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Solution 6.1 Log-Normal Distribution and Deductible

(a) Let X ∼ N (µ, σ2). Then, the moment generating function MX of X is given by

MX(r) = E [exp{rX}] = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R, see Exercise 1.3. Since Y1 has a log-normal distribution with mean parameter µ
and variance parameter σ2, we have

Y1
(d)= exp{X}.

Hence, the expectation, the variance and the coefficient of variation of Y1 can be calculated as

E[Y1] = E [exp{X}] = E [exp{1 ·X}] = MX(1) = exp
{
µ+ σ2

2

}
,

Var(Y1) = E[Y 2
1 ]− E[Y1]2 = E [exp{2X}]−MX(1)2 = MX(2)−MX(1)2

= exp
{

2µ+ 4σ2

2

}
− exp

{
2µ+ 2σ

2

2

}
= exp

{
2µ+ σ2} (exp

{
σ2}− 1

)
and

Vco(Y1) =
√

Var(Y1)
E[Y1] =

exp
{
µ+ σ2/2

}√
exp {σ2} − 1

exp {µ+ σ2/2} =
√

exp {σ2} − 1.

(b) From part (a) we know that

σ =
√

log[Vco(Y1)2 + 1] and

µ = logE[Y1]− σ2

2 .

Since E[Y1] = 3’000 and Vco(Y1) = 4, we get

σ =
√

log(42 + 1) ≈ 1.68 and

µ ≈ log 3’000− (1.68)2

2 ≈ 6.59.

(i) The claim frequency λ is given by λ = E[N ]/v. With the introduction of the deductible
d = 500, the number of claims changes to

Nnew =
N∑
i=1

1{Yi>d}.

Using the independence of N and Y1, Y2, . . . , we get

E[Nnew] = E

[
N∑
i=1

1{Yi>d}

]
= E[N ]E[1{Y1>d}] = E[N ]P[Y1 > d].
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Let Φ denote the distribution function of a standard Gaussian distribution. Since log Y1
has a Gaussian distribution with mean µ and variance σ2, we have

P[Y1 > d] = 1− P[Y1 ≤ d] = 1− P
[

log Y1 − µ
σ

≤ log d− µ
σ

]
= 1− Φ

(
log d− µ

σ

)
.

Hence, the new claim frequency λnew is given by

λnew = E[Nnew]/v = E[N ]P[Y1 > d]/v = λP[Y1 > d] = λ

[
1− Φ

(
log d− µ

σ

)]
.

Inserting the values of d, µ and σ, we get

λnew ≈ λ

[
1− Φ

(
log 500− 6.59

1.68

)]
≈ 0.59 · λ.

Note that the introduction of this deductible reduces the administrative burden a lot,
because we expect that 41% of the claims disappear.

(ii) With the introduction of the deductible d = 500, the claim sizes change to

Y new
i = Yi − d |Yi > d.

Thus, the new expected claim size is given by

E[Y new
1 ] = E[Y1 − d|Y1 > d] = e(d),

where e(d) is the mean excess function of Y1 above d. According to page 67 of the lecture
notes (version of December 17, 2020), e(d) is given by

e(d) = E[Y1]

1− Φ
(

log d−µ−σ2

σ

)
1− Φ

(
log d−µ

σ

)
− d.

Inserting the values of d, µ, σ and E[Y1], we get

E[Y new
1 ] ≈ 3’000

1− Φ
(

log 500−6.59−1.682

1.68

)
1− Φ

(
log 500−6.59

1.68

)
− 500 ≈ 4’456 ≈ 1.49 · E[Y1].

(iii) According to Proposition 2.2 of the lecture notes (version of December 17, 2020), the
expected total claim amount E[S] is given by

E[S] = E[N ]E[Y1].

With the introduction of the deductible d = 500, the total claim amount S changes to
Snew, which can be written as

Snew =
Nnew∑
i=1

Y new
i .

Hence, the expected total claim amount changes to

E[Snew] = E[Nnew]E[Y new
1 ] = E[N ]P[Y1 > d]e(d) ≈ 0.59 · E[N ] · 1.49 · E[Y1]

≈ 0.87 · E[S].

In particular, the insurance company can grant a discount of roughly 13% on the pure
risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).
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Solution 6.2 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
If we write dMM and dMLE for the number of estimated parameters in the method of moments
model and in the MLE model, respectively, we have dMM = dMLE = 2. The AIC value AICMM

of the method of moments model and the AIC value AICMLE of the MLE model are then
given by

AICMM = −2`Y
(
γ̂MM, ĉMM)+ 2dMM = −2 · 1’264.013 + 2 · 2 = −2’524.026 and

AICMLE = −2`Y
(
γ̂MLE, ĉMLE)+ 2dMLE = −2 · 1’264.171 + 2 · 2 = −2’524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AICMM > AICMLE, we choose the MLE fit. Note that strictly speaking we should not use
AIC to evaluate the MM estimated model since AIC only applies to MLE fitted models.

(b) If we write dgam and dexp for the number of estimated parameters in the gamma model and in
the exponential model, respectively, we have dgam = 2 and dexp = 1. The AIC value AICgam

of the gamma model and the AIC value AICexp of the exponential model are then given by

AICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ 2dgam = −2 · 1’264.171 + 2 · 2 = −2’524.342 and

AICexp = −2`exp
Y
(
ĉMLE)+ 2dexp = −2 · 1’264.169 + 2 · 1 = −2’526.338.

Since AICgam > AICexp, we choose the exponential model.
The BIC value BICgam of the gamma model and the BIC value BICexp of the exponential
model are given by

BICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ dgam · logn = −2 · 1’264.171 + 2 · log 1’000 ≈ −2’514.53

and

BICexp = −2`exp
Y
(
ĉMLE)+ dexp · logn = −2 · 1’264.169 + log 1’000 ≈ −2’521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BICgam > BICexp, we choose the exponential model.
Note that the gamma model gives the better in-sample fit than the exponential model. But
if we adjust this in-sample fit by the number of parameters used, we conclude that the
exponential model probably has the better out-of-sample performance (better predictive
power).

Solution 6.3 Goodness-of-Fit Test

(a) Let Y be a random variable following a Pareto distribution with threshold θ = 200 and tail
index α = 1.25. Then, the distribution function G of Y is given by

G(x) = 1−
(x
θ

)−α
= 1−

( x

200

)−1.25
,

for all x ≥ θ. For example for the interval I2 we then have

P[Y ∈ I2] = P[239 ≤ Y < 301] = G(301)−G(239) = 0.2.
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By analogous calculations for the other four intervals, we get

P[Y ∈ I1] = P[Y ∈ I2] = P[Y ∈ I3] = P[Y ∈ I4] = P[Y ∈ I5] ≈ 0.2.

Let Ok denote the actual number of observations and Ek the expected number of observations
in interval Ik, for all k ∈ {1, . . . , 5}. The test statistic

X2
n,5 =

5∑
k=1

(Ok − Ek)2

Ek

of the χ2-goodness-of-fit test using K = 5 intervals and n observations converges to a χ2-
distribution with K − 1 = 5 − 1 = 4 degrees of freedom, as n → ∞. As we have n = 20
observations in our data, we can calculate Ek as

Ek = 20 · P[Y ∈ Ik] = 20 · 0.2 ≈ 4,

for all k = 1, . . . , 5. The values of the actual numbers of observations Ok and the expected
numbers of observations Ek in the five intervals k = 1, . . . , 5 as well as their squared differences
(Ok − Ek)2 are summarized in Table 1.

k 1 2 3 4 5
Ok 4 0 8 6 2
Ek 4 4 4 4 4

(Ok − Ek)2 0 16 16 4 4

Table 1: Actual and expected numbers of observations with squared differences.

With the numbers in Table 1, the test statistic of the χ2-goodness-of-fit test using 5 intervals
in the case of our n = 20 observations is given by

X2
20,5 =

5∑
k=1

(Ok − Ek)2

Ek
= 0

4 + 16
4 + 16

4 + 4
4 + 4

4 = 10.

Let α = 5%. Then, the (1− α)-quantile of the χ2-distribution with 4 degrees of freedom is
given by approximately 9.49. Since this is smaller than X2

20,5, we can reject the null hypothesis
of having a Pareto distribution with threshold θ = 200 and tail index α = 1.25 as claim size
distribution at significance level of 5%.

(b) We assume that we have n i.i.d. observations Y1, . . . , Yn from the null hypothesis distribution
and that we work with K = 2 disjoint intervals I1 and I2. We define

p = P[Y1 ∈ I1]

and
Xi = 1{Yi∈I1},

for all i = 1, . . . , n. This implies that X1, . . . , Xn
i.i.d.∼ Bernoulli(p). Thus, we have

µ
def= E[X1] = p and σ

def=
√

Var(X1) =
√
p(1− p).

Moreover, we can write

O1 =
n∑
i=1

Xi and O2 = n−O1 = n−
n∑
i=1

Xi
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as well as

E1 = E

[
n∑
i=1

Xi

]
= np and E2 = E

[
n−

n∑
i=1

Xi

]
= n− np = n(1− p).

Therefore, we get

X2
n,2 =

2∑
k=1

(Ok − Ek)2

Ek
= (O1 − np)2

np
+ [n−O1 − n(1− p)]2

n(1− p)

= (O1 − np)2
[

1
np

+ 1
n(1− p)

]
= (O1 − np)2 1

np(1− p)

=
(∑n

i=1 Xi − nµ√
nσ

)2

.

Let Z ∼ N (0, 1) and χ2
1 follow a χ2-square distribution with one degree of freedom. According

to the central limit theorem, see equation (1.2) of the lecture notes (version of December 17,
2020), we have ∑n

i=1 Xi − nµ√
nσ

=⇒ Z, as n→∞.

As Z2 (d)= χ2
1, see Exercise 1.4, we can conclude that

X2
n,2 =⇒ Z2 (d)= χ2

1, as n→∞.

Solution 6.4 Kolmogorov-Smirnov Test

The distribution function G0 of a Weibull distribution with shape parameter τ = 1
2 and scale

parameter c = 1 is given by
G0(y) = 1− exp

{
−y1/2

}
,

for all y ≥ 0. Since G0 is continuous, we are indeed allowed to apply a Kolmogorov-Smirnov test.
If x = (− log u)2 for some u ∈ (0, 1), we have

G0(x) = 1− exp
{
−
[
(− log u)2]1/2

}
= 1− exp {log u} = 1− u.

Hence, if we evaluate G0 at our data points x1, . . . , x5, we get

G0(x1) = 2
40 , G0(x2) = 3

40 , G0(x3) = 5
40 , G0(x4) = 6

40 , G0(x5) = 30
40 .

We write Ĝn for the empirical distribution function of a sample with n data points. The Kolmogorov-
Smirnov test statistic Dn is then defined as

Dn = sup
y∈R

∣∣∣Ĝn(y)−G0(y)
∣∣∣ ,

and
√
nDn converges to the Kolmogorov distribution K, as n → ∞. The empirical distribution

function Ĝ5 of the sample x1, . . . , x5 is given by

Ĝ5(y) =



0 if y < x1,
1/5 if x1 ≤ y < x2,
2/5 if x2 ≤ y < x3,
3/5 if x3 ≤ y < x4,
4/5 if x4 ≤ y < x5,
1 if y ≥ x5.
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Since G0 is continuous and strictly increasing with range [0, 1) and Ĝ5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of Ĝ5 to determine
the Kolmogorov-Smirnov test statistic D5 for our n = 5 data points. We define

f(s−) = lim
r↗s

f(r),

for all s ∈ R, where the function f stands for G0 and Ĝ5. Since G0 is continuous, we have
G0(s−) = G0(s) for all s ∈ R. The values of G0 and Ĝ5 and their differences (in absolute value)
are summarized in Table 2.

xi, xi− x1− x1 x2− x2 x3− x3 x4− x4 x5− x5

Ĝ5(·) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
G0(·) 2/40 2/40 3/40 3/40 5/40 5/40 6/40 6/40 30/40 30/40

|Ĝ5(·)−G0(·)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 2: Values of G0 and Ĝ5 and their differences (in absolute value).

From Table 2 we see for the Kolmogorov-Smirnov test statistic D5 that

D5 = sup
y∈R

∣∣∣Ĝ5(y)−G0(y)
∣∣∣ = 26/40 = 0.65.

Let q = 5%. By writing K←(1 − q) for the (1 − q)-quantile of the Kolmogorov distribution, we
have K←(1− q) = 1.36, see page 81 of the lecture notes (version of December 17, 2020). Since

K←(1− q)√
5

≈ 0.61 < 0.65 = D5,

we can reject the null hypothesis (at significance level of 5%) that the data x1, . . . , x5 comes from a
Weibull distribution with shape parameter τ = 1

2 and scale parameter c = 1.
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