SCHRAMM-LOEWNER EVOLUTIONS (D-MATH) EXERCISE SHEET 2 – SOLUTION

Throughout this exercise sheet, whenever γ is a curve, we write ξ for its driving function. Furthermore, let (g_t) be the mapping out functions, (K_t) the chordal hulls and (ζ_z) be the swallowing times.

Exercise 1. The goal of this question will be to prove a characterization result for squared Bessel processes. We suppose that X^x is a continuous process started from x and taking values in $(0, \infty)$ for each x > 0. We assume that the family (X^x) defines a Markov process and that it satisfies the scaling property

$$X^{x} \stackrel{d}{=} (\lambda X_{t/\lambda}^{x/\lambda} \colon t \ge 0) \quad \text{for all } \lambda, x > 0$$

Our goal will be to show that (X^x) is (up to rescaling) a squared Bessel process of dimension $\delta \geq 2$.

- (i) Show that (X^x) defines a strong Markov process.
- (ii) For x > 0 let

$$\begin{split} \sigma_t^x &= \int_0^t du / X_u^x \quad \text{for } t \ge 0 \ , \\ \tau_s^x &= \inf \left\{ t \ge 0 \colon \sigma_t^x \ge s \right\} \quad \text{for } s \ge 0 \\ P^x &= \log(X^x \circ \tau^x) \ . \end{split}$$

Show that the process P^x has independent and stationary increments. (iii) Deduce that there are constants $\mu \in \mathbb{R}$ and $\sigma \geq 0$ such that

$$P^{x} = (\log(x) + \mu s + \sigma W_{s}^{x} : s \ge 0) \text{ for all } x > 0$$

where W^x is a standard Brownian motion for each x > 0. (iv) Deduce that X^x satisfies the SDE

$$\begin{split} dX_t^x &= (\mu + \sigma^2/2) \, dt + \sigma \sqrt{X_t^x} \, dB_t^x \quad \text{where} \\ B^x &:= \int_0^+ \sqrt{X_u^x} \, d(W^x \circ \sigma^x)_u \quad \text{is a standard Brownian motion} \; . \end{split}$$

(v) If $\sigma = 0$ then X^x is just a deterministic affine function and so we suppose that $\sigma > 0$. Let $\delta = 2 + 4\mu/\sigma^2$ and $\lambda = 4/\sigma^2$. Show that $\delta \ge 2$ and that λX^x is a squared Bessel process of dimension δ started from x.

Solution. (i) To see that the strong Markov property holds, since we know that X^x is continuous it suffices to show that

$$x \mapsto \mathbb{E}(f(X_t^x))$$

is continuous on $(0,\infty)$ for all $t \ge 0$ and whenever $f: (0,\infty) \to \mathbb{R}$ is bounded and continuous. But by the scaling property we have that $\mathbb{E}(f(X_t^x)) = \mathbb{E}(f(xX_{t/x}^1))$ and the claim is then clear by the continuity of X^1 (and dominated convergence).

(ii) Using the scaling property of the family (X^x) we have for $\lambda, x > 0$ that

$$P^{x} \stackrel{d}{=} \left(\log(\lambda) + \log X_{\lambda^{-1}\inf\{t \ge 0: \int_{0}^{t} du/(\lambda X_{u/\lambda}^{x/\lambda}) \ge s\}}^{x/\lambda} : s \ge 0 \right)$$
$$= \left(\log(\lambda) + \log X_{\inf\{t \ge 0: \int_{0}^{t} du/X_{u}^{x/\lambda} \ge s\}}^{x/\lambda} : s \ge 0 \right) = \log(\lambda) + P^{x/\lambda}.$$

Moreover, for any fixed $s_0 \ge 0$ we can write

$$(P_{s+s_0}^x : s \ge 0) = \left(X_{\inf\{t\ge 0: \int_0^t du/X_u^x \ge s+s_0\}}^x : s \ge 0 \right)$$
$$= \left(X_{\tau_{s_0}^x + \inf\{t\ge 0: \int_0^t du/X_{u+\tau_{s_0}^x}^x \ge s\}}^x : s \ge 0 \right)$$

So by the strong Markov property we have that the conditional law of $(P_{s+s_0}^x: s \ge 0)$ given $(X^x)^{\tau_{s_0}^x}$ is the law of P^y with

$$y = \log X_{\tau_{s_0}^x}^x = P_{s_0}^x$$

which is the same (by the previous computation) as the law of $P^x + \log(y/x)$. Since $P^x|_{[0,s_0]}$ is measurable with respect to $(X^x)^{\tau_{s_0}^x}$ we get that the conditional law of $(P_{s_0+s}^x - P_{s_0}: s \ge 0)$ given $P_{[0,s_0]}^x$ is the law of P^1 and the stationarity and independence of the increments of the process P^x follows.

(iii) Any process with stationary and independent increments is a Brownian motion with drift so by (ii) there exists $\mu \in \mathbb{R}$ and $\sigma \geq 0$ and a standard Brownian motion W^1 such that the claim holds for x = 1. The result for general x > 0 follows from the scaling property of P^x derived in (ii).

(iv) Note that $X^x = \exp(P^x \circ \sigma^x)$. Let us first analyse the process B^x . We have for a.s. for all $t \ge 0$ that

$$B_t^x = \int_0^{\sigma_t^x} \sqrt{X_{\tau_v^x}^x} \, dW_v^x ,$$

$$\langle B^x \rangle_t = \int_0^{\sigma_t^x} X_{\tau_v^x}^x \, dv = \int_0^t X_u^x \, d\sigma_u^x = t ,$$

Note that the first line implies that B^x is a local martingale and by Lévy's characterisation and the second line we get that B^x is a standard Brownian motion. For all for $t \ge 1$ we have almost surely

$$P_{\sigma_t^x}^x = \log(x) + \mu \sigma_t^x + \sigma W_{\sigma_t^x}^x = \log(x) + \mu \int_0^t \frac{du}{X_u^x} + \sigma \int_0^t \frac{dB_u^x}{\sqrt{X_u^x}}$$

Therefore by Itô's formula we get that a.s. for $t \ge 0$,

$$dX_t^x = X_t^x \left(d(P^x \circ \sigma_x)_t + \frac{1}{2} d\langle P^x \circ \sigma^x \rangle_t \right)$$
$$= X_t^x \left(\frac{\mu \, dt}{X_t^x} + \frac{\sigma \, dB_t^x}{\sqrt{X_t^x}} + \frac{\sigma^2 \, dt}{2X_t^x} \right) = (\mu + \sigma^2/2) \, dt + \sigma \sqrt{X_t^x} \, dB_t^x \, .$$

Note that the fact that B^x is a standard Brownian motion simply follows from the fact that it is a local martingale and one can easily compute its quadratic variation process.

(v) By the definition of λ and δ we obtain from (iv) the SDE

$$d(\lambda X_t^x) = \delta \, dt + 2\sqrt{\lambda X_t^x} \, dB_t^x \, .$$

This is precisely the Bessel SDE of dimension δ . Finally, note that $\delta \geq 2$ since we assumed that X^x takes values in $(0, \infty)$, i.e. it does not hit 0.

Exercise 2. In this exercise, we will classify certain conformally invariant random curves. Let γ be a random curve starting at 0 generated by a Loewner chain with driving function ξ such that $\gamma([0,\infty)) \cap (-\infty,-1] = \emptyset$. Let $O_t = g_t(-1)$ which we call a marked point. We now assume that for $t \ge 0$ conditionally on $\gamma|_{[0,t]}$, the curve

$$\left(\frac{g_t(\gamma_{t+(\xi_t-O_t)^2s})-\xi_t}{\xi_t-O_t}\colon s\ge 0\right)$$

has the same law as γ . This is a conformal Markov property with a marked point. Note that the time rescaling factor $(\xi_t - O_t)^2$ appears only to ensure that the curve is parameterized by halfplane capacity. We also suppose that γ is not a deterministic curve.

- (i) Let $Y = (\xi O)^2$. Show that Y has the property that for $t \ge 0$ conditionally on $Y|_{[0,t]}$ the process $(Y_{t+Y_ts}/Y_t: s \ge 0)$ has the same law as Y.
- (ii) Use exercise 1 to show that there exists $\delta \ge 2$ and $\kappa > 0$ such that $Y = \kappa X$ where X is a squared Bessel process starting from $1/\kappa$ and satisfying the SDE

$$dX_t = \delta \, dt + 2\sqrt{X_t} \, dB_t$$

where B is a standard Brownian motion.

(iii) Deduce that (ξ, O) satisfy the following system of SDEs

$$d\xi_t = \frac{\rho}{\xi_t - O_t} dt + \sqrt{\kappa} \, dB_t$$
$$dO_t = \frac{2 \, dt}{O_t - \xi_t}$$

where $\rho = (\delta - 1)\kappa/2 - 2 (\geq \kappa/2 - 2)$.

It turns out that the solution to the SDE in part (iii) indeed generates a continuous curve the law of which we call $\text{SLE}_{\kappa}(\rho)$; in fact $\text{SLE}_{\kappa}(\rho)$ can be defined whenever $\rho > -2$.

Solution. (i) Fix $t \ge 0$. The family of mapping out functions (\tilde{g}_s) and the driving function $\tilde{\xi}$ of the curve

$$\begin{pmatrix} \frac{g_t(\gamma_{t+(\xi_t-O_t)^2s})-\xi_t}{\xi_t-O_t} : s \ge 0 \end{pmatrix} \text{ are given by} \\ \tilde{g}_s(z) = \frac{g_{t+(\xi_t-O_t)^2s}(g_t^{-1}((\xi_t-O_t)z+\xi_t))-\xi_t}{\xi_t-O_t}, \\ \tilde{\xi}_s = \frac{\xi_{t+(\xi_t-O_t)^2s}-\xi_t}{\xi_t-O_t}.$$

Therefore by our assumption, conditionally on $\xi|_{[0,t]}$ we have that

$$\left(\frac{Y_{t+Y_{ts}}}{Y_{t}}:s\geq 0\right) = \left(\frac{(\xi_{t+(\xi_{t}-O_{t})^{2}s}-O_{t+(\xi_{t}-O_{t})^{2}s})^{2}}{(\xi_{t}-O_{t})^{2}}:s\geq 0\right) = \left((\tilde{\xi}_{s}-\tilde{g}_{s}(-1))^{2}:s\geq 0\right)$$

has the same law as Y (since conditionally on $\xi|_{[0,t]}$ the process $\tilde{\xi}$ has the same law as ξ). Since $Y|_{[0,t]}$ is measurable with respect to $\xi|_{[0,t]}$ the claim follows. (ii) By assumption, the point -1 is never swallowed and hence Y takes values in $(0, \infty)$. Furthermore the process Y determines $\xi - O$ and hence it also determines O – indeed this follows from $O_t = g_t(-1)$ and Loewner's equation; combining this yields that ξ is a deterministic function of Y and so the fact that ξ is not a deterministic function implies that Y is not a deterministic function. Therefore by the Markov property derived in (i) and exercise 1 we obtain the claim.

(iii) This is now just an exercise in stochastic calculus. Note that the second part of the system of SDEs follows from Loewner's equation since $O_t = g_t(-1)$. Moreover by Itô's formula a.s. for $t \ge 0$

$$d(\xi_t - O_t) = d\sqrt{Y_t} = \sqrt{\kappa} \, d\sqrt{X_t} = \sqrt{\kappa} \left(\frac{dX_t}{2\sqrt{X_t}} - \frac{d\langle X \rangle_t}{8(X_t)^{3/2}}\right)$$
$$= \frac{\delta - 1}{2\sqrt{X_t}} \sqrt{\kappa} \, dt + \sqrt{\kappa} \, dB_t = \frac{(\delta - 1)\kappa/2}{\xi_t - O_t} \, dt + \sqrt{\kappa} \, dB_t \; .$$

Note that the application of Itô's formula is justified since the function $x \mapsto \sqrt{x}$ is twice differentiable on $(0, \infty)$ and the process X takes values in $(0, \infty)$.

Exercise 3. Fix $\alpha > 0$. Whenever K is a compact chordal hull satisfying $0 \notin K$ we write $\Phi_K \colon \mathbb{H} \setminus K \to \mathbb{H}$ for the unique conformal transformation with $\Phi_K(0) = 0$ and $\Phi_K(z)/z \to 1$ as $|z| \to \infty$. Let E be a curve from 0 to ∞ in $\overline{\mathbb{H}}$ satisfying

$$\mathbb{P}(E([0,\infty)) \cap K = \emptyset) = \Phi'_K(0)^{\alpha} \quad \text{for all chordal hulls with } 0 \notin K \; .$$

Also define $E' = (|\Re(E)| + i\Im(E))^2$ and let E'' be an independent copy of E'.

(i) Fix a compact chordal hull A such that $A \cap (-\infty, 0] = \emptyset$. Show that

$$\mathbb{P}(E'([0,\infty)) \cap A = \emptyset) = \mathbb{P}(E([0,\infty)) \cap (\sqrt{A} \cup A') = \emptyset) = \Phi'_{\sqrt{A} \cup A'}(0)^{\alpha}$$

where A' denotes the reflection of \sqrt{A} across the imaginary axis.

(ii) Show that $\Phi_{\sqrt{A}\cup A'}(\epsilon) = \Phi_A(\epsilon^2)^{1/2}$ for $\epsilon > 0$ sufficiently small and deduce that

$$\mathbb{P}(E'([0,\infty)) \cap A = \emptyset) = \Phi'_A(0)^{\alpha/2}$$

Hint: Use Schwarz reflection to write down $\Phi_{\sqrt{A}\cup A'}$ in terms of Φ_A .

(iii) Show that the right boundary of the set $E'([0,\infty)) \cup E''([0,\infty))$ has the same law as the right boundary of $E([0,\infty))$.

In the special case where E is a Brownian excursion from 0 to ∞ in \mathbb{H} we have $\alpha = 1$ and the process E' is called a Brownian excursion from 0 to ∞ in \mathbb{H} with perpendicular reflection along $(-\infty, 0)$.

Solution. (i) We have $E'_t \in A$ if and only if $|\Re(E_t)| + i\Im(E_t) \in \sqrt{A}$ which holds if and only if $E_t \in \sqrt{A} \cup A'$. The first equality follows from this and the second equality is clear by assumption with $K = \sqrt{A} \cup A'$.

(ii) Take c > 0 sufficiently small such that $[0, c] \cap A = \emptyset$. Let A^* be the reflection of A along the real axis and for suitable c' > 0 let $\phi \colon \mathbb{H} \setminus (A \cup A^* \cup [c, \infty)) \to \mathbb{H} \setminus [c', \infty)$ be the unique conformal transformation with

$$\phi(\overline{z}) = \overline{\phi(z)}$$
 and $\phi(z)/z \to 1$ and $|z| \to \infty$.

Note that $\Phi_A = \phi$ on $\mathbb{H} \setminus A$. Moreover, $\Phi_{\sqrt{A} \cup A'}(z) = \phi_A(z^2)^{1/2}$ (where we take a branch of the square root takes values in \mathbb{H}). The first claim is then immediate and the second part follows directly by taking $\epsilon \to 0$.

(iii) Let γ denote the right boundary of $E([0,\infty))$ and write γ' for the right boundary of $E'([0,\infty)) \cup E''([0,\infty))$. Then for any compact chordal A with $A \cap (-\infty, 0] = \emptyset$,

$$\mathbb{P}(\gamma'([0,\infty)) \cap A = \emptyset) = \mathbb{P}(E'([0,\infty)) \cap A = \emptyset, E''([0,\infty)) \cap A = \emptyset)$$
$$= \mathbb{P}(E'([0,\infty)) \cap A = \emptyset)^2 = \Phi'_A(0)^{\alpha}$$
$$= \mathbb{P}(E([0,\infty)) \cap A = \emptyset) = \mathbb{P}(\gamma([0,\infty)) \cap A = \emptyset) .$$

The claim follows by Dynkin's lemma.