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SCHRAMM-LOEWNER EVOLUTIONS (D-MATH)
EXERCISE SHEET 1 – SOLUTION

Throughout this exercise sheet, let γ ∼ SLEκ for κ > 0 and let us write ξ =
√
κB for its

Loewner driving function where B is a standard Brownian motion. Furthermore, let (gt)
be the mapping out functions, (Kt) the chordal hulls and (ζz) be the swallowing times.

Exercise 1. Suppose that κ < 4. Our aim will be to show that |γt| → ∞ as t → ∞
almost surely (this property is called transience of SLE).
(i) Show that gt(1)− ξt →∞ as t→∞ almost surely.
(ii) Hence establish that inft≥0 |γt − 1| > 0 a.s.
(iii) Show that for all x ∈ R \ {0} we have inft≥0 |γt − x| > 0 a.s.
(iv) Let x− (resp. x+) be the left (resp. right) image of 0 under g1, i.e. x± = limε↓0 g1(±ε).

Argue that inft≥1 |g1(γt)− x±| > 0 almost surely.
(v) Deduce that inft≥1 |γt| > 0 almost surely and hence prove the transience of γ.

The result derived in this exercise holds in fact for all κ > 0 and for the rest of the exercise
sheet you may use this result in the entire valid parameter range.
Solution. (i) We use Itô’s formula to get that a.s. for all t < ζ1,

d(gt(1)− ξt) =
2 dt

gt(1)− ξt
−
√
κ dBt and hence

d

(
gt(1)− ξt√

κ

)
=
δ − 1

2

dt

gt(1)− ξt
− dBt

where (δ − 1)/2 = 2/κ i.e. δ = 1 + 4/κ. The assumption κ < 4 implies that δ > 2
and hence ((gt(1)− ξt)/

√
κ : t < ζ1) is a Bessel process of dimension δ > 2; in particular

ζ1 = ∞ a.s. (this has already been shown in the lectures) and (gt(1) − ξt)/
√
κ → ∞ as

t→∞ almost surely.
(ii) Define the stopping time τε = inf{t ≥ 0: |γt − 1| = ε}. Our goal is now to show

(roughly speaking) that on the event τε < ∞ implies the quantity gτε(z) − ξτε is small;
this will be a purely deterministic statement but we will use a planar Brownian motion
to understand this deterministic phenomenon.

Let us now assume that ε ∈ (0, 1) and τε < ∞ and we fix a realization γ|[0,τε]. If we
start a planar Brownian motion B from g−1t (iy) for y > 0 then if it exits H \ γ([0, t]) by
hitting the right side of γ([0, t]) or the interval [0, 1] then it needs to hit ∂Bε(1) before
exiting H (draw a picture). By conformal invariance of planar Brownian motion therefore

Piy(BνH ∈ [ξτε , gτε(1)]) ≤ Pg−1
τε (iy)(BνH\B̄ε(1)

∈ ∂Bε(1))

where νD = inf{t ≥ 0: Bt /∈ D} is the exit time from B. By multiplying both sides with
y and letting y →∞ we obtain

gτε(1)− ξτε ≤ Cε

for some universal constant C > 0. We deduce that τε = ∞ provided that
ε < inft≥0(gt(1)− ξt)/C and the result follows.
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(iii) If x > 0 then by the scaling property of SLE,

inf
t≥0
|γt − x|

d
= inf

t≥0
|xγt/x2 − x| = x inf

t≥0
|γt − 1| > 0 a.s.

The claim for x < 0 follows from the reflection property of SLE i.e. that γ has the same
law as −γ̄ (which is the reflection of γ across the imaginary axis).

(iv) This follows from the Markov property of SLE: Indeed, g1(γ(· + 1)) − ξ1 is an
SLEκ which is independent of γ|[0,1]. In particular, the values x± − ξ1 are non-zero and
independent of the SLEκ given by g1(γ(·+ 1))− ξ1. The claim now follows from (iii).

(v) Fix a realization of γ and suppose that δ > 0 is such that |g1(γt) − x+| ≥ δ
and |g1(γt) − x−| ≥ δ for all t ≥ 1 (by (iv) this occurs almost surely). It follows that
γ([0, 1]) ∪ g−11 (Bδ(x+)) ∪ g−11 (Bδ(x−)) contains a semiball Bδ′(0) ∩H for some δ′ > 0. In
particular, |γt| ≥ δ′ for all t ≥ 1 as required.

To conclude, note that if we let S := lim inft→∞ |γt| then we just established that S > 0
almost surely. However, by the scaling property of SLE, we have S =d λS for all λ > 0
and it is easy to conclude that this implies S =∞ almost surely.

Exercise 2. Fix z ∈ H. Suppose that κ < 8 so that we have z /∈ γ([0,∞)) almost surely.
(i) Using Itô’s formula, write down the decomposition of (log(gt(z) − ξt) : t < ζz) and

hence of (arg(gt(z)− ξt) : t < ζz) = (= log(gt(z)− ξt) : t < ζz) into a local martingale
and a finite variation part.

(ii) Hence find the (unique) continuous function f : [0, π]→ R which is smooth on (0, π)
and satisfies f(0) = 0 and f(π) = 1 such that

M = (f(arg(gt(z)− ξt)) : t < ζz)

is a local martingale.
(iii) Deduce that γ passes to the right of z with probability∫ arg(z)

0
sin(θ)8/κ−2 dθ∫ π

0
sin(θ)8/κ−2 dθ

.

Hint: Use the optional stopping theorem and exercise 1.

Solution. (i) Almost surely for t < ζz,

d log(gt(z)− ξt) =
1

gt(z)− ξt

(
2 dt

gt(z)− ξt
−
√
κ dBt

)
− κ dt

2(gt(z)− ξt)2

=
2− κ/2

(gt(z)− ξt)2
dt−

√
κ dBt

gt(z)− ξt
,

d arg(gt(z)− ξt) = d= log(gt(z)− ξt)

= (2− κ/2)=
(

1

(gt(z)− ξt)2

)
dt−=

(
1

gt(z)− ξt

)√
κ dBt .

This yields the desired decomposition.
(ii) Suppose that f : [0, π] → R is smooth on (0, π). Let us write At = arg(gt(z) − ξt)

and Dt = |gt(z)− ξt|. Then by Itô’s formula, almost surely for all t < ζz,

df(At) = f ′(At) dAt +
1

2
f ′′(At) d〈θ〉t

= f ′(At)(2− κ/2)=(D−2t e−2iAt) dt− f ′(At)
√
κ=(D−1t e−iAt) dBt

+
κ

2
f ′′(At)(=(D−1t e−iAt))2 dt .
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Thus f is a local martingale on (0, ζz) if and only if for all x ∈ (0, π),

f ′(x)(2− κ/2) sin(−2x) +
κ

2
f ′′(x) sin2(x) = 0 .

To solve this ODE, we first set g = f ′ and write everything as
d

dx
log g(x) = (8/κ− 2)

d

dx
log sin(x)

Hence g(x) = C sin(x)8/κ−2 for C ∈ R. Thus for some B ∈ R,

f(x) = B + C

∫ x

0

sin(θ)8/κ−2 dθ .

We pick B = 0 and C = (
∫ π
0

sin(θ)8/κ−2 dθ)−1 so that f(0) = 0 and f(π) = 1.
(iii) Let us work on the almost sure event where z /∈ γ([0, t]) and where |γt| → ∞ as

t → ∞. The key observation to answer the question is that arg(gt(z) − ξt) → π1PR as
t ↑ ζz where PR is the event that γ passes to the right of z. This is easy to see by using
a planar Brownian motion B. Indeed, let us fix a realization of γ. Note that since the
argument is a harmonic and bounded function, we have for t < ζz,

arg(gt(z)− ξt)/π = Pgt(z)−ξt(BνH ∈ (−∞, 0)) .

However, by conformal invariance of Brownian motion, the right hand side is the
probability that a Brownian motion started from z exits the domain H \ Kt by hitting
the boundary of this domain which is located right of its γt. We see that this probability
tends to 1 as t ↑ ζz if γ passes right of z and tends to 0 otherwise (almost surely).

Hence, if we define Mt = π1PR for t ∈ [ζz,∞] then M defines a bounded martingale on
[0,∞] (note that if κ ≤ 4 we are only defining a new value at ∞) and optional stopping
at time t yields the result.

Exercise 3. Suppose that κ = 4 and fix z ∈ H. Recall that ζz =∞ a.s. Let PL and PR
be the events that γ passes to the left of z and to the right of z respectively. We also let
R∞ = R(z,H \ γ([0,∞)) be the conformal radius of z in the complement of γ.
(i) Write down P(PR) in terms of arg(z).
(ii) Show that

Rt := =gt(z)/|g′t(z)| = R(z,H \ γ([0, t]))→ R∞ and
At := = log(gt(z)− ξt) = arg(gt(z)− ξt)→ π1PR

as t→∞ a.s.
(iii) For θ ∈ C show that M is a local martingale where

Mt = eθAtR
θ2/2
t

Hint: First apply Itô’s formula to A and logR and then exponentiate.
(iv) Using optional stopping and suitable parameter choices show that for θ > 0,

E(R θ2/2
∞ | PR) = (=z)θ

2/2 π

arg(z)
· sinh(θ arg(z)))

sinh(θπ)
.

3



Solution. (i) By exercise 2 we know that P(PR) = arg(z)/π.
(ii) The statement about the argument process has already been argued in exercise 2

part (iii), so it suffices to prove the statement about the conformal radii. The argument
is going to be quite similar to the one pertaining to the argument. Let φt : D → H \Kt

be a conformal transformation with φt(0) = z; by the definition of conformal radii,
Rt = R(z,H \Kt) = |φ′t(0)| .

Let γ̃t = φ−1t (γ(·+ t)) (draw a figure). The curve γ̃t cuts the unit disk D into two disjoint
simply connected domains and we write Dt for the one containing 0. Note that

R∞ = R(z,H \ γ([0,∞))) = Rt ·R(0, Dt) .

Thus it suffices to show that R(0, Dt) → 1 as t → ∞ almost surely. For this, we again
fix a realization of γ and use a planar Brownian motion B as a tool to understand some
complex analysis distortion estimates. Let pt be the probability that the Brownian motion
B started from z exits the domain H \Kt on the union of the right boundary of γ([0, t])
with (0,∞) (resp. the left boundary of γ([0, t]) with (−∞, 0)) if PR (resp. PL) holds. By
the conformal invariance of planar Brownian motion, we have

pt = P0(νDt /∈ D)

where νD = inf{t ≥ 0: Bt /∈ D} is the exit time from a domain D. Let us define
dt = sup{|z| : z ∈ Dt}. Then it is not hard to see that P0(νDt /∈ D) ≥ C(1− dt) for some
universal constant. Moreover, R(0, Dt) ≥ R(0, dtD) = dt. We can now conclude since
pt → 0 as t→∞ a.s. by transience of SLE.

(iii) Let Dt = |gt(z)− ξt|. In exercise 2 we already computed that (noting that we have
κ = 4 now): Almost surely for all t < ζz,

dAt = −2 · =
(

1

gt(z)− ξt

)
dBt =

2 sin(At)

Dt

dBt .

Since both (gt(z)) and (g′t(z)) are differentiable functions, we have that a.s. for t < ζz,

d log=(gt(z)) =
1

=gt(z)
=
(

2

gt(z)− ξt

)
dt =

=(2D−1t e−iAt)

=(DteiAt)
dt =

−2

D2
t

dt

d log g′t(z) =
1

g′t(z)

d

dz

(
2

gt(z)− ξt

)
dt =

−2 dt

(gt(z)− ξt)2
,

d log |g′t(z)| = d< log g′t(z) = <
(

−2

(gt(z)− ξt)2

)
dt =

−2 cos(2At)

D2
t

dt

Therefore, we obtain that a.s. for t < ζz,

d

(
θAt +

θ2

2
logRt

)
=

2θ sin(At)

Dt

dBt −
θ2

D2
t

dt+
θ2 cos(2At)

D2
t

dt

=
2θ sin(At)

Dt

dBt −
2θ2 sin2(At)

D2
t

dt .

From this, we can directly see that M is a local martingale since it is the exponential
(local) martingale associated the process above.
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(iv) Note that A is a process taking values in (0, π) and R is a non-decreasing process
(in particular Rt ≤ R0 = =z for all t ≥ 0). Thus M is not just a local martingale but in
fact a bounded martingale and by part (ii) we may use optional stopping to deduce

eθ arg(z)(=z)θ
2/2 = E(R θ2/2

∞ 1PL + eθπR θ2/2
∞ 1PR) and

e−θ arg(z)(=z)θ
2/2 = E(R θ2/2

∞ 1PL + e−θπR θ2/2
∞ 1PR) .

The result follows by taking a suitable linear combination and using part (i).

Exercise 4. Suppose now that κ > 8. The goal of this question will be to show that
γ([0,∞)) = H almost surely.
(i) Show using exercise 1 that it suffices to prove that z ∈ γ([0,∞)) a.s. for all z ∈ H.
(ii) We now fix z ∈ H. Show that for each fixed ρ ∈ R the processM is a local martingale

on (0, ζz) where

Mt = |g′t(z)|(8−2κ+ρ)ρ/(8κ)(=gt(z))ρ
2/(8κ)|gt(z)− ξt|ρ/κ1(t < ζz) .

Hint: It will be useful to first apply Itô’s formula to

Zt =
(8− 2κ+ ρ)ρ

8κ
log(g′t(z)) +

ρ2

8κ
log(=gt(z)) +

ρ

κ
log(gt(z)− ξt) ,

take the real part of the resulting expression and exponentiate.
(iii) Deduce that M is a supermartingale.
(iv) We will now restrict to the case ρ = κ− 8. Show that in this case

Mt =
R(z,H \Kt)

κ/8−1

sin(arg(gt(z)− ξt))1−8/κ
1(t < ζz) .

where R(z,H \ Kt) = =gt(z)/|g′t(z)| denotes the conformal radius of z in the
complement of the hull Kt.

(v) Argue using exercise 1 that z ∈ γ([0,∞)) almost surely. Hint: Use the Koebe 1/4
theorem to compare the conformal radius with a Euclidean distance.

The result of the exercise remains true for κ = 8 but the proof relies on the convergence
of the Uniform Spanning Tree Peano Curve to SLE8 (in distribution).
Solution. (i) By exercise 1 and the assumption, almost surely, |γt| → ∞ as t → ∞ and
q ∈ γ([0, t]) for all q ∈ Q+ iQ>0. Let us work on this event and consider any z ∈ H̄. Then
there exists qn ∈ Q + iQ>0 and tn ≥ 0 such that γ(tn) = qn → z as n → ∞. Moreover,
there exists a T ≥ 0 such that |γ(t)| ≥ |z| + 1 for all t ≥ T ; in particular tn ≤ T for all
n ≥ 1. We may therefore extract a convergent subsequence tnk → t∗ as k → ∞ and we
have γ(t∗) = z by continuity of γ.

(ii) Let At = arg(gt(z)− ξt) and Dt = |gt(z)− ξt| for t < ζz. By several applications of
Itô’s formula, we get that a.s. for all t < ζz,

d log g′t(z) =
1

g′t(z)

d

dz

(
2

gt(z)− ξt

)
dt =

−2 dt

(gt(z)− ξt)2
=
−2 dt

D2
t e

2iAt
,

d log=(gt(z)) =
1

=gt(z)
=
(

2

gt(z)− ξt

)
dt =

=(2D−1t e−iAt)

=(DteiAt)
dt =

−2 dt

D2
t

d log(gt(z)− ξt) =
1

gt(z)− ξt

(
2 dt

gt(z)− ξt
−
√
κ dBt

)
− κ dt

2(gt(z)− ξt)2

=
(2− κ/2) dt

D2
t e

2iAt
−
√
κ dBt

DteiAt
.
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Taking real parts and a linear combination yields that a.s. for t < ζz,

d<Zt =
(8− 2κ+ ρ)ρ

8κ
· −2 cos(2At) dt

D2
t

+
ρ2

8κ
· −2 dt

D2
t

+
ρ

κ

(
(2− κ/2) cos(2At) dt

D2
t

−
√
κ cos(At) dBt

Dt

)
=
−ρ2 cos2(At)

2κD2
t

dt− ρ cos(At)√
κDt

dBt .

From this, we immediately deduce that M = e<Z is a local martingale on (0, ζz).
(iii) The fact that M is a supermartingale is immediate since any non-negative local

martingale is always a supermartingale.
(iv) We have R(z,H\Kt) = =gt(z)/|g′t(z)| and sin(arg(gt(z)−ξt)) = =gt(z)/|gt(z)−ξt|.

The statement is now just a matter of rearranging quantities.
(v) By (iii) we know that M has a càdlàg version and we will switch to such a version.

Let us also work on the (almost sure) event where |γt| → ∞ as t → ∞. By the Koebe
1/4 theorem, we know that for t < ζz

=gt(z)/|g′t(z)| ≥ dist(z,Kt ∪ R)

4
.

We deduce that

Mt ≥
(
dist(z, γ([0,∞)) ∪ R)

4

)κ/8−1
1

sin(arg(gt(z)− ξt))1−8/κ
1(t < ζz)

On the event where z /∈ γ([0,∞)) the same argument as in exercise 2 part (iii) implies
that we have sin(arg(gt(z) − ξt)) → 0 as t ↑ ζz and moreover the first term in the last
display is strictly positive contradicting the existence of a left limit at ζz of M . Therefore
z ∈ γ([0,∞)) almost surely.
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