Prof. Wendelin Werner HS 2021
Matthis Lehmkuehler

SCHRAMM-LOEWNER EVOLUTIONS (D-MATH)
EXERCISE SHEET 2 — SOLUTION

Throughout this exercise sheet, whenever v is a curve, we write £ for its driving function.
Furthermore, let (g;) be the mapping out functions, (K;) the chordal hulls and (¢,) be
the swallowing times.

Exercise 1. The goal of this question will be to prove a characterization result for squared
Bessel processes. We suppose that X7 is a continuous process started from x and taking
values in (0, 00) for each x > 0. We assume that the family (X*) defines a Markov process
and that it satisfies the scaling property

X*E(AX R t>0) forall \z>0.

Our goal will be to show that (X*) is (up to rescaling) a squared Bessel process of
dimension § > 2.

(i) Show that (X*) defines a strong Markov process.
(ii) For > 0 let
¢
af:/ du/X7 fort>0,
0
78 =inf{t >0:0f >s} fors>0,
P? =log(X®o1").

Show that the process P* has independent and stationary increments.
(iii) Deduce that there are constants p € R and o > 0 such that

P? = (log(z) + ps +ocWZ2: s >0) forallz>0

where W?% is a standard Brownian motion for each z > 0.
(iv) Deduce that X* satisfies the SDE

dX7 = (u+0*/2)dt + o/ XF dBY where
B* = / VXZ2d(W?*o0"), isastandard Brownian motion .
0

(v) If o = 0 then X* is just a deterministic affine function and so we suppose that o > 0.
Let 6 = 2+4u/0? and A = 4/02. Show that § > 2 and that AX? is a squared Bessel
process of dimension ¢§ started from zx.

Solution. (i) To see that the strong Markov property holds, since we know that X7 is
continuous it suffices to show that

v = E(f(XY))

is continuous on (0,00) for all ¢ > 0 and whenever f: (0,00) — R is bounded and
continuous. But by the scaling property we have that E(f(X})) = E(f(xth/r)) and the

claim is then clear by the continuity of X! (and dominated convergence).
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(i) Using the scaling property of the family (X*) we have for A,z > 0 that

x 4 z/X .
P= <10g(>\) +1log X)\flinf{tZO: Jy du/ X)) s} 52 O)

_ z/A . _ z/A
- (log()\) + log Xinf{tzo: [ auxise) s> O) = log(\) + P*/* .

Moreover, for any fixed sy > 0 we can write

(Piigp:820)= (Xiflf{tzO: Jo du/Xg>s+s0}

= X” cs>0 .
T +inf{t20: I du/xgﬂgo Zs}

So by the strong Markov property we have that the conditional law of (P7 , :s > 0)
given (X*)™o is the law of PY with

Y= longgo =P

:SZO)

which is the same (by the previous computation) as the law of P*+log(y/x). Since P*|[
is measurable with respect to (X®)™o we get that the conditional law of (P2, ,—Py,: s > 0)
given P[“”&SO] is the law of P! and the stationarity and independence of the increments of
the process P* follows.

(iii) Any process with stationary and independent increments is a Brownian motion
with drift so by (ii) there exists 4 € R and o > 0 and a standard Brownian motion W*
such that the claim holds for x = 1. The result for general x > 0 follows from the scaling
property of P* derived in (ii).

(iv) Note that X* = exp(P® o ¢”). Let us first analyse the process B*. We have for
a.s. for all t > 0 that

B [ /X awy,
0

of t
(B"); = / Xiadv = / X, do, =1t.
0 0

Note that the first line implies that B* is a local martingale and by Lévy’s characterisation
and the second line we get that B” is a standard Brownian motion. For all for ¢ > 1 we
have almost surely

td b dB®
P%, =log(x) + poy + cW2 =log(z) + u —li + 0/ L
! ‘ o X 0 VXZ

Therefore by Itd’s formula we get that a.s. for ¢t > 0,

1
dXy = X/ (d(l[”E o0, + 3 d(P* o U$>t)

pdt  odBf o?dt 9
=Xy = 2)dt VX7 dBf .
t(th‘{' /_Xf+2Xf (n+07/2)di + 0 t @Dy

Note that the fact that B* is a standard Brownian motion simply follows from the fact
that it is a local martingale and one can easily compute its quadratic variation process.



(v) By the definition of A and § we obtain from (iv) the SDE
d(AXT) = 6 dt + 2y/AXF dB® .

This is precisely the Bessel SDE of dimension §. Finally, note that 6 > 2 since we assumed
that X* takes values in (0, 00), i.e. it does not hit 0.

Exercise 2. In this exercise, we will classify certain conformally invariant random curves.
Let v be a random curve starting at 0 generated by a Loewner chain with driving function
¢ such that v([0,00)) N (=00, —1] = 0. Let O; = g;(—1) which we call a marked point.
We now assume that for ¢ > 0 conditionally on 7|, the curve

(gt(%+(§t—ot)2s) —& s> ())
& — Oy

has the same law as . This is a conformal Markov property with a marked point.
Note that the time rescaling factor (& — O;)? appears only to ensure that the curve is
parameterized by halfplane capacity. We also suppose that v is not a deterministic curve.
(i) Let Y = (£ — O)%. Show that Y has the property that for ¢ > 0 conditionally on
Y04 the process (Yity,s/Y:: s > 0) has the same law as Y.
(ii) Use exercise 1 to show that there exists § > 2 and x > 0 such that Y = kX where
X is a squared Bessel process starting from 1/x and satisfying the SDE

dXt — 5dt+ 2\/ XtdBt
where B is a standard Brownian motion.

(iii) Deduce that (¢, 0) satisfy the following system of SDEs

P
d¢& = dt dB
& & -0, +VkdBy ,

2dt
“ 0%
where p= (0 — 1)k/2 -2 (> /2 — 2).
It turns out that the solution to the SDE in part (iii) indeed generates a continuous curve
the law of which we call SLE,(p); in fact SLE,(p) can be defined whenever p > —2.

Solution. (i) Fix t > 0. The family of mapping out functions (gs) and the driving function
& of the curve

(gt(fYt—i-(ft—Ot)?s) - é't Ls > O) are given by

& — Oy
- _ gt+(§z—0t)2$(gt_1(<€t — Oz +&)) — &
:(2) = &~ O ’
o ft+(§t—ot)2s - gt
S=Ta 00

Therefore by our assumption, conditionally on & |[07t] we have that
Yiivis ) ((§t+(§ —o2s — Otigi—00)25)° ) . 9
—E:5>0) = it o :5>0 :<S—S—1 :SZO)
( Y; (& — Oy)? (& — 9s(=1))

has the same law as Y (since conditionally on &|g4 the process ¢ has the same law as & ).
Since Yo, is measurable with respect to {|jo the claim follows.




(i) By assumption, the point —1 is never swallowed and hence Y takes values in (0, 00).
Furthermore the process Y determines £ — O and hence it also determines O — indeed
this follows from O; = ¢g;(—1) and Loewner’s equation; combining this yields that £ is a
deterministic function of Y and so the fact that ¢ is not a deterministic function implies
that Y is not a deterministic function. Therefore by the Markov property derived in (i)
and exercise 1 we obtain the claim.

(iii) This is now just an exercise in stochastic calculus. Note that the second part of the
system of SDEs follows from Loewner’s equation since O; = g;(—1). Moreover by 1t6’s
formula a.s. for t > 0

—0,) = d\/Y; = VrdVX; = Vi (2% - 8?)@3?/2)

(6 —1)r/2
Qm\/_dtJr\/_dBt deﬁd&.

Note that the application of 1t6’s formula is justified since the function x — +/z is twice
differentiable on (0, 00) and the process X takes values in (0, c0).

Exercise 3. Fix a > 0. Whenever K is a compact chordal hull satisfying 0 ¢ K we
write ®x: H\ K — H for the unique conformal transformation with ®x(0) = 0 and
O (2)/z — 1 as |z| = co. Let E be a curve from 0 to oo in H satisfying

P(E(]0,00)) N K = 0) = &% (0)* for all chordal hulls with 0 ¢ K .

Also define £’ = (|R(E)| + iS(E))? and let E” be an independent copy of E'.
(i) Fix a compact chordal hull A such that AN (—o0,0] = (). Show that

P(E'(0,00)) N A= 0) =P(E([0,00) N (VAUA) =) = ¥ 7 ,,(0)°

where A’ denotes the reflection of v/A across the imaginary axis.
(ii) Show that ® 5, (€) = P4 (€?)"/? for € > 0 sufficiently small and deduce that

P(E'([0,00)) N A =) = &/, (0)*/2.

Hint: Use Schwarz reflection to write down @ /7, in terms of ® 4.
(iii) Show that the right boundary of the set E’([0,00)) U E”([0,00)) has the same law
as the right boundary of E([0, c0)).
In the special case where E is a Brownian excursion from 0 to oo in H we have a = 1
and the process E’ is called a Brownian excursion from 0 to oo in H with perpendicular
reflection along (—o0, 0).

Solution. (i) We have E; € A if and only if |R(E;)| + iS(E;) € VA which holds if and
only if F, € VAU A’. The first equality follows from this and the second equality is clear
by assumption with K = vAU A'.



(ii) Take ¢ > 0 sufficiently small such that [0,¢] N A = ). Let A* be the reflection of A
along the real axis and for suitable ¢ > 0 let ¢: H\ (AU A* U [¢,00)) — H \ [/, 00) be
the unique conformal transformation with

¢(Z) = d(z) and H(2)/z — 1 and |z| = co .

Note that ®4 = ¢ on H \ A. Moreover, ® 5, (z) = ¢pa(2?)"/? (where we take a branch
of the square root takes values in H). The first claim is then immediate and the second
part follows directly by taking e — 0.

(iii) Let v denote the right boundary of E([0,00)) and write 4’ for the right boundary
of E'([0,00)) U E”([0,00)). Then for any compact chordal A with AN (—o0,0] = 0,

P(v/([0,00)) N A = 0) = P(E'([0,00)) N A = 0, E"([0,00)) N A = )
=P(E'([0,00)) N A = 0)* = &, (0)
= P(E([0,00)) N A = 0) = P(+([0,00)) N A = 0) .

The claim follows by Dynkin’s lemma.
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