Wahrscheinlichkeit & Statistik

Quiz 10

Onlineabgabe vor Beginn der Übungsstunde: Montag (09.05.2022) um 16:15 Uhr oder Dienstag (10.05.2022), um 14:15 Uhr

Dieser Quiz beschäftigt sich mit der Maximum-Likelihood-Methode und wendet diese für die geometrische Verteilung und die Exponentialverteilung an.

Weitere Informationen und Instruktionen zur Abgabe unter https://metaphor.ethz.ch/x/2022/fs/401-0614-00L/

- 1. Sei $\Theta = [0, 1]$. Wir betrachten die Modellfamilie $(\mathbb{P}_{\theta})_{\theta \in \Theta}$, wobei X_1, \ldots, X_n unter \mathbb{P}_{θ} unabhängig, identisch verteilt sind mit $X_1 \sim \text{Geom}(\theta)$. Was ist die Likelihood-Funktion $L(x_1, \ldots, x_n; \theta)$ für $x_1, \ldots, x_n \in \{1, 2, \ldots\}$?
- (a) $(1-\theta)^{x_1+...+x_n}$
- (b) $\theta^n \cdot (1-\theta)^{x_1+\ldots+x_n}$
- (c) $\theta^n \cdot (1-\theta)^{x_1+\ldots+x_n-n}$
- (d) $(1-\theta)^{x_1+...+x_n-n}$
- **2.** Weiterhin sei $\Theta = [0,1]$ und X_1, \ldots, X_n seien unter \mathbb{P}_{θ} unabhängig, identisch verteilt mit $X_1 \sim \text{Geom}(\theta)$. Was ist die log-Likelihood-Funktion?
- (a) $n \cdot \log(\theta) + (x_1 + \ldots + x_n n) \cdot \log(1 \theta)$
- (b) $(x_1 + ... + x_n n) \cdot \log(1 \theta)$
- (c) $(x_1 + \ldots + x_n) \cdot \log(1 \theta)$
- (d) $n \cdot \log(\theta) + (x_1 + \ldots + x_n) \cdot \log(1 \theta)$
- 3. Weiterhin sei $\Theta = [0,1]$ und X_1, \ldots, X_n seien unter \mathbb{P}_{θ} unabhängig, identisch verteilt mit $X_1 \sim \text{Geom}(\theta)$. Was ist der Maximum-Likelihood-Schätzer T_{ML} für θ ?
- (a) $\frac{X_1 + \dots + X_n}{n}$
- (b) $\frac{n}{X_1 + \dots + X_n}$
- (c) $\frac{X_1 + \dots + X_n + n}{n}$
- (d) $\frac{n}{X_1 + \dots + X_n + n}$

4. Sei $\Theta = (0, \infty)$. Wir betrachten die Modellfamilie $(\mathbb{P}_{\theta})_{\theta \in \Theta}$, wobei X_1, \ldots, X_n unter \mathbb{P}_{θ} unabhängig, identisch verteilt sind mit $X_1 \sim \operatorname{Exp}(\theta)$. Was ist die Likelihood-Funktion $L(x_1, \ldots, x_n; \theta)$ für $x_1, \ldots, x_n \geq 0$?

(a)
$$e^{-\theta(x_1+\ldots+x_n)}$$

(b)
$$\theta \cdot e^{-\theta(x_1 + \dots + x_n)}$$

(c)
$$\theta^n \cdot e^{-\theta(x_1 + \dots + x_n)}$$

(d)
$$n\theta^n \cdot e^{-\theta(x_1 + \dots + x_n)}$$

5. Weiterhin sei $\Theta=(0,\infty)$ und X_1,\ldots,X_n seien unter \mathbb{P}_{θ} unabhängig, identisch verteilt mit $X_1\sim \operatorname{Exp}(\theta)$. Was ist die log-Likelihood-Funktion für $x_1,\ldots,x_n\geq 0$?

(a)
$$-\theta(x_1+\ldots+x_n)$$

(b)
$$\log(\theta) - \theta(x_1 + \ldots + x_n)$$

(c)
$$\log(n) + n \cdot \log(\theta) - \theta(x_1 + \ldots + x_n)$$

(d)
$$n \cdot \log(\theta) - \theta(x_1 + \ldots + x_n)$$

6. Weiterhin sei $\Theta = (0, \infty)$ und X_1, \dots, X_n seien unter \mathbb{P}_{θ} unabhängig, identisch verteilt mit $X_1 \sim \operatorname{Exp}(\theta)$. Was ist der Maximum-Likelihood-Schätzer T_{ML} für θ ?

(a)
$$\frac{n}{X_1 + \dots + X_n}$$

(b)
$$X_1 + ... + X_n$$

(c)
$$\frac{X_1 + \dots + X_n}{n}$$

(d)
$$\frac{1}{X_1 + ... + X_n}$$