Wahrscheinlichkeit & Statistik

Quiz 13

Onlineabgabe vor Beginn der Übungsstunde: Montag (30.05.2022) um 16:15 Uhr oder Dienstag (31.05.2022), um 14:15 Uhr

Dieser Quiz beschäftigt sich mit Likelihood-Quotient-Test und dem P-Wert.

Weitere Informationen und Instruktionen zur Abgabe unter https://metaphor.ethz.ch/x/2022/fs/401-0614-00L/

- **1.** Sei $\Theta_0 = \{\theta_0\}$, $\Theta_A = \{\theta_A\}$ und $c \ge 0$. Seien X_1, \dots, X_n diskrete Zufallsvariablen unter \mathbb{P}_{θ_0} und unter \mathbb{P}_{θ_A} . Was ist der Likelihood-Quotient-Test mit Parameter c?
- (a) Es ist der Test (T, K) mit Teststatistik

$$T = \frac{L(X_1, \dots, X_n; \theta_0)}{L(X_1, \dots, X_n; \theta_A)}$$

und Verwerfungsbereich $K = (c, \infty]$.

(b) Es ist der Test (T, K) mit Teststatistik

$$T = \frac{L(X_1, \dots, X_n; \theta_A)}{L(X_1, \dots, X_n; \theta_0)}$$

und Verwerfungsbereich $K = (c, \infty]$.

(c) Es ist der Test (T, K) mit Teststatistik

$$T = \frac{L(X_1, \dots, X_n; \theta_0)}{L(X_1, \dots, X_n; \theta_A)}$$

und Verwerfungsbereich $K = [-\infty, c)$.

(d) Es ist der Test (T, K) mit Teststatistik

$$T = \frac{L(X_1, \dots, X_n; \theta_A)}{L(X_1, \dots, X_n; \theta_0)}$$

und Verwerfungsbereich $K = [-\infty, c)$.

2. Sei $\Theta = \mathbb{R}$ und seien X_1, \ldots, X_n u.i.v. mit $X_1 \sim \mathcal{U}([\theta, \theta + 2])$ unter \mathbb{P}_{θ} . Wir betrachten die Nullhypothese $H_0: \theta = 0$ und die Alternativhypothese $H_A: \theta = 1$. Was ist der Likelihood-Quotient?

(a)
$$R(x_1, \dots, x_n) = \mathbb{1}_{x_1, \dots, x_n \in [1, 2]}$$

(b)
$$R(x_1, \dots, x_n) = \mathbb{1}_{x_1, \dots, x_n \in [0,3]}$$

(c)
$$R(x_1, \dots, x_n) = \frac{\mathbb{1}_{x_1, \dots, x_n \in [1, 3]}}{\mathbb{1}_{x_1, \dots, x_n \in [0, 2]}}$$

(d)
$$R(x_1, \dots, x_n) = \frac{\mathbb{1}_{x_1, \dots, x_n \in [0, 2]}}{\mathbb{1}_{x_1, \dots, x_n \in [1, 3]}}$$

- 3. Sei $\Theta = \mathbb{R}$ und seien X_1, \ldots, X_n u.i.v. mit $X_1 \sim \mathcal{U}([\theta, \theta + 2])$ unter \mathbb{P}_{θ} . Wir betrachten die Nullhypothese $H_0: \theta = 0$ und die Alternativhypothese $H_A: \theta = 1$. Wir betrachten den Likelihood-Quotienten-Test mit Parameter $c \geq 0$. Welche Aussagen sind korrekt? (Mehrere richtige Antworten möglich.)
- (a) Für die Teststatistik gilt $T \in \{0, 1, \infty\}$.
- (b) Für die Teststatistik gilt $T \in [0, 1]$.
- (c) Für die Teststatistik gilt $T \geq 0$.
- **4.** Sei $\Theta = \mathbb{R}$ und seien X_1, \ldots, X_n u.i.v. mit $X_1 \sim \mathcal{U}([\theta, \theta + 2])$ unter \mathbb{P}_{θ} . Wir betrachten die Nullhypothese $H_0: \theta = 0$ und die Alternativhypothese $H_A: \theta = 1$. Wir betrachten den Likelihood-Quotienten-Test mit Parameter $c \geq 0$. Welche Aussagen sind korrekt? (Mehrere richtige Antworten möglich.)
- (a) Für c=0 hat der Test exakt Signifikanzniveau $\alpha^*=(\frac{1}{2})^n$.
- (b) Für c = 0 hat der Test exakt Signifikanzniveau $\alpha^* = 1$.
- (c) Für c=2 hat der Test exakt Signifikanzniveau $\alpha^*=(\frac{1}{2})^n$.
- (d) Für c=2 hat der Test exakt Signifikanzniveau $\alpha^*=0$.

- 5. Sei $\Theta_0 = \{\theta_0\}$ und $\Theta_A = \{\theta_A\}$. Angenommen der Likelihood-Quotient ist wohldefiniert. Unter welchen Bedingungen gilt die folgende Aussage?
- "Für jedes $\alpha \in (0,1)$ existiert immer ein Likelihood-Quotient-Test mit Signifikanzniveau exakt α , also $\mathbb{P}_{\theta_0}[T \in K] = \alpha$."
- (a) Die Ausage gilt, falls X_1, \ldots, X_n u.i.v. diskrete Zufallsvariablen (unter \mathbb{P}_{θ_0}) sind.
- (b) Die Ausage gilt, falls die Zufallsvariable $R(X_1, \ldots, X_n)$ stetig (unter \mathbb{P}_{θ_0}) ist.
- (c) Die Aussage gilt immer.
- (d) Die Aussage gilt nie.
- **6.** Seien $\Theta_0 = \{\theta_0\}$, $\Theta_A = \{\theta_A\}$. Wir betrachten den Likelihood-Quotient-Test (T, K) mit Parameter $c \geq 0$. Sei $\alpha^* = \mathbb{P}_{\theta_0}[T \in K]$ und sei (T', K') ein anderer Test mit Signifikanzniveau $\alpha \leq \alpha^*$. Welche Aussagen sind korrekt? (Mehrere richtige Antworten möglich.)
- (a) Die Macht von (T', K') ist immer grösser als die Macht von (T, K).
- (b) Der Macht von (T', K') ist immer kleiner als die Macht von (T, K).
- (c) $\mathbb{P}_{\theta_A}[T \in K] \leq \mathbb{P}_{\theta_A}[T' \in K']$
- (d) $\mathbb{P}_{\theta_A}[T \in K] \ge \mathbb{P}_{\theta_A}[T' \in K']$