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SCHRAMM-LOEWNER EVOLUTIONS (D-MATH)
EXERCISE SHEET 2 – SOLUTION

Throughout this exercise sheet, whenever γ is a curve, we write ξ for its driving function.
Furthermore, let (gt) be the mapping out functions, (Kt) the chordal hulls and (ζz) be
the swallowing times.

Exercise 1. The goal of this question will be to prove a characterization result for squared
Bessel processes. We suppose that Xx is a continuous process started from x and taking
values in (0,∞) for each x > 0. We assume that the family (Xx) defines a Markov process
and that it satisfies the scaling property

Xx d
= (λX

x/λ
t/λ : t ≥ 0) for all λ, x > 0 .

Our goal will be to show that (Xx) is (up to rescaling) a squared Bessel process of
dimension δ ≥ 2.
(i) Show that (Xx) defines a strong Markov process.
(ii) For x > 0 let

σxt =

∫ t

0

du/Xx
u for t ≥ 0 ,

τxs = inf {t ≥ 0: σxt ≥ s} for s ≥ 0 ,

P x = log(Xx ◦ τx) .

Show that the process P x has independent and stationary increments.
(iii) Deduce that there are constants µ ∈ R and σ ≥ 0 such that

P x = (log(x) + µs+ σW x
s : s ≥ 0) for all x > 0

where W x is a standard Brownian motion for each x > 0.
(iv) Deduce that Xx satisfies the SDE

dXx
t = (µ+ σ2/2) dt+ σ

√
Xx
t dB

x
t where

Bx :=

∫ ·

0

√
Xx
u d(W x ◦ σx)u is a standard Brownian motion .

(v) If σ = 0 then Xx is just a deterministic affine function and so we suppose that σ > 0.
Let δ = 2 + 4µ/σ2 and λ = 4/σ2. Show that δ ≥ 2 and that λXx is a squared Bessel
process of dimension δ started from x.

Solution. (i) To see that the strong Markov property holds, since we know that Xx is
continuous it suffices to show that

x 7→ E(f(Xx
t ))

is continuous on (0,∞) for all t ≥ 0 and whenever f : (0,∞) → R is bounded and
continuous. But by the scaling property we have that E(f(Xx

t )) = E(f(xX1
t/x)) and the

claim is then clear by the continuity of X1 (and dominated convergence).
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(ii) Using the scaling property of the family (Xx) we have for λ, x > 0 that

P x d
=

(
log(λ) + logX

x/λ

λ−1 inf
{
t≥0:

∫ t
0 du/(λX

x/λ
u/λ

)≥s
} : s ≥ 0

)
=

(
log(λ) + logX

x/λ

inf
{
t≥0:

∫ t
0 du/X

x/λ
u ≥s

} : s ≥ 0

)
= log(λ) + P x/λ .

Moreover, for any fixed s0 ≥ 0 we can write

(P x
s+s0

: s ≥ 0) =
(
Xx

inf{t≥0: ∫ t0 du/Xx
u≥s+s0} : s ≥ 0

)
=

(
Xx

τxs0+inf

{
t≥0:

∫ t
0 du/X

x
u+τxs0

≥s
} : s ≥ 0

)
.

So by the strong Markov property we have that the conditional law of (P x
s+s0

: s ≥ 0)

given (Xx)τ
x
s0 is the law of P y with

y = logXx
τxs0

= P x
s0

which is the same (by the previous computation) as the law of P x+log(y/x). Since P x|[0,s0]
is measurable with respect to (Xx)τ

x
s0 we get that the conditional law of (P x

s0+s
−Ps0 : s ≥ 0)

given P x
[0,s0]

is the law of P 1 and the stationarity and independence of the increments of
the process P x follows.

(iii) Any process with stationary and independent increments is a Brownian motion
with drift so by (ii) there exists µ ∈ R and σ ≥ 0 and a standard Brownian motion W 1

such that the claim holds for x = 1. The result for general x > 0 follows from the scaling
property of P x derived in (ii).

(iv) Note that Xx = exp(P x ◦ σx). Let us first analyse the process Bx. We have for
a.s. for all t ≥ 0 that

Bx
t =

∫ σxt

0

√
Xx
τxv
dW x

v ,

〈Bx〉t =

∫ σxt

0

Xx
τxv
dv =

∫ t

0

Xx
u dσ

x
u = t .

Note that the first line implies that Bx is a local martingale and by Lévy’s characterisation
and the second line we get that Bx is a standard Brownian motion. For all for t ≥ 1 we
have almost surely

P x
σxt

= log(x) + µσxt + σW x
σxt

= log(x) + µ

∫ t

0

du

Xx
u

+ σ

∫ t

0

dBx
u√
Xx
u

.

Therefore by Itô’s formula we get that a.s. for t ≥ 0,

dXx
t = Xx

t

(
d(P x ◦ σx)t +

1

2
d〈P x ◦ σx〉t

)
= Xx

t

(
µ dt

Xx
t

+
σ dBx

t√
Xx
t

+
σ2 dt

2Xx
t

)
= (µ+ σ2/2) dt+ σ

√
Xx
t dB

x
t .

Note that the fact that Bx is a standard Brownian motion simply follows from the fact
that it is a local martingale and one can easily compute its quadratic variation process.
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(v) By the definition of λ and δ we obtain from (iv) the SDE

d(λXx
t ) = δ dt+ 2

√
λXx

t dB
x
t .

This is precisely the Bessel SDE of dimension δ. Finally, note that δ ≥ 2 since we assumed
that Xx takes values in (0,∞), i.e. it does not hit 0.

Exercise 2. In this exercise, we will classify certain conformally invariant random curves.
Let γ be a random curve starting at 0 generated by a Loewner chain with driving function
ξ such that γ([0,∞)) ∩ (−∞,−1] = ∅. Let Ot = gt(−1) which we call a marked point.
We now assume that for t ≥ 0 conditionally on γ|[0,t], the curve(

gt(γt+(ξt−Ot)2s)− ξt
ξt −Ot

: s ≥ 0

)
has the same law as γ. This is a conformal Markov property with a marked point.
Note that the time rescaling factor (ξt − Ot)

2 appears only to ensure that the curve is
parameterized by halfplane capacity. We also suppose that γ is not a deterministic curve.
(i) Let Y = (ξ − O)2. Show that Y has the property that for t ≥ 0 conditionally on

Y |[0,t] the process (Yt+Yts/Yt : s ≥ 0) has the same law as Y .
(ii) Use exercise 1 to show that there exists δ ≥ 2 and κ > 0 such that Y = κX where

X is a squared Bessel process starting from 1/κ and satisfying the SDE

dXt = δ dt+ 2
√
Xt dBt

where B is a standard Brownian motion.
(iii) Deduce that (ξ, O) satisfy the following system of SDEs

dξt =
ρ

ξt −Ot

dt+
√
κ dBt ,

dOt =
2 dt

Ot − ξt
where ρ = (δ − 1)κ/2− 2 (≥ κ/2− 2).

It turns out that the solution to the SDE in part (iii) indeed generates a continuous curve
the law of which we call SLEκ(ρ); in fact SLEκ(ρ) can be defined whenever ρ > −2.
Solution. (i) Fix t ≥ 0. The family of mapping out functions (g̃s) and the driving function
ξ̃ of the curve (

gt(γt+(ξt−Ot)2s)− ξt
ξt −Ot

: s ≥ 0

)
are given by

g̃s(z) =
gt+(ξt−Ot)2s(g

−1
t ((ξt −Ot)z + ξt))− ξt
ξt −Ot

,

ξ̃s =
ξt+(ξt−Ot)2s − ξt

ξt −Ot

.

Therefore by our assumption, conditionally on ξ|[0,t] we have that(
Yt+Yts
Yt

: s ≥ 0

)
=

(
(ξt+(ξt−Ot)2s −Ot+(ξt−Ot)2s)

2

(ξt −Ot)2
: s ≥ 0

)
=
(

(ξ̃s − g̃s(−1))2 : s ≥ 0
)

has the same law as Y (since conditionally on ξ|[0,t] the process ξ̃ has the same law as ξ).
Since Y |[0,t] is measurable with respect to ξ|[0,t] the claim follows.
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(ii) By assumption, the point −1 is never swallowed and hence Y takes values in (0,∞).
Furthermore the process Y determines ξ − O and hence it also determines O – indeed
this follows from Ot = gt(−1) and Loewner’s equation; combining this yields that ξ is a
deterministic function of Y and so the fact that ξ is not a deterministic function implies
that Y is not a deterministic function. Therefore by the Markov property derived in (i)
and exercise 1 we obtain the claim.

(iii) This is now just an exercise in stochastic calculus. Note that the second part of the
system of SDEs follows from Loewner’s equation since Ot = gt(−1). Moreover by Itô’s
formula a.s. for t ≥ 0

d(ξt −Ot) = d
√
Yt =

√
κ d
√
Xt =

√
κ

(
dXt

2
√
Xt

− d〈X〉t
8(Xt)3/2

)
=
δ − 1

2
√
Xt

√
κ dt+

√
κ dBt =

(δ − 1)κ/2

ξt −Ot

dt+
√
κ dBt .

Note that the application of Itô’s formula is justified since the function x 7→
√
x is twice

differentiable on (0,∞) and the process X takes values in (0,∞).

Exercise 3. Fix α > 0. Whenever K is a compact chordal hull satisfying 0 /∈ K we
write ΦK : H \ K → H for the unique conformal transformation with ΦK(0) = 0 and
ΦK(z)/z → 1 as |z| → ∞. Let E be a curve from 0 to ∞ in H satisfying

P(E([0,∞)) ∩K = ∅) = Φ′K(0)α for all chordal hulls with 0 /∈ K .

Also define E ′ = (|<(E)|+ i=(E))2 and let E ′′ be an independent copy of E ′.
(i) Fix a compact chordal hull A such that A ∩ (−∞, 0] = ∅. Show that

P(E ′([0,∞)) ∩ A = ∅) = P(E([0,∞)) ∩ (
√
A ∪ A′) = ∅) = Φ′√

A∪A′(0)α

where A′ denotes the reflection of
√
A across the imaginary axis.

(ii) Show that Φ√A∪A′(ε) = ΦA(ε2)1/2 for ε > 0 sufficiently small and deduce that

P(E ′([0,∞)) ∩ A = ∅) = Φ′A(0)α/2 .

Hint: Use Schwarz reflection to write down Φ√A∪A′ in terms of ΦA.
(iii) Show that the right boundary of the set E ′([0,∞)) ∪ E ′′([0,∞)) has the same law

as the right boundary of E([0,∞)).
In the special case where E is a Brownian excursion from 0 to ∞ in H we have α = 1
and the process E ′ is called a Brownian excursion from 0 to ∞ in H with perpendicular
reflection along (−∞, 0).

Solution. (i) We have E ′t ∈ A if and only if |<(Et)| + i=(Et) ∈
√
A which holds if and

only if Et ∈
√
A∪A′. The first equality follows from this and the second equality is clear

by assumption with K =
√
A ∪ A′.
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(ii) Take c > 0 sufficiently small such that [0, c] ∩ A = ∅. Let A∗ be the reflection of A
along the real axis and for suitable c′ > 0 let φ : H \ (A ∪ A∗ ∪ [c,∞)) → H \ [c′,∞) be
the unique conformal transformation with

φ(z) = φ(z) and φ(z)/z → 1 and |z| → ∞ .

Note that ΦA = φ on H \ A. Moreover, Φ√A∪A′(z) = φA(z2)1/2 (where we take a branch
of the square root takes values in H). The first claim is then immediate and the second
part follows directly by taking ε→ 0.

(iii) Let γ denote the right boundary of E([0,∞)) and write γ′ for the right boundary
of E ′([0,∞)) ∪ E ′′([0,∞)). Then for any compact chordal A with A ∩ (−∞, 0] = ∅,

P(γ′([0,∞)) ∩ A = ∅) = P(E ′([0,∞)) ∩ A = ∅, E ′′([0,∞)) ∩ A = ∅)
= P(E ′([0,∞)) ∩ A = ∅)2 = Φ′A(0)α

= P(E([0,∞)) ∩ A = ∅) = P(γ([0,∞)) ∩ A = ∅) .
The claim follows by Dynkin’s lemma.
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