB
10 −

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt
, λ̂NB

10 +

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt

 ≈ [9.81%, 10.63%],

which should contain roughly 70% of the observed claim frequencies Nt/vt. Looking at
the observations given in Table 1 above, we see that eight of them lie in the estimated
interval, which is clearly better than in the Poisson case in part (a). In conclusion, here the
negative-binomial model seems more reasonable than the Poisson model.
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Solution 4.2 χ2-Goodness-of-Fit-Analysis

(a) The R code used in part (a) is provided in Listing 1.

(i) In Figure 1 (left) we can see that the n MLEs of λ approximately have a Gaussian
distribution with mean equal to the true value of λ = 10%. On the one hand, this is due
to the fact that (under regularity assumptions) the MLE is consistent and asymptotically
Gaussian distributed (as T →∞). For more details we refer to Chapter 6 of the textbook
“Theory of Point Estimation” by E.L. Lehmann and G. Casella (2nd edition, 1998).
On the other hand, in the Poisson case we directly have an approximate Gaussian
distribution of the MLE, independently of the value of T , provided that the volume v is
large enough, see also Exercise 4.1.

(ii) From the QQ plot, see Figure 1 (right), we deduce that the test statistic indeed has
approximately a χ2-distribution with T − 1 = 9 degrees of freedom. We only observe
slightly heavier tails in the observations, compared to a χ2-distribution with T − 1 = 9
degrees of freedom. By increasing the values for n and v, we get even closer to a
χ2-distribution with T − 1 = 9 degrees of freedom.

(iii) We observe that we wrongly reject the null hypothesis H0 of having a Poisson distribution
as claim count distribution in 5.16% of the cases. This corresponds almost perfectly to
the chosen significance level (indicating the probability of rejecting H0 even though it is
true) of 5%.

Listing 1: R code for Exercise 4.2 (a).
1 ### Function generating the data and applying the chi - squared goodness -of -fit test
2 chi. squared .test .1 <- function (seed1 , n, t, lambda , v, alpha ){
3
4 ### Generate the claim counts
5 set.seed( seed1 )
6 claim . counts <- array ( rpois (n*t, lambda *v), dim=c(t,n))
7
8 ### Distribution of the MLEs of lambda
9 lambda_MLE <- colSums ( claim . counts )/(t*v)

10 plot( density ( lambda_MLE ), main =" Distribution of the MLEs", xlab =" Values of the MLEs",
11 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
12 abline (v=mean( lambda_MLE ), col =" red ")
13 legend (" topleft ", lty =1, col =" red", legend =" mean ")
14 print ("1: See plot for the distribution of the MLEs ")
15
16 ### Distribution of the test statistic
17 lambda_MLE_array <- array (rep( lambda_MLE ,each=t), dim=c(t,n))
18 test. statistic <- colSums (v*( claim . counts /v- lambda_MLE_array )^2/ lambda_MLE_array )
19 theoretical . quantiles <- qchisq (p=(1:n)/(n+1) , df=t -1)
20 empirical . quantiles <- test. statistic [ order (test. statistic )]
21 lim <- c(min( theoretical .quantiles , empirical . quantiles ),
22 max( theoretical .quantiles , empirical . quantiles ))
23 plot( theoretical .quantiles , empirical .quantiles , xlim=lim , ylim=lim ,
24 xlab =" Theoretical Quantiles ", ylab =" Empirical Quantiles ", main =" QQ plot", cex.lab =1.25 ,
25 cex.main =1.25 , cex.axis =1.25)
26 abline (a=0, b=1, col =" red ")
27 print ("2: See the QQ plot for a comparison between the empirical quantiles of the test
28 statistic and the theoretical quantiles of a chi - squared distribution with t -1
29 degrees of freedom ")
30
31 ### Result of the hypothesis test
32 print ( paste ("3: How often we wrongly reject the null hypothesis : ",
33 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n,sep =""))
34 }
35
36 ### Apply the function with the desired parameters
37 chi. squared .test .1( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05)
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Figure 1: Left: Density plot of the distribution of the MLEs. Right: QQ plot of the theoretical
quantiles of a χ2-distribution with T − 1 = 9 degrees of freedom against the empirical quantiles of
the values of the test statistic.

(b) The R code used in part (b) is provided in Listing 2.

(i) We observe the following results:

dispersion parameter γ 100 1’000 10’000
Percentage with which we reject H0 99.78% 48.38% 7.96%

Table 2: Percentage with which we reject H0 for different values of γ.

(ii) We see that in case of a negative binomial distribution with a comparably small parameter
(γ = 100) for the latent gamma distribution we are almost always able to reject the
null hypothesis H0 of having a Poisson distribution as claim count distribution. The
bigger γ, the less we are able to reject H0. This is because for very large values of γ, the
corresponding gamma distribution does not vary a lot, i.e. is almost constantly equal to
1. Thus, for increasing γ, we move back to the Poisson model and, consequently, the
χ2-goodness-of-fit test does not detect the latent variable anymore.

Solution 4.3 Claim Count Distribution

The sample mean µ̂ and the sample variance σ̂2 of the observed numbers of claims N1, . . . , N10 are
given by

µ̂ = 1
10

10∑
t=1

Nt = 21.3 and σ̂2 = 1
9

10∑
t=1

(Nt − µ̂)2 ≈ 109.1.

We have
σ̂2 ≈ 5µ̂,

which suggests Var(N1) > E[N1]. In such a case we would choose a negative binomial distribution,
as it allows the variance to exceed the expectation.
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Listing 2: R code for Exercise 4.2 (b).
1 ### Function generating the data and applying the chi - squared goodness -of -fit test
2 chi. squared .test .2 <- function (seed1 , n, t, lambda , v, alpha , gamma ){
3
4 ### Generate the claim counts
5 set.seed( seed1 )
6 claim . counts <- array ( rnbinom (n*t, size=gamma , mu= lambda *v), dim=c(t,n))
7
8 ### Calculate the MLEs
9 lambda_MLE <- colSums ( claim . counts )/(t*v)

10
11 ### Calculate the test statistic
12 lambda_MLE_array <- array (rep( lambda_MLE ,each=t), dim=c(t,n))
13 test. statistic <- colSums (v*( claim . counts /v- lambda_MLE_array )^2/ lambda_MLE_array )
14
15 ### Result of the hypothesis test
16 print ( paste (" How often we correctly reject the null hypothesis : ",
17 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n,sep =""))
18 }
19
20 ### Apply the function with the desired parameters
21 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =100)
22 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =1000)
23 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =10000)

Solution 4.4 Method of Moments

If Y ∼ Γ(γ, c), we have
E[Y ] = γ

c
and Var(Y ) = γ

c2 .

The sample mean µ̂8 and the sample variance σ̂2
8 of the eight observations y1, . . . , y8 are given by

µ̂8 = 1
8

8∑
i=1

yi = 64
8 = 8 and σ̂2

8 = 1
7

8∑
i=1

(yi − µ̂8)2 = 28
7 = 4.

The method of moments estimates (γ̂, ĉ) of (γ, c) solve the equations

µ̂8 = γ̂

ĉ
and σ̂2

8 = γ̂

ĉ2 .

We see that γ̂ = µ̂8ĉ and, thus,
σ̂2

8 = µ̂8ĉ

ĉ2 = µ̂8

ĉ
,

which is equivalent to
ĉ = µ̂8

σ̂2
8

= 8
4 = 2.

Moreover, we get

γ̂ = µ̂8ĉ = µ̂2
8
σ̂2

8
= 64

4 = 16.

We conclude that the method of moments estimates are given by (γ̂, ĉ) = (16, 2).
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