Wahrscheinlichkeit & Statistik

Quiz 5

Onlineabgabe vor Beginn der Übungsstunde: Montag (28.03.2022) um 16:15 Uhr oder Dienstag (29.03.2022), um 14:15 Uhr

Dieser Quiz beschäftigt sich mit der Definition des Erwartungswerts diskreter und stetiger Zufallsvariabeln und mit wichtigen Beispielen.

Weitere Informationen und Instruktionen zur Abgabe unter https://metaphor.ethz.ch/x/2022/fs/401-0614-00L/

- 1. Sei X ist eine diskrete Zufallsvariable und Y ist eine stetige Zufallsvariable mit Dichte f_Y . Welche der folgenden unten aufgelisteten Kombinationen können niemals auftreten? (Mehrere richtige Antworten möglich.)
- (a) $\mathbb{P}(X=3) = 0.3$; $f_Y(0.6) = 1.5$

Leider nicht. Diese Kombination ist möglich.

 $\sqrt{}$ (b) $\mathbb{P}(X=3) = 1.3; f_Y(0.6) = 0.5$

Richtig! Diese Kombination ist nicht möglich.

(c) $\mathbb{P}(X=3) = 0.3$; $f_Y(0.6) = 0.7$

Leider nicht. Diese Kombination ist möglich.

Bei einer diskreten Zufallsvariable X kann die Wahrscheinlichkeit eines Ereignisses nicht grösser als 1 sein. Der Wert einer Dichte kann aber durchaus grösser als 1 werden.

- **2.** Sei $X \sim \text{Poisson}(\lambda)$ mit $\lambda > 0$. Welche der folgenden Aussagen ist korrekt?
- (a) $\mathbb{P}[X > 5] = 1 \mathbb{P}[X < 5]$

Leider nicht. Da $\mathbb{P}[X=5]=\frac{\lambda^5}{5!}e^{-\lambda}$, gilt $\mathbb{P}[X>5]+\mathbb{P}[X<5]=1-\mathbb{P}[X=5]<1$.

 $\sqrt{}$ (b) $\mathbb{P}[X \ge 1 | X \le 1] = \lambda/(\lambda + 1)$

Richtig! Es gilt

$$\mathbb{P}[X \geq 1 | X \leq 1] = \frac{\mathbb{P}[X = 1]}{\mathbb{P}[X = 0] + \mathbb{P}[X = 1]} = \frac{\lambda \cdot e^{-\lambda}}{e^{-\lambda} + \lambda \cdot e^{-\lambda}} = \frac{\lambda}{1 + \lambda}$$

(c) $2X \sim \text{Poisson}[2\lambda]$

Leider nicht. Die Zufallsvariable 2X nimmt fast sicher gerade Werte an und kann somit nicht Poisson-verteilt sein.

- 3. Seien X und Y zwei Zufallsvariablen. Unter welchen Bedingungen gilt E[X + Y] = E[X] + E[Y]?
- (a) Die Linearität des Erwartungswerts gilt für beliebige Zufallsvariablen.

Leider nicht. E[X + Y], E[X] und E[Y] müssen wohldefiniert sein.

 $\sqrt{}$ (b) Die Linearität des Erwartungswerts gilt für beliebige Zufallsvariablen, solange $\mathrm{E}[X+Y],\,\mathrm{E}[X]$ und $\mathrm{E}[Y]$ wohldefiniert sind.

Richtig!

(c) Die Linearität des Erwartungswerts gilt nur, wenn X und Y unabhängig sind.

Leider nicht. Es ist nicht notwendig, dass X und Y unabhängig sind.

Dies ist Theorem 4.9.

4. Sei X eine Zufallsvariable, die fast sicher Werte in $\{0, 1, 2, \ldots\}$ annimmt. Welche der folgenden Ausdrücke sind korrekt?

(Mehrere richtige Antworten möglich.)

(a) $E[X] = \sum_{k=0}^{\infty} \mathbb{P}[X=k]$

Leider nicht. $\sum_{k=0}^{\infty} \mathbb{P}[X=k] = 1$, was nicht notwendigerweise dem Erwartungswert entspricht.

 $\sqrt{}$ (b) $\mathrm{E}[X] = \sum_{k=0}^{\infty} k \cdot \mathbb{P}[X=k]$

Richtig! Dies ist die Formel für den Erwartungswert einer diskreten Zufallsvariable (siehe Proposition 4.6)

 $\sqrt{}$ (c) $\mathrm{E}[X] = \sum_{k=1}^{\infty} \mathbb{P}[X \ge k]$

Richtig! Dies ist die Tailsum Formel für Zufallsvariablen, die fast sicher Werte in $\{0, 1, 2, 3, ...\}$ annehmen (siehe Proposition 4.15).

(d) $E[X] = \sum_{k=0}^{\infty} \mathbb{P}[X \ge k]$

Leider nicht. Für die Tailsum Formel ist es wichtig, dass die Summe bei k=1 beginnt. Gegenbeispiel: Sei X eine Zufallsvariable mit $\mathbb{P}[X=0]=1$. Dann gilt $\mathbb{P}[X\geq 0]=1$ und somit $\sum_{k=0}^{\infty}\mathbb{P}[X\geq k]=1$, obwohl $\mathrm{E}[X]=0$.

- **5.** Sei $p \in [0,1]$ und sei X eine Ber(p)-verteilte Zufallsvariable. Was ist der Erwartungswert $\mathrm{E}[X]$?
- (a) 0
- (b) 1 p
- $\sqrt{}$ (c) p
 - (d) 1

Man berechnet $\mathbb{E}[X] = 0 \cdot \mathbb{P}[X = 0] + 1 \cdot \mathbb{P}[X = 1] = 0 \cdot (1 - p) + 1 \cdot p = p$.

6. Sei $p \in [0,1]$, sei X eine Ber(p)-verteilte Zufallsvariable und definiere $Y := X^3$. Was ist der Erwartungswert E[Y]?

- (a) 1 p
- (b) $(1-p)^3$
- $\sqrt{}$ (c) p
 - (d) p^3

Es gilt $X^3 = X$ und somit erhält man $\mathbb{E}[Y] = \mathbb{E}[X^3] = \mathbb{E}[X] = p$.

7. Sei $p \in [0,1]$, sei X eine Ber(p)-verteilte Zufallsvariable und definiere $Z := (2X - 1)^2$. Was ist der Erwartungswert E[Z]? (Scherzfrage)

- $\sqrt{}$ (a) 1
 - (b) 2p-1
 - (c) 1 2p
 - (d) 0

Da X fast sicher Werte in $\{0,1\}$ annimmt, nimmt Z fast sicher Werte in $\{1\}$ an. Somit gilt $\mathbb{E}[Z] = 1 \cdot \mathbb{P}[Z=1] = 1$.

8. Sei $\lambda > 0$ und sei X eine Poisson(λ)-verteilte Zufallsvariable. Was ist der Erwartungswert E[X]?

- (a) 1
- (b) $1/\lambda$
- $\sqrt{}$ (c) λ
 - (d) λ^2

Man berechnet $\mathbb{E}[X] = \sum_{k=0}^\infty k \cdot \frac{\lambda^k}{k!} \cdot e^{-\lambda} = \lambda \cdot (\sum_{k=1}^\infty \frac{\lambda^{k-1}}{(k-1)!}) \cdot e^{-\lambda} = \lambda.$

9. Sei $\lambda > 0$, sei X eine Poisson (λ) -verteilte Zufallsvariable und sei $Y := X^2$. Was ist der Erwartungswert E[Y]?

- (a) λ
- (b) λ^2
- (c) $1/\lambda^2$
- $\sqrt{(d)} \lambda(\lambda+1)$

Man berechnet

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} k^2 \cdot \frac{\lambda^k}{k!} \cdot e^{-\lambda} = \lambda \cdot \left(\sum_{k=1}^{\infty} k \cdot \frac{\lambda^{k-1}}{(k-1)!} \cdot e^{-\lambda} \right)$$
$$= \lambda \cdot \left(\sum_{\ell=0}^{\infty} (\ell+1) \cdot \frac{\lambda^{\ell}}{(\ell)!} \cdot e^{-\lambda} \right) = \lambda \cdot (\lambda+1).$$

10. Sei a > 1 und sei U eine $\mathcal{U}([a, a^2])$ -verteilte Zufallsvariable. Was ist der Erwartungswert E[U]?

- $\sqrt{}$ (a) $\frac{a(a+1)}{2}$
 - (b) $\frac{a^2}{2}$
 - (c) $a^2 + a$
 - (d) a

Es gilt $a^2 > a$ und somit können wir die Berechnung aus Beispiel 1 in Abschnitt 4.3 im Skript verwenden und erhalten mit $b = a^2$ das Resultat $\frac{a+a^2}{2} = \frac{a(a+1)}{2}$.

11. Sei $\lambda > 0$ und sei X eine $\text{Exp}(\lambda)$ -verteilte Zufallsvariable. Was ist der Erwartungswert E[X]?

- (a) 1
- $\sqrt{}$ (b) $1/\lambda$
 - (c) λ
 - (d) λ^2

Man berechnet durch partielle Ableitung

$$\mathbb{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \underbrace{\left[-xe^{-\lambda x}\right]_0^\infty}_{=0} + \underbrace{\int_0^\infty e^{-\lambda x} dx}_{=\left[-\frac{1}{\lambda}e^{-\lambda x}\right]_0^\infty}_{=\infty} = \frac{1}{\lambda}.$$

12. Seien $\mu, \lambda > 0$. Seien $X \sim \text{Exp}(\lambda)$ und $Y \sim \text{Exp}(\mu)$. Was ist der Erwartungswert von $\text{E}[\lambda X + \mu Y]$?

- (a) $\lambda^2 + \mu^2$
- (b) $\lambda + \mu$
- (c) $1/\lambda + 1/\mu$
- $\sqrt{}$ (d) 2

Wir verwenden die Linearität des Erwartungswerts und erhalten

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y] = \lambda \cdot 1/\lambda + \mu \cdot 1/\mu = 1 + 1 = 2.$$

13. Sei $X \sim \mathcal{N}(0,1)$ und Y eine Zufallsvariable, sodass $X+Y \sim \mathcal{N}(1,6)$. Was ist der Erwartungswert E[Y]?

- (a) 2
- $\sqrt{}$ (b) 1
 - (c) 0
 - (d) -1

Aufgrund der Linearität des Erwartungswerts gilt E[Y] = E[X + Y] - E[X] = 1 - 0 = 1.

14. Sei $X \sim \mathcal{N}(0,1)$ und sei $Y := 2 \cdot X^3$. Was ist der Erwartungswert E[Y].

- (a) 2
- (b) 1
- $\sqrt{(c)}$ 0
 - (d) -1

Aufgrund der Linearität des Erwartungswerts gilt $E[Y] = 2 \cdot E[X^3]$. Man berechnet dann

$$\mathbb{E}[X^3] = \int_{-\infty}^{\infty} x^3 \cdot f_{0,1}(x) dx = 0,$$

da $x^3 \cdot f_{0,1}(x)$ eine ungerade Funktion ist.