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Solution 5.1 Large Claims

(a) The density of a Pareto distribution with threshold θ = 50 and tail index α > 0 is given by

f(x) = fα(x) = α

θ

(x
θ

)−(α+1)
,

for all x ≥ θ. Using the independence of Y1, . . . , Yn, the joint likelihood function LY(α) for
the observation Y = (Y1, . . . , Yn) can be written as

LY(α) =
n∏
i=1

fα(Yi) =
n∏
i=1

α

θ

(
Yi
θ

)−(α+1)
=

n∏
i=1

αθαY
−(α+1)
i ,

whereas the joint log-likelihood function `Y(α) is given by

`Y(α) = logLY(α) =
n∑
i=1

logα+α log θ−(α+1) log Yi = n logα+nα log θ−(α+1)
n∑
i=1

log Yi.

The MLE α̂MLE
n is defined as

α̂MLE
n = arg max

α>0
LY(α) = arg max

α>0
`Y(α).

Calculating the first and the second derivative of `Y(α) with respect to α, we get

∂

∂α
`Y(α) = n

α
+ n log θ −

n∑
i=1

log Yi and

∂2

∂α2 `Y(α) = ∂

∂α

(
n

α
+ n log θ −

n∑
i=1

log Yi

)
= − n

α2 < 0,

for all α > 0, from which we can conclude that `Y(α) is strictly concave in α. Thus, α̂MLE
n

can be found by setting the first derivative of `Y(α) equal to 0. We get

n

α̂MLE
n

+ n log θ −
n∑
i=1

log Yi = 0 ⇐⇒ α̂MLE
n =

(
1
n

n∑
i=1

log Yi − log θ
)−1

.

(b) Let α̂ denote the unbiased version of the MLE for the storm and flood data given in Table 1
of the exercise sheet. Since we observed 15 storm and flood events, we have n = 15. Thus, α̂
can be calculated as

α̂ = n− 1
n

(
1
n

n∑
i=1

log Yi − log θ
)−1

= 14
15

(
1
15

15∑
i=1

log Yi − log 50
)−1

≈ 0.98,

where for Y1, . . . , Y15 we plugged in the observed claim sizes given in Table 1 of the exercise
sheet. Note that with α̂ = 0.98 < 1 the expectation of the claim sizes does not exist.
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(c) We define N1, . . . , N20 to be the numbers of yearly storm and flood events for the twenty
years 1986− 2005. By assumption, N1, . . . , N20 are i.i.d. Poisson distributed with frequency
parameter λ. Using Estimator 2.32 of the lecture notes (version of December 17, 2020) with
v1 = · · · = v20 = 1, the MLE λ̂ of λ is given by

λ̂ = 1∑20
i=1 1

20∑
i=1

Ni = 1
20

20∑
i=1

Ni.

Since we observed 15 storm and flood events in total, we get

λ̂ = 15
20 = 0.75.

(d) Using Proposition 2.11 of the lecture notes (version of December 17, 2020), the expected
yearly claim amount E[S] of storm and flood events with maximal claims cover M is given by

E[S] = λE[min{Y1,M}].

The expected value of min{Y1,M} can be calculated as

E[min{Y1,M}] = E[min{Y1,M}1{Y1≤M}] + E[min{Y1,M}1{Y1>M}]
= E[Y11{Y1≤M}] + E[M1{Y1>M}]
= E[Y11{Y1≤M}] +MP[Y1 > M ],

where for E[Y11{Y1≤M}] and MP[Y1 > M ] we have

E[Y11{Y1≤M}] =
∫ ∞
θ

x1{x≤M}f(x) dx =
∫ M

θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

[
1

1− αx
1−α

]M
θ

= α

1− αθ
αM1−α − α

1− αθ = α

1− αθ
(
M

θ

)1−α
− α

1− αθ

= θ
α

1− α

[(
M

θ

)1−α
− 1
]

and

MP[Y1 > M ] = M(1− P[Y1 ≤M ]) = M

(
1−

[
1−

(
M

θ

)−α])
= θ

(
M

θ

)1−α
.

Hence, we get

E[min{Y1,M}] = θ
α

1− α

[(
M

θ

)1−α
− 1
]

+ θ

(
M

θ

)1−α
= θ

1
1− α

(
M

θ

)1−α
− θ α

1− α.

Replacing the unknown parameters by their estimates, we get for the estimated expected
total yearly claim amount Ê[S]:

Ê[S] = λ̂

[
θ

1− α̂

(
M

θ

)1−α̂
− θ · α̂

1− α̂

]
≈ 0.75

[
50

1− 0.98

(
2’000

50

)1−0.98
− 50 · 0.98

1− 0.98

]
≈ 180.4.

(e) According to our compound Poisson model, next year’s total yearly claim amount S ∼
CompPoi(λ,G) of storm and flood events with claim amounts exceeding CHF 50 million can
be written as

S =
N∑
i=1

Yi,
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where N ∼ Poi(λ), Y1, Y2, . . . are i.i.d. with distribution function G, and N and Y1, Y2, . . .
are independent. Since we are only interested in events that exceed the level of CHF M = 2
billion, we define SM as

SM =
N∑
i=1

Yi1{Yi>M}.

Due to Theorem 2.14 of the lecture notes (version of December 17, 2020), we have SM ∼
CompPoi(λM , GM ) for some distribution function GM and

λM = λP[Y1 > M ] = λ(1− P[Y1 ≤M ]) = λ

(
1−

[
1−

(
M

θ

)−α])
= λ

(
M

θ

)−α
.

Defining a random variable NM ∼ Poi(λM ), the probability that we observe at least one
storm and flood event next year which exceeds the level of CHF M = 2 billion is given by

P[NM ≥ 1] = 1− P[NM = 0] = 1− exp{−λM} = 1− exp
{
−λ
(
M

θ

)−α}
.

If we replace the unknown parameters by their estimates, this probability can be estimated by

P̂[NM ≥ 1] = 1− exp
{
−λ̂
(
M

θ

)−α̂}
≈ 1− exp

{
−0.75

(
2’000

50

)−0.98
}
≈ 0.02.

Note that, in particular, such a storm and flood event that exceeds the level of CHF 2 billion
is expected roughly every 1/0.02 = 50 years.

Solution 5.2 Claim Size Distributions

The R code used to generate the four i.i.d. samples is given in Listing 1.

Listing 1: R code for Exercise 5.2 (Data generation).
1 ### Size of the i.i.d. samples
2 n <- 10000
3
4 ### Generate the gamma i.i.d. sample
5 gamma <- 1/4
6 c <- 1/40000
7 set.seed (100)
8 gamma . sample <- rgamma (n=n, shape =gamma , rate=c)
9

10 ### Generate the Weibull i.i.d. sample
11 tau <- 0.54
12 c <- 0.000175
13 set.seed (200)
14 weibull . sample <- rgamma (n=n, shape =1, rate =1)^(1/ tau )/c
15
16 ### Generate the log - normal i.i.d. sample
17 mu <- log (2000* sqrt (5))
18 sigma . squared <- log (5)
19 set.seed (300)
20 lognormal . sample <- exp( rnorm (n=n, mean=mu , sd=sqrt( sigma . squared )))
21
22 ### Generate the Pareto i.i.d. sample
23 theta <- 10000*( sqrt (5)/(2+ sqrt (5)))
24 alpha <- 1+ sqrt (5)/2
25 set.seed (400)
26 pareto . sample <- theta *exp( rgamma (n=n, shape =1, rate= alpha ))

In Figure 1 (generated by the R code given in Listing 2) we show the densities (left) of the generated
i.i.d. samples as well as the corresponding box plots (right), both on a log scale. We only display
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logarithmic values starting from 0. We see for example that we have a lot of very small values in
case of the gamma distribution and the Weibull distribution. The smallest values observed are
considerably bigger for the log-normal and especially the Pareto distribution. Moreover, the value of
the biggest value observed increases in going from the gamma over the Weibull and the log-normal
to the Pareto distribution. We cannot say much about the tails from looking at these two plots.
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Figure 1: Plot of the densities of the four i.i.d. samples (left). Box plots of the four i.i.d. samples
(right).

Listing 2: R code for Exercise 5.2 (Figure 1).
1 ### Densities
2 ymax <- max( density (log( gamma . sample ))$y , density (log( weibull . sample ))$y ,
3 density (log( lognormal . sample ))$y , density (log( pareto . sample )) $y)
4 ymax2 <- max(log( gamma . sample ),log( weibull . sample ),log( lognormal . sample ),log( pareto . sample ))
5 plot( density (log( gamma . sample )), xlim=c(0, ymax2 ), col =" grey", ylim=c(0, ymax), main =" Densities ",
6 xlab =" Sampled values (log scale )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
7 lwd =2)
8 lines ( density (log( weibull . sample )), col =" red", xlim=c(0, ymax2 ), lwd =2)
9 lines ( density (log( lognormal . sample )), col =" blue", xlim=c(0, ymax2 ), lwd =2)

10 lines ( density (log( pareto . sample )), col =" green ", xlim=c(0, ymax2 ), lwd =2)
11 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
12 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
13
14 ### Box plots
15 boxplot (log( gamma . sample ), log( weibull . sample ), log( lognormal . sample ), log( pareto . sample ),
16 ylim=c(0, ymax2 ), col=c(" grey "," red "," blue "," green "), main =" Box plot",
17 names =c(" Gamma "," Weibull ","Log - normal "," Pareto "), xlab =" Distribution ",
18 ylab =" Sampled values (log scale )", cex.lab =1.25 , cex.main =1.25 , cex.axis =0.95)

In Figure 2 (generated by the R code given in Listing 3) we show the plots of the empirical
distribution functions (left, on a log scale) and of the empirical loss size index functions (right) of
the generated i.i.d. samples. For the plot of the empirical distribution functions we only display
logarithmic values starting from 0. We observe that the empirical distribution functions almost
perfectly intersect at the point with x-coordinate equal to log(10’000)≈ 9.21. This means that for
all of the four considered distributions approximately the same percentage of observations is smaller
than the expected value. This percentage is roughly equal to 75%, indicating that three quarters of
the observations are smaller than the expected value and one quarter of the observations are above
the expected value. Thus, not surprisingly, the large claims are the main driver of the expected
value. We get confirmed the observations from Figure 1, namely that the smallest values observed
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are considerably bigger for the log-normal and especially the Pareto distribution, compared to the
gamma and the Weibull distribution. This carries over to the plot of the empirical loss size index
function. Also these two plots do not tell us much about the tails of the distributions.
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Figure 2: Plot of the empirical distribution functions of the four i.i.d. samples (left). Plot of the
empirical loss size index functions of the four i.i.d. samples (right).

Listing 3: R code for Exercise 5.2 (Figure 2).
1 ### Empirical distribution functions
2 plot(log( gamma . sample [ order ( gamma . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), type ="l", col =" grey",
3 main =" Empirical distribution function ", xlab =" Sampled values (log scale )",
4 ylab =" Empirical distribution function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
5 lines (log( weibull . sample [ order ( weibull . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" red", lwd =2)
6 lines (log( lognormal . sample [ order ( lognormal . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" blue",
7 lwd =2)
8 lines (log( pareto . sample [ order ( pareto . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" green ", lwd =2)
9 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),

10 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
11
12 ### Empirical loss size index functions
13 plot (1:n/n, cumsum ( gamma . sample [ order ( gamma . sample )])/ sum( gamma . sample ), type ="l", col =" grey",
14 main =" Empirical loss size index function ", xlab =" Number of claims (in 100%)" ,
15 ylab =" Empirical loss size index function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
16 lwd =2)
17 lines (1:n/n, cumsum ( weibull . sample [ order ( weibull . sample )])/ sum( weibull . sample ), type ="l",
18 col =" red", lwd =2)
19 lines (1:n/n, cumsum ( lognormal . sample [ order ( lognormal . sample )])/ sum( lognormal . sample ), type ="l",
20 col =" blue", lwd =2)
21 lines (1:n/n, cumsum ( pareto . sample [ order ( pareto . sample )])/ sum( pareto . sample ), type ="l",
22 col =" green ", lwd =2)
23 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
24 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))

In Figure 3 (generated by the R code given in Listing 4) we show the log-log plots (left) and the plot
of the empirical mean excess functions (right) of the generated i.i.d. samples. These two plots can
be used for studying the tails of the distributions. We see in both plots that the gamma distribution
is the most light-tailed distribution. The Weibull distribution and the log-normal distribution have
a similar tail behaviour, with slightly heavier tails of the log-normal distribution. Note that this
similar tail behaviour is due to the value of the parameter τ of the Weibull distribution being smaller
than 1. With a value τ ≥ 1 the distribution gets (even) more light-tailed. The most heavy-tailed
distribution among the four distributions we analyzed here is the Pareto distribution.
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Listing 4: R code for Exercise 5.2 (Figure 3).
1 ### Log -log plots
2 plot(log( gamma . sample [ order ( gamma . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
3 col =" grey", main ="Log -log plot", xlab =" log( sampled values )",
4 ylab =" log (1- empirical distribution function )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
5 lwd =2)
6 lines (log( weibull . sample [ order ( weibull . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
7 col =" red", lwd =2)
8 lines (log( lognormal . sample [ order ( lognormal . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ),
9 type ="l", col =" blue", lwd =2)

10 lines (log( pareto . sample [ order ( pareto . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
11 col =" green ", lwd =2)
12 legend (" bottomleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
13 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
14
15 ### Empirical mean excess functions
16 mean. excess . function <- Vectorize ( function (threshold , input . sample ){
17 mean( input . sample [ input .sample > threshold ])- threshold
18 }," threshold ")
19 xmax <- pareto . sample [ order ( pareto . sample )][n -1]
20 ymax3 <- max( pareto . sample )-xmax
21 plot( gamma . sample [ order ( gamma . sample )][ -n],
22 mean. excess . function ( gamma . sample [ order ( gamma . sample )][ -n], gamma . sample ), pch =16 ,
23 col =" grey", xlim=c(0, xmax), ylim=c(0, ymax3 ), main =" Empirical mean excess function ",
24 xlab =" Threshold ", ylab =" Mean excess function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
25 points ( weibull . sample [ order ( weibull . sample )][ -n],
26 mean. excess . function ( weibull . sample [ order ( weibull . sample )][ -n], weibull . sample ), pch =16 ,
27 col =" red", ylim=c(0, ymax3 ))
28 points ( lognormal . sample [ order ( lognormal . sample )][ -n],
29 mean. excess . function ( lognormal . sample [ order ( lognormal . sample )][ -n], lognormal . sample ),
30 pch =16 , col =" blue", ylim=c(0, ymax3 ))
31 points ( pareto . sample [ order ( pareto . sample )][ -n],
32 mean. excess . function ( pareto . sample [ order ( pareto . sample )][ -n], pareto . sample ),pch =16 ,
33 col =" green ", ylim=c(0, ymax3 ))
34 legend (" topleft ", pch =16 , col=c(" grey "," red "," blue "," green "),
35 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
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Figure 3: Log-log plots of the four i.i.d. samples (left). Plot of the empirical mean excess functions
of the four i.i.d. samples (right).

Summarizing, we can say that although we fixed the mean and the standard deviation to be the
same, all of the four considered distributions behave differently. This implies that one has to
carefully select the appropriate claim size distribution.
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Solution 5.3 Hill Estimator

The Hill plot (on the left, generated by the R code of Listing 5) and the log-log plot (on the right,
generated by the R code of Listing 6) are given in Figure 4. Even though we sampled from a Pareto
distribution with tail index α = 2, it is not at all clear to see that the data comes from a Pareto
distribution. In the Hill plot we see that, first, the estimates of α seem more or less correct, but
starting from the 180 largest observations, the plot suggests a higher α or even another distribution.
In the log-log plot we see that for small-sized and medium-sized claims the fit seems to be fine. But
looking at the largest claims, we would conclude that our data is not as heavy-tailed as a true Pareto
distribution with threshold θ = 10 and tail index α = 2 would suggest. We observe these problems
even though we sampled directly from a Pareto distribution. This indicates the difficulties one faces
when trying to fit such a distribution to a real data set, where we often have less observations than
in this example and the observations may be contaminated by other distributions.

Listing 5: R code for Exercise 5.3 (Hill plot).
1 hill.plot. function <- function (n, theta , alpha , seed1 ){
2 set.seed( seed1 )
3 data .1 <- rgamma (n, shape =1, scale =1/ alpha )
4 data <- theta * exp(data .1)
5 log.data. ordered <- log(data[ order (data , decreasing = FALSE )])
6 n.obs <- n:5
7 hill. estimator <- (( sum(log.data. ordered )- cumsum (log.data. ordered )
8 +log.data. ordered )[ -((n -3):n)]/n.obs -log.data. ordered [ -((n -3):n)])^( -1)
9 upper . bound <- hill. estimator +sqrt(n.obs ^2/(( n.obs -1)^2*( n.obs -2))* hill. estimator ^2)

10 lower . bound <- hill.estimator -sqrt(n.obs ^2/(( n.obs -1)^2*( n.obs -2))* hill. estimator ^2)
11 plot(hill.estimator , ylim=c(min(hill. estimator )-1, max(hill. estimator )+1) , xaxt ="n",
12 xlab =" Number of observations ", ylab =" Pareto tail index parameter ",
13 main =" Hill plot for alpha ", cex =0.5 , cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
14 axis (1, at=c(1, seq(from=n/10+1 , to=n*9/10+1 , by=n/10) , n -5) , c(seq(from=n, to=n/10 ,
15 by=-n/10) , 5))
16 lines ( upper . bound )
17 lines ( lower . bound )
18 abline (h=alpha , col =" blue", lwd =2)
19 legend (" topleft ", col=c(" blue "," black "), lty=c(1,NA), pch=c(NA ,1) , lwd=c(2,NA),
20 legend =c(" true tail index "," estimated tail index "))
21 }
22
23 hill.plot. function (n=300 , theta =10 , alpha =2, seed1 =100)
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Figure 4: Hill plot for determining the tail index α (left). Log-log plot for the observations and the
Pareto distribution (right).
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Listing 6: R code for Exercise 5.3 (Log-log plot).
1 log.log.plot. function <- function (n, theta , alpha , seed1 ){
2 set.seed( seed1 )
3 data .1 <- rgamma (n, shape =1, scale =1/ alpha )
4 data <- theta *exp(data .1)
5 data. ordered <- data[ order (data , decreasing = FALSE )]
6 log.data. ordered <- log(data. ordered )
7 true.sf <- (data. ordered / theta )^( - alpha )
8 empirical .sf <- 1 -(1:n)/(n+1)
9 plot(log.data.ordered , log(true.sf), xlab =" log( claim size )",

10 ylab =" log (1 - distribution function )",
11 ylim=c(min(log(true.sf),log( empirical .sf)), max(log(true.sf),log( empirical .sf ))) ,
12 main ="Log -log plot", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , cex =0.5 , col =" blue ")
13 lines (log.data.ordered ,log(true.sf), col =" blue ")
14 points (log.data.ordered , log( empirical .sf), col =" black ", cex =0.5)
15 legend (" bottomleft ", col=c(" blue "," black "), lty=c(1,NA), pch=c(1 ,1) ,
16 legend =c(" Pareto distribution "," observations "))
17 }
18
19 log.log.plot. function (n=300 , theta =10 , alpha =2, seed1 =100)

Solution 5.4 Pareto Distribution

The density g and the distribution function G of Y ∼ Pareto(θ, α) are defined by

g(x) = α

θ

(x
θ

)−(α+1)
and G(x) = 1−

(x
θ

)−α
,

respectively, for all x ≥ θ.

(a) The survival function Ḡ = 1−G of Y is given by

Ḡ(x) = 1−G(x) =
(x
θ

)−α
,

for all x ≥ θ. Hence, for all t > 0 we have

lim
x→∞

Ḡ(xt)
Ḡ(x)

= lim
x→∞

(xt/θ)−α

(x/θ)−α = t−α.

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index
α.

(b) Let θ ≤ u1 < u2. Then, the expected value of Y within the layer (u1, u2] can be calculated as

E[Y 1{u1<Y≤u2}] =
∫ ∞
θ

x1{u1<x≤u2}g(x) dx =
∫ u2

u1

x
α

θ

(x
θ

)−(α+1)
dx

= αθ

∫ u2

u1

1
θ

(x
θ

)−α
dx.

In the case α 6= 1, we get

E[Y 1{u1<Y≤u2}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]u2

u1

= θ
α

α− 1

[(u1

θ

)−α+1
−
(u2

θ

)−α+1
]
,

and if α = 1, we get

E[Y 1{u1<Y≤u2}] = θ

∫ u2

u1

1
x
dx = θ log

(
u2

u1

)
.
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(c) Let α > 1 and y > θ. Then, the expected value µY of Y is given by

µY = θ
α

α− 1

and, similarly as in part (b), we get

E[Y 1{Y≤y}] = E[Y 1{θ<Y≤y}] = θ
α

α− 1

[(
θ

θ

)−α+1
−
(y
θ

)−α+1
]

= µY

[
1−

(y
θ

)−α+1
]
.

Hence, for the loss size index function for level y > θ we have

I[G(y)] = 1
µY

E[Y 1{Y≤y}] = 1−
(y
θ

)−α+1
∈ (0, 1).

(d) Let α > 1 and u > θ. The mean excess function of Y above u can be calculated as

e(u) = E[Y − u|Y > u] = E[Y |Y > u]− u =
E[Y 1{Y >u}]
P[Y > u] − u =

E[Y 1{Y >u}]
Ḡ(u)

− u,

where for E[Y 1{Y >u}] we have, similarly as in part (b),

E[Y 1{Y >u}] = E[Y 1{u<Y≤∞}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]∞
u

= α

α− 1θ
(u
θ

)−α+1

= α

α− 1uḠ(u).

Thus, we get
e(u) = α

α− 1u− u = 1
α− 1u.

Note that the mean excess function u 7→ e(u) has slope 1
α−1 > 0.
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