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Introduction to probability

Some questions you may ask
What is probability?

Ü A mathematical language describing systems involving randomness.

Where are probabilities used?

Ü Describe random experiments in the real world (coin flip, dice rolling, arrival
times of customers in a shop, weather in 1 year,...).

Ü Express uncertainty. For example, when a machine performs a measurement,
the value is rarely exact. One may use probability theory in this context by saying
that the value obtained is equal to the real value plus a small random error.

Ü Decision making. Probability theory can be used to describe a system when only
part of the information is known. In such context, it may help to make a decision.

Ü Randomized algorithms in computer science. Sometimes, it is more efficient to
add some randomness to perform an algorithm. Examples: Google web search, ants
searching food.

Ü Simplify complex systems. Examples: water molecules in water, cars on the
highway, percolation processes.

The notion of probabilistic model
If one wants a precise physical description of a coin flip one would need a lot (really!)
of information: the exact position of the fingers and the coins, the initial velocity, the
initial angular velocity, imperfections of the coin, the surface characteristics of the table,
air currents, the brain activity of the gambler... These parameters are almost impossible
to measure precisely, and a tiny change in one of them may affect completely the result.
In practice, we rather use a probabilistic description, which here consists in a drastic
simplification of the system: we completely forget the physical description of the throw
of the coin and we only focus on the possible outcomes of the experiment: head or tail.
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Namely, the probabilistic model for the coin flip is given by 2 possible outcomes (head
and tail) and each outcome has probability phead = ptail = 1/2 to be realized. In other
words,

Coin flip = {{head, tail}, phead = 1/2, ptail = 1/2}

A surprising analysis: coin flips are not fair! If one tosses a coin it has more
chance to fall on the same face as its initial face! See the youtube video of Persi Diaconis:
How random is a coin toss? - Numberphile

Probability laws: randomness vs ordering
If one performs a single random experiment (for example a coin flip), the result is unpre-
dictable. In contrast, when one performs many random experiments, then some general
laws can be observed. For example if one tosses 10000 independent coins, one should
generally observe 5000 heads and 5000 tails approximately: This is an instance of a fun-
damental probability law, called the law of large numbers. One goal of probability theory
is to describe how ordering can emerge out of many random experiments, and establish
some general probability laws.

https://www.youtube.com/watch?v=AYnJv68T3MM


Chapter 1

Mathematical framework

Goals

• Basic understanding of the notion of a probability space (Ω,F ,P)

Ü Generalization of discrete probability spaces (introduced in[LSW21])

Ü Notion of sigma-algebra.

• Concept of independence, conditional probability.
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1 Probability space

Sample space

We want to model a random experiment. The first mathematical object needed is the set
of all possible outcomes of the experiment, denoted by Ω.

Terminology: The set Ω is called the sample space. An element ω ∈ Ω is called an
outcome (or elementary experiment).

Example : Throw of a die

Ω = {1,2,3,4,5,6}.

Events

Reminder: The set P(Ω) denotes the collection of all subsets A ⊂ Ω.

In the previous class [LSW21], the set of events was always P(Ω). In this class we will
work with more general sets of events F ⊂ P(Ω), called sigma-algebras.

Definition 1.1. A sigma-algebra is a subset F ⊂ P(Ω) satisfying the following
properties.

P1. Ω ∈ F

P2. A ∈ F ⇒ Ac ∈ F if A is an event, “non A“ is also an event.

P3. A1,A2, . . . ∈ F ⇒
∞

⋃

i=1

Ai ∈ F .
if A1,A2, . . . are events, then
“A1 or A2 or ...” is an event

Examples of sigma-algebras for Ω = {1,2,3,4,5,6}:

• F = {∅,{1,2,3,4,5,6}}.

• F = P(Ω). (In this case ∣F ∣ = 64).

• F = {∅,{1,2},{3,4,5,6},{1,2,3,4,5,6}}.

Non-examples of sigma-algebras for Ω = {1,2,3,4,5,6}:

• F = {{1,2,3,4,5,6}} is not a sigma-algebra because P2 is not satisfied.

• F = {∅,{1,2,3},{4,5,6},{1},{2,3,4,5,6},Ω} is not a sigma-algebra because P3 is
not satisfied.
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Probability measure

Definition 1.2. Let Ω be a sample space, let F be a sigma-algebra. A probability
measure on (Ω,F) is a map

P ∶ F → [0,1]
A ↦ P[A]

that satisfies the following two properties

P1. P[Ω] = 1.

P2. (countable additivity) P[A] = ∑
∞
i=1 P[Ai] if A = ⋃

∞
i=1Ai (disjoint union).

“A probability measure is a map that associates to each event a number in [0,1].”

Examples for Ω = {1,2,3,4,5,6} and F = P({1,2,3,4,5,6}):

• The mapping P ∶ F ↦ [0,1] defined by

∀A ∈ F P[A] =

∣A∣

6

is a probability measure on (Ω,F).

• Given some numbers p1, . . . , p6 satisfying p1 +⋯+p6 = 1 , the mapping P ∶ F ↦ [0,1]
defined by

∀A ∈ F P[A] =∑

i∈A

pi

is a probability measure on (Ω,F). The case pi = 1
6 (for all i) corresponds to the first

example, modeling a fair die. The case p1 = ⋯ = p5 =
1
7 , and p6 =

2
7 would correspond

to a biased die, with twice more chance fall on 6 than on the other values.

Notion of probability space

Definition 1.3. Let Ω be a sample space, F a sigma-algebra, and P a probability
measure. The triple (Ω,F ,P) is called a probability space.

To summarize, if one want to construct a probabilistic model, we give

• a sample space Ω, “all the possible outcomes of the experiment”

• a sigma-algebra F ⊂ P(Ω), “the set of events”

• a probability measure P. “gives a number in [0,1] to every event”
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Terminology

Let ω ∈ Ω (a possible outcome). Let A be an event.
We say the event A occurs (for ω) if ω ∈ A.

A

ω

We say that it does not occur if ω ∉ A.

A

ω

Remark 1.4. The event A = ∅ never occurs. “we never have ω ∈ ∅”
The event A = Ω always occurs. “we always have ω ∈ Ω”

2 Examples of probability spaces

Example with Ω finite

We now discuss a particular type of probability spaces that appear in many concrete
examples. The sample space Ω is an arbitrary finite set, and all the outcomes have the
same probability pω = 1

∣Ω∣
.

Definition 1.5. Let Ω be a finite sample space. The Laplace model on Ω is the triple
(Ω,F ,P), where

• F = P(Ω),

• P ∶ F → [0,1] is defined by

∀A ∈ F P[A] =

∣A∣

∣Ω∣

.

One can easily check that the mapping P above defines a probability measure in the
sense of the definition 1.2. In this context, estimating the probability P[A] boils down to
counting the number of elements in A and in Ω.
Example:
We consider n ≥ 3 points on a circle, from which we select 2 at random. What is the
probability that these two points selected are neighbors?
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Figure 1.1: A circle with n = 6 points, and the subset {1,3} is selected.

We consider the Laplace model on

Ω = {E ⊂ {1,2,⋯, n} ∶ ∣E∣ = 2}.

The event “the two points of E are neighbors” is given by

A = {{1,2},{2,3},⋯,{n − 1, n},{n,1}},

and we have
P[A] =

∣A∣

∣Ω∣

=

n

(
n
2
)

=

2

n − 1
.

Example with Ω infinite countable

We throw a biased coin multiple times, at each throw, the coin falls on head with prob-
ability p, and it falls on tail with probability 1 − p (p is a fixed parameter in [0,1]). We
stop at the first time we see a tail. The probability that we stop exactly at time k is given
by

pk = p
k−1

(1 − p).

(Indeed, we stop at time k, if we have seen exactly k − 1 heads and 1 tail.)
For this experiment, one possible probability space is given by

• Ω = N/{0} = {1,2,3, . . .},

• F = P(Ω),

• for A ∈ F , P[A] = ∑

k∈A

pk.

Example with Ω uncountable (for the culture)

A tempting approach to define a probability measure is to first associate to every ω the
probability pω that the output of the experiment is ω. Then, for an event A ⊂ Ω define
the probability of A by the formula

P[A] = ∑

ω∈A

pω. (1.1)
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This approach works perfectly well, when the sample space Ω is finite or countable (this
is the case of the two examples above). But this approach does not work well if Ω is
uncountable. For example, in the case of the droplet of water in a segment Ω = [0,1]. In
this case, the probability of landing a fixed point is always 0 and the equation (1.1) does not
make sense. This is for this reason that we use an axiomatic definition (in Definition 1.2)
of probability measure. In this particular case, a natural choice of probability space is

• Ω = [0,1],

• F = Borel σ-algebra1

• for A ∈ F , P(A) = Lebesgue measure of (A).

3 Properties of Events

Operations on events and interpretation

Since events are defined as subsets of Ω, one can use operations from set theory (union,
intersection, complement, symmetric difference,. . . ). From the definition, we know that
we can take the complement of an event (by H2), or a countable union of events (by H3).
The following proposition asserts that the other standard set operations are allowed.

Proposition 1.6 (Consequences of the definition). Let F be a sigma-algebra on Ω.
We have

P4. ∅ ∈ F ,

P5. A1,A2, . . . ∈ F ⇒
∞

⋂

i=1

Ai ∈ F ,

P6. A,B ∈ F ⇒ A ∪B ∈ F ,

P7. A,B ∈ F ⇒ A ∩B ∈ F .

Proof. We prove the items one after the other.

i. By P1 in Definition 1.1, we have Ω ∈ F . Hence, by P3 in Definition 1.1, we have

∅ = Ωc
∈ F .

ii. Let A1,A2, . . . ∈ F . By P2, we also have Ac1,Ac2, . . . ∈ F . Then, by P3, we have
⋃
∞
i=1(Ai)

c
∈ F . Finally, using P2 again, we conclude that

∞

⋂

i=1

Ai = (

∞

⋃

i=1

(Ai)
c
)

c

∈ F .

1the Borel σ-algebra F is defined as follows: it contains all A = [x1, x2]× [y1, y2], with 0 ≤ x1 ≤ x2 ≤ 1,
0 ≤ y1 ≤ y2 ≤ 1, and it is the smallest collection of subsets of Ω which satisfies P1, P2 and P3 in
Definition 1.1.
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iii. Let A,B ∈ F . Define A1 = A, A2 = B, and for every i ≥ 3 Ai = ∅. By P3, we have

A ∪B =

∞

⋃

i=1

Ai ∈ F .

iv. Let A,B ∈ F . By P2, Ac,Bc
∈ F . Then by iii. above, we have Ac ∪Bc

∈ F . Finally,
by P2, we deduce

A ∩B = (Ac ∪Bc
)
c
∈ F .

On the following tabular we consider two events A and B, and we summarize the
probabilistic interpretation of the most important set operation.

Event Graphical representation Probab. interpretation

Ac

Ω

A

Ac

A does not occur

A ∩B

A B

A and B occur

A ∪B

A B

A or B occurs

A∆B

A B

one and only one of A or B
occurs

Relations between events and interpretations

Set relations (inclusion, distinctness, partition) also have probabilistic interpretations,
summarized below.
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Relation Graphical representation Probab. interpretation

A ⊂ B A

B

If A occurs, then B occurs

A ∩B = ∅

A B

A and B cannot occur at the
same time

Ω = A1 ∪A2 ∪A3 with
A1,A2,A3 pairwise disjoint

Ω

A1 A3

A2

for each outcome ω, one and
only one of the events A1,

A2, A3 is satisfied.

Why not always working with F = P(Ω)?

In the previous class [LSW21], the set of events was always taken to be P(Ω). It may
seem useless to take more general sets of events, and consider the “complicated” notion of
sigma-algebra. We give here two main motivations for that:

• First motivation: partially observed experiment. Working with general set of
event allows for natural decomposition of the probability spaces. This is particularly
useful when we reveal the outcome of a random experiment algorithmically, as in
the following simple example. We consider the throw of two independent dice. A
possible outcome is a pair ω = (ω1, ω2) where ω1 and ω2 are the respective values of
the first and second dies. We choose the sample space

Ω = {1,2,3,4,5,6}2.

We can consider the following two sigma algebras

F1 = {A × {1,2,3,4,5,6},A ⊂ {1,2,3,4,5,6}}

and
F2 = P(Ω).

The first sigma-algebra F1 corresponds to all the events defined in terms of the first
die, while the second sigma-algebra contains all the possible events in terms of the
two dice. For example the event A = {2,4,6}×{1,2,3,4,5,6} (“the first die is even”)
is in both F1 and F2, while the event B = {2,4,6}2 (“both dies are even”) belongs
to F2 but not F1 because it requires the information of the second die.

If one reveals the outcome of the experiment algorithmically, by first revealing the
first die, and then the second die. After the first step, we can say which of the events
of F1 occur, and after the second step, we can say which of the events of F2 occur.
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• Second motivation: theoretical. When the sample space is not countable (e.g.
Ω = [0,1] or Ω = {0,1}N), one often needs to impose some conditions on the events.
This is due to the fact that we want to be able to define a probability measure on
the set of events. This is not always possible on F = P(Ω). For example, when
defining the uniform probability measure on Ω, one can construct set A ⊂ [0,1]
that are “strange enough” so that P[A] is not defined. Therefore we have to restrict
ourselves to F ⊊ P(Ω), which excludes such strange sets (see [Wil01, 2.3, p. 43]
for a short discussion on this issue). For this course, this theoretical obstacle is
not crucial to understand in detail. Nevertheless it is of fundamental importance in
measure theory, which is the theoretical support for probability theory.

4 Properties of probability measures

Direct consequences of the definition

Proposition 1.7. Let P be a probability measure on (Ω,F).

P3. We have
P[∅] = 0.

P4. (additivity) Let k ≥ 1, let A1, . . . ,Ak be k pairwise disjoint events, then

P[A1 ∪⋯ ∪Ak] = P[A1] +⋯ + P[Ak].

P5. Let A be an event, then
P[Ac] = 1 − P[A].

P6. If A and B are two events (not necessarily disjoint), then

P[A ∪B] = P[A] + P[B] − P[A ∩B].

Proof. We prove the items one after the other

P3. Define x = P[∅]. We already know that x ∈ [0,1] because x is the probability of
some event. Defining A1 = A2 = ⋯ = ∅, we have

∅ =

∞

⋃

i=1

Ai.

The events Ai are disjoint and countable additivity implies
∞

∑

i=1

P [Ai] = P[∅].

Since P[Ai] = x for every i and P [∅] ≤ 1, we have
∞

∑

i=1

x ≤ 1,
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and therefore x = 0.

P4. Define Ak+1 = Ak+2 = ⋯ = ∅. In this way we have

A1 ∪⋯ ∪Ak = A1 ∪⋯ ∪Ak ∪ ∅ ∪∅ ∪⋯ =

∞

⋃

i=1

Ai.

Since the events Ai are pairwise disjoint, one can apply countable additivity as
follows:

P[A1 ∪⋯ ∪Ak] = P[
∞

⋃

i=1

Ai]

countable
additivity

=

∞

∑

i=1

P[Ai]

= P[A1] +⋯ + P[Ak] +∑
i>k

P[Ai]
´¹¹¸¹¹¶

=0

.

P5. By definition of the complement, we have Ω = A ∪Ac, and therefore

1 = P[Ω] = P[A ∪Ac].

Since the two events A, Ac are disjoint, additivity finally gives

1 = P[A] + P[Ac].

P6. A ∪B is the disjoint union of A with B/A. Hence, by additivity, we have

P[A ∪B] = P[A] + P[B/A]. (1.2)

Also B = (B ∩A) ∪ (B ∩Ac) = (B ∩A) ∪ (B/A). Hence, by additivity,

P[B] = P[B ∩A] + P[B/A],

which give P[B/A] = P[B]−P[A∩B]. Plugging this estimate in Eq. (1.2) we obtain
the result.

Useful Inequalities

In applications, it happens often that the probability P[A] is difficult to compute ex-
actly: in such cases it is often useful to relate the event A to other events, and then use
monotonicity (Proposition 1.8) and/or the union bound (Proposition 1.9) to obtain some
bounds on P[A] in terms of probabilities of events that are easier to compute.
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Proposition 1.8 (Monotonicity). Let A,B ∈ F , then

A ⊂ B ⇒ P[A] ≤ P[B].

Proof. If A ⊂ B, then we have B = A ∪ (B/A) (disjoint union). Hence, by additivity, we
have

P[B] = P[A] + P[B/A] ≥ P[A].

Proposition 1.9 (Union bound). Let A1,A2, . . . be a sequence of events (not neces-
sarily disjoint), then we have

P[
∞

⋃

i=1

Ai] ≤
∞

∑

i=1

P[Ai].

Remark 1.10. The union bound also applies to a finite collection of events.

Proof. For i ≥ 1, define
Ãi = Ai ∩A

c
i−1 ∩⋯ ∩Ac1.

One can check that
∞

⋃

i=1

Ai =
∞

⋃

i=1

Ãi.

(To prove the direct inclusion, consider ω in the left hand side. Then define the smallest
i such that ω ∈ Ai. For this i, we have ω ∈ Ãi, which implies that ω belongs to the right
hand side. The other inclusion is clear because Ãi ⊂ Ai for every i.) Now, one can apply
the countable additivity to the Ãi, because they are disjoint. We get

P[
∞

⋃

i=1

Ai] = P[
∞

⋃

i=1

Ãi]

=

∞

∑

i=1

P[Ãi]

≤

∞

∑

i=1

P[Ai].

Application. We throw a die n ≥ 2 times. We want to prove that the probability to see
more than ` ∶= ⌈7 logn⌉ successive 1’s is small if n is large.

We consider the probability space given by

• Ω = {1,2,3,4,5,6}n, an outcome is ω = ( ω1

´¸¶

die 1

,⋯, ωn
´¸¶

die n

),
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• F = P(Ω),

• for A ∈ F , P[A] =
∣A∣

∣Ω∣
.

The event A that there exist ` successive 1’s can be defined as follows. First, for a
fixed index k ∈ {1, . . . , n− `}, we define the event that there ` successive 1’s between k + 1
and k + ` by

Ak = {ω ∶ ωk+1 = ωk+2 = ⋯ = ωk+` = 1},

This way, the event A is exactly the event that there exists k such that Ak occurs. Namely,

A =

n−`

⋃

k=0

Ak.

Our goal is to prove that the probability of A is small. Notice that Ak ∩Ak′ ≠ ∅ for k ≠ k′,
since the element ω = (1,1, . . . ,1) always belongs to Ak for every index k. Hence, the
event A is expressed as an non-disjoint union of events and we cannot directly Property
P2 of the probability measure to estimate its probability. Nevertheless, one can use the
union bound to show that

P[A] ≤

n−`

∑

k=0

P[Ak] ≤ n ⋅ (
1

6
)

`

≤ n ⋅ n− log(7)/ log(6),

and therefore we see that the probability of seeing more than 7 logn consecutive 1’s
converge to 0 as n tends to infinity.

Continuity properties of probability measures

Proposition 1.11. Let (An) be an increasing sequence of events (i.e. An ⊂ An+1 for every
n). Then

lim
n→∞

P [An] = P[
∞

⋃

n=1

An]. increasing limit

Let (Bn) be a decreasing sequence of events (i.e. Bn ⊃ Bn+1 for every n). Then

lim
n→∞

P [Bn] = P[
∞

⋂

n=1

Bn]. decreasing limit

A1

∞⋃
n=1

An

A2

A3 ∞⋂
n=1

Bn B1B2B3

Remark 1.12. By monotonicity, we have P[An] ≤ P[An+1] and P[Bn] ≥ P[Bn+1] for
every n. Hence the limits in the proposition are well defined as monotone limits.
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Proof. Let (An)n≥1 be an increasing sequence of events. Define Ã1 = A1 and for every
n ≥ 2

Ãn = An/An−1.

The events Ãn are disjoint and satisfy

∞

⋃

n=1

An =
∞

⋃

n=1

Ãn and AN =

N

⋃

n=1

Ãn.

Using first countable additivity and then additivity, we have

P[
∞

⋃

n=1

An] = P[
∞

⋃

n=1

Ãn]

=

∞

∑

n=1

P[Ãn]

= lim
N→∞

N

∑

n=1

P[Ãn]

= lim
N→∞

P[AN].

Now, let (Bn) be a decreasing sequence of events. Then (Bc
n) is increasing, and we can

apply the previous result in the following way:

P[
∞

⋂

n=1

Bn] = 1 − P[
∞

⋃

n=1

Bc
n]

= 1 − lim
n→∞

P[Bc
n]

= lim
n→∞

P[Bn].

5 Conditional probabilities
Consider a random experiment represented by some probability space (Ω,F ,P). We may
sometimes possess incomplete information about the actual outcome of the experiment
without knowing this outcome exactly. For example if we throw a die and a friend tells
us that an even number is showing, then this information affects all our calculation of
probabilities. In general, if A and B are two events and we are given that B occurs, the
new probability may no longer be P[A]. In this new circumstance, we know that A occurs
if and only if A ∩B occurs, suggesting that the new probability of A is proportional to
P[A ∩B].

Definition 1.13 (Conditional probability). Let (Ω,F ,P) be some probability space.
Let A, B be two events with P[B] > 0. The conditional probability of A given B
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is defined by

P[A ∣B] =

P[A ∩B]

P[B]

.

Remark 1.14. P[B ∣B] = 1. Condition on B, the event B always occurs.

Example: We consider the probability space (Ω,F ,P) corresponding to the throw of
one die. Let A = {1,2,3} be the event that the die is smaller than or equal to 3, and let
B = {2,4,6} be the event that the die is even. Then

P[A ∣B] =

P[A ∩B]

P[B]

=

1/6

1/2
= 1/3.

Proposition 1.15. Let (Ω,F ,P) be some probability space. Let B be an event with
positive probability. Then P[ . ∣B] is a probability measure on Ω.

Proposition 1.16 (Formula of total probability). Let B1,⋯,Bn be a partitiona of the
sample space Ω with P[Bi] > 0 for every 1 ≤ i ≤ n. Then, one has

∀A ∈ F P[A] =

n

∑

i=1

P[A ∣Bi] P[Bi].

ai.e. Ω = B1 ∪⋯ ∪Bn and the events are pairwise disjoint.

Proof. Using the distributivity of the intersection, we have

A = A ∩Ω = A ∩ (B1 ∪⋯ ∪Bn) = (A ∩B1) ∪⋯ ∪ (A ∩Bn).

Since the events A ∩Bi are pairwise disjoint, we have

P[A] = P[A ∩B1] +⋯ + P[A ∩Bn].

By definition, we have P[A∩Bi] = P[A ∣Bi] P[Bi] for every i and using this expression in
the equation above, we finally get

P[A] = P[A ∣B1] P[B1] +⋯ + P[A ∣Bn] P[Bn].

Proposition 1.17 (Bayes formula). Let B1, . . . ,Bn ∈ F be a partition of Ω with
P[Bi] > 0 for every i. For every event A with P[A] > 0, we have

∀i = 1, . . . , n P[Bi ∣A] =

P[A ∣Bi] P[Bi]

∑
n
j=1 P[A ∣Bj] P[Bj]

.
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Typical application: A test is performed in order to diagnose a certain rare disease,
which concerns 1/10000 of a population. This test is quite reliable and gives the right
answer 99 percent of the times. If a patient has a “positive test” (i.e. the test indicates
that he is sick), what is the probability that he is actually sick?

The situation is modeled by setting

Ω = {0,1} × {0,1}.

and F = P(Ω). An outcome is a pair ω = (ω1, ω2) representing a patient, where

ω1 =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if the patient is healthy,
1 if the patient is sick,

ω2 =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if the test is negative,
1 if the test is positive.

We consider the event S that the patient is sick, and the event T that the test is positive.
The elements of S are all the outcomes ω = (ω1, ω2) such that ω1 = 1, ie

S = {(1,0), (1,1)}.

Equivalently, we have
T = {(0,1), (1,1)}.

From the hypotheses, the information that we have on the probability measure is

P[S] = 1

10000
, P[T ∣ S] =

99

100
, P[T ∣ Sc] =

1

100
.

We are looking for the a posteriori probability P[S ∣ T ] of being sick, given that the test
is positive. By applying the Bayes formula to the partition Ω = S ∪ Sc, we obtain

P[S ∣ T ] =

P[T ∣ S] P[S]
P[T ∣ S] P[S] + P[T ∣ Sc] P[Sc]

=

0.99 × 0.0001

0.99 × 0.0001 + 0.01 × 0.9999
≃ 0.0098.

This result is quite surprising: the probability to be actually sick when the test is positive
is very small!
What is happening? If one looks at the whole population, there are two types of
persons, who will have a positive test:

- the healthy individuals with a (wrongly) positive test, which represent roughly one
percent of the population.

- the sick individuals with a (correctly) positive test, which represent roughly 1/10000
of the population.

Given that the test is positive, a person has much more chances to be in the first group
of individuals.
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6 Independence

Independence of events

Definition 1.18 (Independence of two events). Let (Ω,F ,P) be a probability space.
Two events A and B are said to be independent if

P[A ∩B] = P[A] P[B].

Remark 1.19. If P[A] ∈ {0,1}, then A is independent of every event, i.e.

∀B ∈ F P[A ∩B] = P[A] P[B].

If an event A is independent with itself (i.e. P[A ∩A] = P[A]
2), then P[A] ∈ {0,1}

A is independent of B if and only if A is independent of Bc.

The concept of independence is fundamental in probability: it corresponds to the
intuitive idea that two events do not influence each other, as illustrated in the following
proposition.

Proposition 1.20. Let A, B ∈ F be two events with P[A],P[B] > 0. Then the following
are equivalent:

(i) P[A ∩B] = P[A] P[B], A and B are independent

(ii) P[A ∣B] = P[A], the occurrence of B has no influence on A

(iii) P[B ∣A] = P[B]. the occurrence of A has no influence on B

Proof. Since P[B] > 0 we have

(i)⇔ (

P[A ∩B]

P[B]

= P[A])⇔ (P[A ∣B] = P[A])⇔ (ii).

Since (iii) is just the same as (ii) with the role of A and B reversed, the equivalence
(i)⇔ (iii) can proved the same way.

Typical examples of independent events occur when one performs successively a ran-
dom experiment, as illustrated below with the throw of two dice.

Example: Throw of two independent dice.
We throw two dice independently. This is modeled by the Laplace model on the sample
space

Ω = {1,2,3,4,5,6}2.
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Consider the events

A = {ω ∶ ω1 ∈ 2Z}, “The first die is even”
B = {ω ∶ 1 + ω2 ∈ 2Z}, “The second die is odd”
C = {ω ∶ ω1 + ω2 ≤ 3}, “The sum of the two dice is at most 3”
D = {ω ∶ ω1 ≤ 2, ω2 ≤ 2}. “Both dice are smaller than or equal to 2”

Check that:

• A and B are independent,

• A and C are not independent,

• A and D are independent.

Definition 1.21. Let I be an arbitrary set of indices. A collection of events (Ai)i∈I
is said to be independent if

∀J ⊂ I finite P[⋂
j∈J

Aj] =∏
j∈J

P[Aj].

Remark: Three events A, B and C are independent if the following 4 equations are
satisfied (and not only the last one!):

P[A ∩B] = P[A] P[B],

P[A ∩C] = P[A] P[C],

P[B ∩C] = P[B] P[C],

P[A ∩B ∩C] = P[A] P[B] P[C].

Example: We consider the same notation as in the example above Definition 1.21. The
events A, B, and D are independent (Check that!).



Chapter 2

Random variables and distribution
functions

Goals

• Understand the definition of a random variable and its distribution function.

• Use of abstract probability space (Ω,F ,P).

• Learn the notation allowing to define events in term of random variables.

• Explicit construction of random variables from infinite sequence of i.i.d. Bernoulli
random variables.

20
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1 Abstract definition
Most often, the probabilistic model under consideration is rather complicated, and one
is only interested in certain quantities in the model. For this reason, one introduces the
notion of random variables

Definition 2.1. Let (Ω,F ,P) be a probability space. A random variable (r.v.) is
a map X ∶ Ω→ R such that for all a ∈ R,

{ω ∈ Ω ∶ X(ω) ≤ a} ∈ F .

Ü The condition {ω ∈ Ω ∶ X(ω) ≤ a} ∈ F is needed for P[{ω ∈ Ω ∶ X(ω) ≤ a}] to be
well-defined.

Example 1: Gambling with one die
We throw a fair die. The sample space is Ω = {1,2,3,4,5,6} and we consider the Laplace
model (Ω,F ,P) as in Definition 1.5. Suppose that we gamble on the outcome in such a
way that our profit is

−1 if the outcome is 1, 2 or 3,

0 if the outcome is 4,

2 if the outcome is 5 or 6,

where a negative profit correspond to a loss. Our profit can be represented by the mapping
X defined by

∀ω ∈ Ω X(ω) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

−1 if ω = 1,2,3,

0 if ω = 4,

2 if ω = 5,6.

(2.1)

Since F = P(Ω), we have {ω ∶ X(ω) ≤ a} ∈ F for every a. Therefore, X is a random
variable on (Ω,F ,P).

Example 2: Indicator function of an event

Let A ∈ F . Consider the indicator function 1A of A, defined by

∀ω ∈ Ω 1A(ω) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if ω ∉ A,

1 if ω ∈ A.

Then 1A is a random variable. Indeed, we have

{ω ∶ 1A(ω) ≤ a} =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

∅ if a < 0,

Ac if 0 ≤ a < 1,

Ω if a ≥ 1,



CHAPTER 2. RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS 22

and ∅, Ac and Ω are three elements of F .
Remark: Role of the sigma-algebra

Consider the same notation as in Example 1. Additionally, we consider the following
two sigma-algebras:

F1 = {∅,{1,2,3},{4,5,6},{1,2,3,4,5,6}},

F2 = {∅,{1,2,3},{1,2,3,4},{4,5,6},{5,6},{1,2,3,5,6},{4},{1,2,3,4,5,6}}.

Is X is random variable on (Ω,Fi,P}? To answer this question, one needs to examine
the set {ω ∶ X(ω) ≤ a} in more details. Here we see that

{ω ∶ X(ω) ≤ a} =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

∅ if a < −1,

{1,2,3} if − 1 ≤ a < 0,

{1,2,3,4} if 0 ≤ a < 2,

{1,2,3,4,5,6} if a ≥ 2.

In particular, we see that X is a random variable on (Ω,F2,P), but not on (Ω,F1,P).

Notation: When events are defined in terms of random variable, we will omit the
dependence in ω. For example, for a ≤ b we write

{X ≤ a} = {ω ∈ Ω ∶ X(ω) ≤ a},

{a <X ≤ b} = {ω ∈ Ω ∶ a <X(ω) < b},

{X ∈ Z} = {ω ∈ Ω ∶ X(ω) ∈ Z}.

When consider the probability of events as above, we omit the brackets and for ex-
ample simply write

P[X ≤ a] = P[{X ≤ a}] = P[{ω ∈ Ω ∶ X(ω) ≤ a}].

2 Distribution function

Definition 2.2. Let X be a random variable on a probability space (Ω,F ,P). The
distribution function of X is the function FX ∶ R→ [0,1] defined by

∀a ∈ R FX(a) = P[X ≤ a].

Idea: The distribution function FX encodes the probabilistic properties of the random
variable X.
Example 1: Gambling on a die
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Let X be the random variable defined by Eq. (2.1). For a ∈ R, we have

FX(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

0 if a < −1,

1/2 if −1 ≤ a < 0,

2/3 if 0 ≤ a < 2,

1 if a ≥ 2.

−1 0 2

1/2

2/3

1

Figure 2.1: Graph of the distribution function FX .

Example 2: Indicator function of an event

Let A be an event. Let X = 1A be the indicator function of the event A. Then

FX(a) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 if a < 0,
1 − P[A] if 0 ≤ a < 1,
1 if a ≥ 1.

Proposition 2.3 (Basic identity). Let a < b be two real numbers. Then

P[a <X ≤ b] = F (b) − F (a).

Proof. We have {X ≤ b} = {X ≤ a} ∪ {a <X ≤ b} (disjoint union). Hence

P[X ≤ b] = P[X ≤ a] + P[a <X ≤ b],

which directly implies the result.

Theorem 2.4 (Properties of distribution functions). Let X be a random variable on
some probability space (Ω,F ,P). The distribution function F = FX ∶ R → [0,1] of X
satisfies the following properties.

(i) F is nondecreasing.

(ii) F is right continuousa.

(iii) lim
a→−∞

F (a) = 0 and lim
a→∞

F (a) = 1.
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ai.e. F (a) = lim
h↓0

F (a + h) for every a ∈ R.

Proof. We first prove (i), then (iii) and finally (ii).

(i) For a ≤ b, we have {X ≤ a} ⊂ {X ≤ b}. Hence, by monotonicity, we have P[X ≤ a] ≤
P[X ≤ b], i.e.

F (a) ≤ F (b).

(iii) Let an ↑ ∞. For every ω ∈ Ω, there exists n large enough such that X(ω) ≤ an.
Hence,

Ω = ⋃

n≥1

{X ≤ an}.

Furthermore, we have {X ≤ an} ⊂ {X ≤ an+1} and the continuity properties of
probability measures imply

1 = P[Ω] = P[⋃
n≥1

{X ≤ an}]

= lim
n→∞

P[X ≤ an]

= lim
n→∞

F (an).

In the same way, one has lim
a→−∞

F (a) = 0. Indeed, using that for every an ↓ −∞,

∅ = ⋂

n≥1

{X ≤ an}

and {X ≤ an} ⊃ {X ≤ an+1}, it follows from the continuity properties of probability
measures that

0 = P[∅] = lim
n→∞

P[X ≤ an] = lim
n→∞

F (an).

(ii) Let a ∈ R, let hn ↓ 0. We have

{X ≤ a} = ⋂
n≥1

{X ≤ a + hn},

where {X ≤ a + hn} ⊃ {X ≤ a + hn+1}. Hence by the continuity properties of proba-
bility measures, we have

F (a) = P[X ≤ a] = P[⋂
n≥1

{X ≤ a + hn}] = lim
n→∞

P[X ≤ a + hn] = lim
n→∞

F [a + hn].

3 Independence

Independence of random variables
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Definition 2.5. Let X1, . . . ,Xn be n random variables on some probability space
(Ω,F ,P). We say that X1, . . . ,Xn are independent if

∀x1, . . . , xn ∈ R P[X1 ≤ x1, . . . ,Xn ≤ xn] = P[X1 ≤ x1] . . .P[Xn ≤ xn]. (2.2)

Remark: One can show that X1, . . . ,Xn are independent if and only if

∀I1 ⊂ R, . . . , In ⊂ R intervals {X1 ∈ I1}, . . . ,{Xn ∈ In} are independent.

Example 1: Throw of two independent dices
We consider the Laplace model (Ω,F ,P) on Ω = {1,2,3,4,5,6}2. An element ω ∈ Ω is

a pair ω = (ω,ω2), where the first coordinate represents the value of the first die and the
second coordinate represents the value of the second die. We define the random variables
X,Y,Z ∶ Ω→ R by

X(ω) = ω1, Y (ω) = ω2, Z(ω) = ω1 + ω2.

X and Y represent the values of the first and second die, respectively. Z corresponds to
the sum of the two dices. In this case, we have that X and Y are independent. To see
this, observe that for every I, J ⊂ {1, . . . ,6}, we have

P[X ∈ I, Y ∈ J] = P[I × J] = ∣I × J ∣

∣Ω∣

=

∣I ∣

6
⋅

∣J ∣

6

=

∣I × {1,2,3,4,5,6}∣

36
⋅

∣I × {1,2,3,4,5,6}∣

36
= P[X ∈ I]P[Y ∈ J].

For every x, y ∈ R, there exist I, J ⊂ {1,2,3,4,5,6} such that {X ≤ x} = {X ∈ I} and
{X ≤ y} = {X ∈ J}. Therefore,

P[X ≤ x,Y ≤ y] = P[X ≤ x]P[Y ≤ y].

On the other hand, X and Z are not independent since

1

62
= P[X ≤ 1, Z ≤ 2] ≠ P[X ≤ 1]P[Z ≤ 2] =

1

63
.

Grouping

If we have a set of independent random variables, and we make disjoint groups of such
random variables, then these groups are also independent form each other. This idea is
formalized by the following proposition.

Proposition 2.6 (grouping). Let X1, . . . ,Xn be n independent random variables. Let
1 ≤ i1 < i2 < ⋯ < ik ≤ n be some indices and φ1, . . . , φk some functions. Then

Y1 = φ1(X1, . . . ,Xi1), Y2 = φ2(Xi1+1, . . . ,Xi2) . . . , Yk = φk(Xik−1+1, . . . ,Xik)

are independent.

Proof. Admitted
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Sequences of i.i.d. random variables

Definition 2.7. An infinite sequence X1,X2, . . . of random variables is said to be

• independent if X1, . . . ,Xn are independent, for every n.

• independent and identically distributed (iid) if they are independent and
they have the same distribution function, i.e.

∀i, j FXi = FXj .

4 Transformation of random variables
Once we have some random variables X1,X2, . . . on some probability space (Ω,F ,P), we
can create and consider many new random variables on the same probability space by
using operations. For example, one can consider Z1 = exp(X1), Z2 = X1 + X2,. . . One
should not completely forget that random variables are maps Ω → R. For example, the
random variables Z1 and Z2 correspond to the maps defined by for every ω ∈ Ω

Z1(ω) = exp(X1(ω)), Z2(ω) =X1(ω) +X2(ω).

Formally, we introduce the following notation, which allows us to work with random
variables as if the were just real numbers. If X is a random variable, and φ ∶ R → R, the
we write

φ(X) ∶= φ ○X.

This way, φ(X) is a new mapping Ω→ R as shown on the diagram.

Ω
X
Ð→ R φ

Ð→ R
ω z→ X(ω) z→ φ(X(ω)).

More generally, we can also consider functions of several variables. If X1, . . . ,Xn are
n random variables and φ ∶ Rn

→ R, then we write

φ(X1, . . . ,Xn) ∶= φ ○ (X1, . . . ,Xn).

5 Construction of random variables
In Section 1, we defined random variables. In Section 2, we saw that we can associate
to any random variable X a distribution function F = FX ∶ R → [0,1], which encodes it
probabilistic properties, and satisfies

(i) F is nondecreasing,

(ii) F is right continuous,
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(iii) lim
a→−∞

F (a) = 0 and lim
a→∞

F (a) = 1.

Conversely, given a function F ∶ R → [0,1] satisfying Items (i)–(iii), does there exist a
random variable X such that FX = F?

The goal of this section is construct general random variables, and answer to the
question above positively. A complete construction would require some tools from measure
theory which are beyond the scope of this class: Our approach will rely on an abstract
theorem of Kolmogorov, that guarantees existences of iid sequences. This Theorem will
be admitted, but the rest of the construction will be rigorously detailed. Our motivation
is twofold

• On a theoretical level, the existence of random variables is fundamental: “it is more
satisfying the objects we are talking about exist!”

• On a practical level, the explicit construction provided here gives a general recipe
to construct random variables. This can be used to simulate an arbitrary random
variable, provided its distribution function.

The construction proceeds in 4 steps.

Step 1: Kolmogorov theorem and iid sequence of Bernoulli random variables

Our construction start with Bernoulli random variables, that we now define.

Definition 2.8. Let p ∈ [0,1]. A random variable X is said to be a Bernoulli
random variable with parameter p if

P[X = 0] = 1 − p and P[X = 1] = p.

In this case, we write X ∼ Ber(p).

Example: Flipping n coins
We wish to define a model for n successive independent coin flips. Consider the sample
space Ω = {0,1}n equipped with the Laplace model (F ,P). Define the random variables

Xi ∶ Ω → {0,1}
(ω1, . . . , ωn) ↦ ωi

.

(Xi represents the result of the i-th coin flip, Xi = 1 if the i-th coin flip is a head, Xi = 0
if it is a tail.) Then the random variables X1, . . . ,Xn are independent Bernoulli random
variables with parameter 1/2.

To prove that X1 ∼ Ber(1/2), we compute the probability of the events {X1 = 0} =

{0} × {0,1}n−1 and {X1 = 1} = {1} × {0,1}n−1 using the definition of P for the Laplace
model:

P[X1 = 0] =
∣{0} × {0,1}n−1

∣

∣Ω∣

=

1

2
and P[X1 = 1] =

∣{1} × {0,1}n−1
∣

∣Ω∣

=

1

2
.
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Equivalently, one can prove that each Xi, 1 ≤ i ≤ n is a Bernoulli random variable with
parameter 1/2.

To prove independence, it suffices to prove Equation (2.2) for x1, . . . , xn ∈ {0,1}. For
such numbers, using ∣{0, xi}∣ = 1 + xi, we have

P[X1 ≤ x1, . . . ,Xn ≤ xn] = P[{0, x1} ×⋯ × {0, xn}]

=

∣{0, x1} ×⋯ × {0, xn}∣

∣Ω∣

=

1 + x1

2
⋯

1 + xn
2

= P[X1 ≤ x1]⋯P[Xn ≤ xn].

For every n ≥ 1 the example above constructs a probability space (Ω,F ,P) and n
independent Bernoulli random variables X1, . . . ,Xn with parameter 1/2 . Similarly, it
is natural to consider an infinite sequence of independent Bernoulli random variables
X1,X2, . . .. The construction of a suitable probability space is much more delicate and it
is the content of the following theorem.

Theorem 2.9 (Existence theorem of Kolmogorov). There exists a probability space
(Ω,F ,P) and an infinite sequence of random variables X1,X2, . . . (on this probability
space) that is an iid sequence of Bernoulli random variables with parameter 1/2.

Proof. Admitted.

Step 2: Construction of a uniform random variable in [0,1]

Here we use Bernoulli random variables to construct a uniform random variable in [0,1].
Intuitively, one can imagine a droplet of water falling in the interval [0,1]. We assume
that the droplet falls on the interval homogeneously. For example, the probability to
fall in [0,1,0.2] is the same as to fall in [0.8,0.9]. A uniform random variable in [0,1]
represents the position at which such a droplet falls.

Definition 2.10. A random variable U is said to be a uniform random variable in
[0,1] if its distribution function is equal to

FU(x) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 x < 0

x 0 ≤ x ≤ 1

1 x > 1.

In this case, we write U ∼ U([0,1]).

Let X1,X2, . . . be a sequence of independent Bernoulli random variables with param-
eter 1/2. For every fixed ω, we have X1(ω),X2(ω)⋯ ∈ {0,1}. Hence the infinite series

Y (ω) =
∞

∑

n=1

2−nXn(ω) (2.3)

is absolutely convergent, and we have Y (ω) ∈ [0,1].
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1

0 1
x

FX(x)

1− p

1

0 1
x

FX(x)

Figure 2.2: Left: distribution function of a Bernoulli r.v. with parameter p . Right:
distribution function of a uniform random variable in [0,1].

Proposition 2.11. The mapping Y ∶ Ω→ [0,1] defined by Equation (2.3) is a uniform
random variable in [0,1].

Step 3: Construction of a random variable with an arbitrary distribution F

Let F ∶ R→ [0,1] satisfying Items (i)–(iii) at the beginning of the section.
If F is strictly increasing and continuous then F is one to one and one can define its

inverse F −1. For every α ∈ [0,1], F −1
(α) is the unique real number x such that F (x) = α.

In such a case, this defines the inverse distribution function. More generally, we can define
a generalized inverse for F .

Definition 2.12 (Generalized inverse). The generalized inverse of F is the mapping F −1
∶

(0,1)→ R defined by

∀α ∈ (0,1) F −1
(α) = inf{x ∈ R ∶ F (x) ≥ α}.

By definition of the infimum and using right continuity of F , we have for every x ∈ R
and α ∈ (0,1)

(F −1
(α) ≤ x) ⇐⇒ (α ≤ F (x)).

Relying on this general inverse function, the following theorem provides a way to a
construct random variable with arbitrary distribution functions.

Theorem 2.13 (inverse transform sampling). Let F ∶ R→ [0,1] satisfying Items (i)–
(iii) at the beginning of the section. Let U be a uniform random variable in [0,1].
Then the random variable

X = F −1
(U) (2.4)

has distribution FX = F .

Remark 2.14. Formally, there is an issue in the definition of X in Eq. (2.4). Indeed,
we have U ∶ Ω → [0,1] and F −1

∶ (0,1) → R. Nevertheless, we have P[U ∈ (0,1)] = 1, and
therefore X is well defined on a set of probability 1, and we can easily fix the issue by
defining

X(ω) =

⎧
⎪⎪
⎨
⎪⎪
⎩

F −1
(U(ω)) if U(ω) ∈ (0,1)

0 otherwise.
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(the value 0 in the second case plays no role and could be replaced by any real number).

Proof. For every x ∈ R, we have

P[X ≤ x] = P[F −1
(U) ≤ x] = P[U ≤ F (x)] = F (x).

Step 4: General sequence of independent random variables

Theorem 2.15. Let F1, F2 . . . be a sequence of functions R→ [0,1] satisfying Items (i)–
(iii) at the beginning of the section. Then there exist a probability space (Ω,F ,P) and a
sequence of independent random variables X1,X2, . . . on this probability space such that

• for every i Xi has distribution function Fi (i.e. ∀x P[Xi ≤ x] = Fi(x)), and

• X1,X2, . . . are independent.

Proof. See exercise.

The theorem above is important in the theory because it allows us to work with random
variables directly without defining precisely the probability space (Ω,F ,P). For example,
if F and G are two given distribution functions, it allows us for example to write:
“LetX,Y be two independent random variables with distribution function F and G resp.”.



Chapter 3

Discrete and continuous random
variables

Goals

• Definition of discrete and continuous random variables.

• Classical examples of discrete and continuous random variables: motivation, relation
between them.

• Probabilistic interpretation of the analytic properties of FX .

• Density fX of a random variable: interpretation, relation with the distribution
function FX .

Framework We fix some probability space (Ω,F ,P). All the random variables consid-
ered in this chapter will be defined on this reference probability space.

31
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1 Discontinuity/continuity points of F
We have seen that the distribution function F = FX of a random variable X is always
right continuous. What about the left continuity?

For a Bernoulli random variable X ∼ Ber(p) with p < 1, we have FX(−h) = 0 for every
h > 0, but FX(0) = 1 − p ≠ 0. Therefore, FX is not left continuous at 0, i.e.

lim
h↓0

FX(−h) = 0 ≠ FX(0).

One can see this on Fig. 5, which shows a jump of FX(x) at x = 0.
In contrast, the distribution function of the Uniform random variable, represented on

Fig. 5 is continuous on R, in particular, it is left continuous at every point: for a uniform
random variable U , we have

∀a ∈ R lim
h↓0

FU(a − h) = FU(a).

The following proposition gives an interpretation of the left limit

F (a−) ∶= lim
h↓0

F (a − h)

at a given point a for a general distribution function.

Proposition 3.1 (probability of a given value). Let X ∶ Ω→ R be a random variable with
distribution function F . Then for every a in R we have

P[X = a] = F (a) − F (a−)

We omit the proof, which can easily be obtained using the basic identity of Proposi-
tion 2.3 together with the continuity properties of probability measures (Prop. 1.11). We
rather insist on the interpretation of this proposition.

Fix a ∈ R.

Ü If F is not continuous at a point a ∈ R, then the “jump size” F (a) −F (a−) is
equal to the probability that X = a.

Ü If F is continuous at a point a ∈ R, then P[X = a] = 0.

2 Almost sure events
An important notion when working with random variables is the notion of almost sure
occurrence for an event.
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Definition 3.2. Let A ∈ F be an event. We say that A occurs almost surely (a.s.)
if

P[A] = 1.

Remark 3.3. This notion can be extended to any set A ⊂ Ω (not necessarily an event):
We say that A occurs almost surely if there exists an event A′

∈ F such that A′
⊂ A and

P[A′
] = 1.

In other words, something occurs a.s. if it occurs with probability 1. For example, if
X,Y are two random variables, we write

X ≤ Y a.s.

if P[X ≤ Y ] = 1, and
X ≤ a a.s.

if P[X ≤ a] = 1.

3 Discrete random variables

Definition 3.4 (Discrete random variables). A random variable X ∶ Ω→ R is said to
be discrete if there exists some set W ⊂ R finite or countable such that

X ∈W a.s.

Remark 3.5. If the sample space Ω is finite or countable, then every random variable
X ∶ Ω → R is discrete. Indeed, the image X(Ω) = {x ∈ R ∶ ∃ω ∈ Ω X(ω) = x} is finite or
countable and we have P[X ∈W ] = 1, with W =X(Ω).

Definition 3.6. Let X be a discrete random variable taking some values in some
finite or countable set W ⊂ R. The distribution of X is the sequence of numbers
(p(x))x∈W defined by

∀x ∈W p(x) ∶= P[X = x].

Proposition 3.7. The distribution (p(x))x∈W of a discrete random variable satisfies

∑

x∈W

p(x) = 1.

Proof. We have
{X ∈W} = ⋃

x∈W

{X = x}.

Since the union is disjoint and the set W is at most countable, we have

1 = P[X ∈W ] = P[⋃
x∈W

{X = x}] = ∑
x∈W

P[X = x] = ∑
x∈W

p(x).
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Let us give 3 examples of discrete random variables defined on (Ω,F ,P), the Laplace
model on Ω = {1,2,3,4,5,6}.
Example 1: Value of the die
Consider the random variable X ∶ Ω→ R defined by

∀ω ∈ Ω X(ω) ∶= ω

(X represents the value of the die). Then X takes values in

W = {1,2,3,4,5,6}

almost surely. Hence it is discrete and its distribution is given by

∀x ∈W p(x) = P[X = x] =
1

6
.

Example 2: Gambling with one die
Consider the random variable defined by

∀ω ∈ Ω X(ω) ∶=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

−1 if ω = 1,2,3,

0 if ω = 4,

2 if ω = 5,6.

as in Example 1 Page 21. Then X takes values in

W = {−1,0,2}

almost surely and its distribution is given by

p(−1) =
1

2
, p(0) =

1

6
, p(2) =

1

3
.

Example 3: Multiple of 3
Consider the random variable defined by

∀ω ∈ Ω X(ω) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if ω ∈ {3,6},

0 otherwise.

(X is the indicator function that the die is a multiple of 3). Then X takes values in

W = {0,1}

almost surely and its distribution is given by

p(0) =
2

3
, p(1) =

1

3
.

Following Definition 3.4, X is a Bernoulli random variable with parameter 1/3.
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Remark 3.8. Conversely, if we are given a sequence of numbers (p(x))x∈W with values
in [0,1] and such that

∑

x∈W

p(x) = 1, (3.1)

then there exists a probability space (Ω,F ,P) and a random variable X with associated
distribution (p(x)). This is a consequence of the existence theorem 2.15 in Chapter 2.
This observation is important in practice, it allows us to write:

“Let X be a discrete random variable with distribution (p(x))x∈W .”

Distribution p vs distribution function FX

From p to FX

Proposition 3.9. Let X be a discrete random variable with values in a finite or countable
set W almost surely, and distribution p. Then the distribution function of X is given by

∀x ∈ R FX(x) = ∑
y≤x
y∈W

p(y) (3.2)

Proof. For every x ∈ R we have

P[X ≤ x] = P[X ∈ (−∞, x] ∩W ]] + P[X ∈ (−∞, x] ∩W c
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤P[X∈W c]=0

= P[⋃
y≤x
y∈W

{X = y}] = ∑
y≤x
y∈W

P[X = y].

From FX to p Given a discrete random variable X, Equation (3.2) expresses the distri-
bution function FX in terms of p as a piecewise constant function. Conversely, a random
variable with a piecewise constant distribution function F is discrete and W and p are
given by

W = {positions of the jumps of FX},

p(x) = “height of the jump” at x ∈W.

4 Examples of discrete random variables

Bernoulli distribution

The simplest (non constant) random variable is the Bernoulli random variable. It was
defined already in the previous chapter. We recall its definition here.
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Definition 3.10 (Bernoulli). Let 0 ≤ p ≤ 1. A random variable X is said to be a
Bernoulli random variable with parameter p if it takes values in W = {0,1}
and

P[X = 0] = 1 − p and P[X = 1] = p.

In this case, we write X ∼ Ber(p).

Binomial distribution

Another fundamental example is the binomial distribution, which appears in applications
when we consider the number of successes in a repetition of Bernoulli experiments.

Definition 3.11 (Binomial). Let 0 ≤ p ≤ 1, let n ∈ N. A random variable X is said
to be a binomial random variable with parameters n and p if it takes values in
W = {0, . . . , n} and

∀k ∈ {0, . . . , n} P[X = k] = (

n

k
) pk (1 − p)n−k .

In this case, we write X ∼ Bin(n, p).

Remark 3.12. If we define p(k) = (
n
k
) pk (1 − p)n−k, we have

n

∑

k=0

p(k) =
n

∑

k=0

(

n

k
) pk (1 − p)n−k = (p + 1 − p)n = 1,

hence the equation (3.1) is satisfied. This guarantees the existence of binomial random
variables.

Proposition 3.13 (Sum of independent Bernoulli and binomial). Let 0 ≤ p ≤ 1, Let n ∈ N.
Let X1, . . . ,Xn be independent Bernoulli random variables with parameter p. Then

Sn ∶=X1 +⋯ +Xn

is a binomial random variable with parameter n and p.

Proof. One can easily check that Sn is a random variable which takes values in {0, . . . , n}.
Furthermore, for every k ∈ {0, . . . , n} we have

{Sn = k} = ⋃

x1,...,xn∈{0,1}
x1+⋯+xn=k

{X1 = x1,⋯,Xn = xn}.
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Since the union is disjoint, we get

P[Sn = k] = ∑

x1,...,xn∈{0,1}
x1+⋯+xn=k

P[X1 = x1,⋯,Xn = xn]

= ∑

x1,...,xn∈{0,1}
x1+⋯+xn=k

P[X1 = x1]⋯P[Xn = xn]

= ∑

x1,...,xn∈{0,1}
x1+⋯+xn=k

pk(1 − p)n−k

= (

n

k
)pk(1 − p)n−k.

Remark 3.14. In particular, the distribution Bin(1, p) is the same as the distribution
Ber(p). One can also check that if X ∼ Bin(m,p) and Y ∼ Bin(n, p) and X,Y are
independent, then X + Y ∼ Bin(m + n, p).

Geometric distribution

Definition 3.15 (Geometric). Let 0 < p ≤ 1. A random variable X is said to be a
geometric random variable with parameter p if it takes values in W = N/{0}
and

∀k ∈ N/{0} P[X = k] = (1 − p)k−1
⋅ p .

In this case, we write X ∼ Geom(p).

Remark 3.16. For p = 1, and k = 1, a term 00 appears in the equation above, we use the
convention 00

= 1 and therefore P[X = 1] = 1 in this case.

Remark 3.17. If we define p(k) = (1 − p)k−1 p, we have
∞

∑

k=1

p(k) = p
∞

∑

k=1

(1 − p)k−1
= p ⋅

1

p
= 1,

hence the equation (3.1) is satisfied. This guarantees the existence of geometric random
variables.

The geometric random variable appears naturally as the first success in an infinite
sequence of Bernoulli experiments with parameter p. This is formalized by the following
proposition.

Proposition 3.18. Let X1,X2, . . . be a sequence of infinitely many independent Bernoulli
r.v.’s with parameter p. Then

T ∶= min{n ≥ 1 ∶ Xn = 1}

is a geometric random variable with parameter p.
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Remark 3.19. When saying that T is a geometric random variable, we make a slight
abuse: indeed, the random variable T may take the value +∞ if all the random variables
Xi’s are equal to 0. Nevertheless, this is not a problem for the calculations because one
can check that P[T =∞] = 0.

Proof. We have T = k if the first k − 1 trials fail, and the k’s one is a success. Formally,
we have

{T = k} = {X1 = 0, . . . ,Xk−1 = 0,Xk = 1}.

Hence, by independence,

P[T = k] = P[X1 = 0, . . . ,Xk−1 = 0,Xk = 1]

= P[X1 = 0]⋯P[Xk−1 = 0] P[Xk = 1]

= (1 − p)k−1p.

The previous proposition gives us an easy way to remember the definition of the
geometric r.v., and also some simple formulas related to the geometric distribution. For
example, if T is a geometric distribution with parameter p, we have T > n if the n first
Bernoulli experiments fail, and therefore

P[T > n] = (1 − p)n. (3.3)

Also, it gives an important interpretation to the equation (3.4) in the proposition below:
if we are waiting for a first success in a sequence of experiments, and if we know that the
first n steps were a failure, then the remaining time to wait is again a geometric random
variable with parameter p.

Proposition 3.20 (Absence of memory of the geometric distribution). Let T ∼ Geom(p)
for some 0 < p < 1. Then

∀n ≥ 0 ∀k ≥ 1 P[T ≥ n + k ∣ T > n] = P[T ≥ k]. (3.4)

Proof. It follows directly from the formula (3.3).

Poisson distribution

Definition 3.21. Let λ > 0 be a positive real number. A random variable X is said
to be a Poisson random variable with parameter λ if it takes values in W = N
and

∀k ∈ N P[X = k] =
λk

k!
e−λ .

In this case, we write X ∼ Poisson(λ).
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Remark 3.22. If we define p(k) = λk

k! e
−λ, we have

∞

∑

k=0

p(k) = e−λ
∞

∑

k=0

λk

k!
= e−λ ⋅ eλ = 1,

hence the equation (3.1) is satisfied. This guarantees the existence of Poisson random
variables.

The Poisson distribution appears naturally as an approximation of a binomial distri-
bution when the parameter n is large and the parameter p is small, as stated formally in
the following proposition.

Proposition 3.23 (Poisson approximation of the binomial). Let λ > 0. For every n ≥ 1,
consider a random variable Xn ∼ Bin(n, λn). Then

∀k ∈ N lim
n→∞

P[Xn = k] = P[N = k], (3.5)

where N is a Poisson random variable with parameter λ.

Remark 3.24. The convergence (3.5) is called a convergence in distribution. Intuitively,
it says that Xn and N have very similar probabilistic properties for n large.

Proof. Fix k ∈ N. For every n ≥ 1, we have

P[Xn = k] = (

n

k
)(

λ

n
)

k

(1 −
λ

n
)

n−k

=

λk

k!
⋅

n ⋅ (n − 1)⋯(n − k + 1)

nk
⋅ (1 −

λ

n
)

−k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→
n→∞1

⋅(1 −
λ

n
)

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→
n→∞e

−λ

,

which concludes the proof.

This approximation may be useful in practice. For example, consider a single page
of the “Neue Zürcher Zeitung” containing, say, n = 104 characters, and suppose that
the typesetter mis-sets approximately 1/1000 of the characters. In other words, each
character has a probability p = 10/n to be mis-set. The number M of mistakes in the
page corresponds to a binomial random variable with parameters n and p = 10/n. Hence
by the Poisson approximation, for example we have

P[M = 5] ≃
105

5!
e−10

≃ 0,0378.

5 Continuous random variables
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Definition 3.25 (Continuous random variables). A random variable X ∶ Ω → R is
said to be continuous if its distribution function FX can be written as

FX(a) = ∫
a

−∞
f(x)dx for all a in R (3.6)

for some nonnegative function f ∶ R→ R+, called the density of X.

Intuition: f(x)dx represent the probability that X takes a value in the infinitesimal
interval [x,x + dx].

To understand the terminology “continuous”, observe that the formula (3.6) implies
that FX is a continuous function. In particular, by Proposition 3.1, the r.v. X satisfies

∀x ∈ R P[X = x] = 0.

Proposition 3.26. The density f of a random variable satisfies

∫

+∞

−∞
f(x)dx = 1 .

Proof. We have

∫

+∞

−∞
f(x)dx = lim

y→∞
∫

y

−∞
f(x)dx = lim

y→∞
FX(y) = 1.

Conversely, if we are given a nonnegative function f ∶ R→ R+ such that

∫

+∞

−∞
f(x)dx = 1.

then there exists a probability space (Ω,F ,P) and a random variable X with associated
density f . This is a consequence of the existence theorem 2.15 in Chapter 2.

Density f vs distribution function FX

From f to FX Let X be a continuous random variable X with density f . By definition,
the distribution function FX can be calculated as the integral

FX(x) = ∫
x

−∞
f(y)dy.
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From FX to f Since one goes from f to FX by integrating, it is natural to expect that
the reverse operation is to take a derivative. This is in general the case, provided FX is
regular enough.

The following theorem will be useful in applications to calculate densities.

Theorem 3.27. Let X be a random variable. Assume the distribution function FX is
continuous and piecewise C1, i.e. that there exist x0 = −∞ < x1 < ⋯ < xn−1 < xn = +∞ such
that FX is C1 on every interval (xi, xi+1). Then X is a continuous random variable and
a density f can be constructed by defining

∀x ∈ (xi, xi+1) f(x) = F ′
X(x)

and setting arbitrary values at x1, . . . , xn−1.

Proof. We simply write F = FX . Let 0 ≤ i < n. If xi < a < b < xi+1, the fundamental
theorem of calculus implies that

F (b) − F (a) = ∫
b

a
F ′

(y)dy = ∫
b

a
f(y)dy

Now, let x ∈ R and let i be such that x ∈ [xi, xi+1). Using the convention F (x0) = 0, we
can write F (x) as a telescopic sum

F (x) = F (x) − F (x0) = (F (x) − F (xi)) +⋯ + (F (x1) − F (x0)). (3.7)

By continuity of F , we have

(F (x) − F (xi)) = lim
a↓xi

(F (x) − F (a)) = lim
a↓xi

∫

x

a
f(y)dy = ∫

x

xi
f(y)dy,

and equivalently
F (xi) − F (xi−1) = ∫

xi

xi−1
f(y)dy

Plugging these identities in (3.7), we get

F (x) = ∫
x

xi
f(y)dy + ∫

xi

xi−1
f(y)dy +⋯ + ∫

x1

x0
f(y)dy

= ∫

x

−∞
f(y)dy.

6 Examples of continuous random variables

Uniform distributions
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Definition 3.28 (Uniform distribution in [a, b], a < b.). A continuous random vari-
able X is said be uniform in [a, b] if its density is equal to

fa,b(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1
b−a x ∈ [a, b],

0 x ∉ [a, b].

In this case, we write X ∼ U([a, b]).

1
b−a

a b

x

fa,b(x) 1

a b
x

FX(x)

Figure 3.1: Density and distribution function of a uniform random variable in [a, b].

Intuition: X represents a uniformly chosen point in [a, b].

Properties of a uniform random variable X in [a, b]:

• The probability to fall in a an interval [c, c+ `] ⊂ [a, b] depends only on its length `:

P[X ∈ [c, c + `]] =
`

b − a
.

• The distribution function of X is equal to

FX(x) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 x < a,
x−a
b−a a ≤ x ≤ b,

1 x > b.

Proof.

Exponential distribution

The exponential distribution is the continuous analogue of the geometric distribution.
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Definition 3.29 (Exponential distribution with λ > 0). A continuous random variable
T is said be exponential with parameter λ > 0 if its density is equal to

fλ(x) =

⎧
⎪⎪
⎨
⎪⎪
⎩

λe−λx x ≥ 0,

0 x < 0.

In this case, we write T ∼ Exp(λ).

λ/e

λ

1/λ

x

fλ(x) = λe−λx

1

x

FX(x) = 1− e−λx

Figure 3.2: Density and distribution function of an exponential random variable with
parameter λ.

Intuition/application: T represents the time of a “clock ring”. For example, the time
at which a first customer arrives in a shop is well modeled by an exponential random
variable.

Properties of an exponential random variable T with parameter λ.

• The waiting probability is exponentially small:

∀t ≥ 0 P[T > t] = e−λt .

• It has the absence of memory property:

∀t, s ≥ 0 P[T > t + s∣T > t] = [T > s].

The first item follows from the definition:

P[T ≥ t] = ∫
∞

t
λe−λxdx = e−λt.

The second item is a direct computation of the conditional probability:

P[T > t + s∣T > t] =
P[T > t + s]

P[T > t]
=

e−λ(t+s)

e−λt
= e−λs.

Normal distribution
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Definition 3.30. A continuous random variable X is said be normal with param-
eters m and σ2

> 0 if its density is equal to

fm,σ(x) =
1

√

2πσ2
e−
(x−m)2

2σ2

In this case, we write X ∼ N (m,σ2
).

fm,σ(x)

m−σ m+σm

Figure 3.3: Density of a normal random variable with parameters m and σ2.

Intuition/application: The normal distribution arises in many applications. For exam-
ple, imagine that we measure a physical quantity: the real value is m and the measured
value is in general very well modeled by a normal random variable X with parameters
m and σ. The quantity σ, which represents the fluctuations for X can also be inter-
preted as the quality of the measurement in this context. A small σ corresponds to small
fluctuations of X, which means that X is typically closed to m. In contrary, a large σ
corresponds to large fluctuations and can be interpreted as inaccurate measurement. We
will see later a mathematical justification explaining why the normal random variable
appears in many places.

Properties of normal random variables

• IfX1, . . . ,Xn are independent random variables with parameters (m1, σ2
1), . . . , (mn, σ2

n)

respectively, then
Z =m0 + λ1X1 + . . . + λnXn

is a normal random variable with parameters m = m0 + λ1m1 + ⋯ + λnmn and σ2
=

λ2
1σ

2
1 +⋯ + λ2

nσ
2
n.

• In particular, if X ∼ N (0,1) (in this case we say that X is a standard normal
random variable), then

Z =m + σ ⋅X

is a normal random variable with parameters m and σ2.
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• IfX is a normal random variable with parametersm and σ2, then all the “probability
mass” is mainly in the interval [m − 3σ,m + 3σ]. Namely, we have

P[∣X −m∣ ≥ 3σ] ≤ 0.0027.

At a first look, it may be surprising that the right hand side (0.0027) does not
depend on the parameters σ and m... This is explained as follows: consider the
random variable Z =

X−m
σ . The first property above implies that Z =

1
σX −

m
σ is a

standard normal random variable. The left hand side can be rewritten as

P[∣X −m∣ ≥ 3σ] = P[∣X −m

σ
∣ ≥ 3] = P[∣Z ∣ ≥ 3]

Then the inequality P[∣Z ∣ ≥ 3] ≤ 0.0027 can be directly checked from a table.



Chapter 4

Expectation

Goals

• Definition of the expectation and intuition.

• Rules of calculus (sum/product of random variables).

• Inequalities, relations between expectation and probability of events

• Definition of the variance and intuition.

Framework We fix a probability space (Ω,F ,P). All the random variables considered
in this chapter will be defined on this reference probability space.

46
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In this class, we focus on discrete and continuous random variables, and we will give the
expectation for these two different types of random variables by two different formulas.
There is a unified theory (based on measure theory) of expectation, that defines the
expectation for general random variables. In this class, we will keep the focus on the
important results from this theory and their applications, without giving the proofs.

1 Expectation for general random variables
Definition 4.1. Let X ∶ Ω → R+ be a random variable with nonnegative values. The
expectation of X is defined as

E[X] = ∫

∞

0
(1 − FX(x))dx. (4.1)

Remark 4.2. The expectation may be finite or infinite.

Proposition 4.3. Let X be a nonnegative random variable. Then we have

E[X] ≥ 0,

with equality if and only if X = 0 almost surely.

Proof. The expectation E[X] is defined as the integral of the nonnegative function G(x) =
1 − FX(x) ≥ 0. Hence E[X] ≥ 0. Now, assume that E[X] = 0. This implies that G(x) = 0
for every x > 0 (by contradiction, if G(x) = α > 0 for some x > 0, then G(y) ≥ G(x) = α
for all y ∈ [0, x] by monotonicity, which implies that ∫

x

0 G(y)dy ≥ xα > 0). By continuity
of probability measures, we have

P[X > 0] = lim
x↓0

P[X > x] = lim
x↓0

G(x) = 0.

Therefore,
P[X ≤ 0] = 1 − P[X > 0] = 1.

Hence X ≥ 0 and X ≤ 0 almost surely, which implies that X = 0 almost surely.

For general random variables (not necessarily with a constant sign), we define the
expectation by decomposing into positive and negative parts. The positive and negative
parts of X are the random variables X−,X+ defined by

X+(ω) =

⎧
⎪⎪
⎨
⎪⎪
⎩

X(ω) if X(ω) ≥ 0,
0 if X(ω) < 0,

and X−(ω) =

⎧
⎪⎪
⎨
⎪⎪
⎩

−X(ω) if X(ω) ≤ 0,
0 if X(ω) > 0.

Notice that both X+ and X− take nonnegative values. Furthermore, we have X =X+−X−,
and ∣X ∣ =X+ +X−.

Definition 4.4. Let X be a random variable. If E[∣X ∣] < ∞, then the expectation of X
is defined by

E[X] = E[X+] −E[X−]. (4.2)
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Remark 4.5. The condition E[∣X ∣] < ∞ ensures that E[X−],E[X+] < ∞ (because ∣X ∣ =

X+ +X−), and therefore the difference in Eq. (4.2) makes sense.

If X ≥ 0, the expectation of X is always defined. It may be finite or infinite.
If X does not have a constant sign, the expectation of X is well defined if E[∣X ∣] <∞.

When this condition is not satisfied, we say that the expectation of X is undefined.

2 Expectation of a discrete random variable

Proposition 4.6. Let X ∶ Ω → R be a discrete random variable with values in W
(finite or countable) almost surely. We have

E[X] = ∑

x∈W

x ⋅ P[X = x] ,

provided the sum is well defined.

Proof. We first assume that X ≥ 0 almost surely. By Propositions 3.7 and 3.9 we have for
every x ∈ R

1 − FX(x) = ∑
y>x
y∈W

p(y) = ∑
y∈W

1y>x ⋅ p(y).

By using this identity in the definition of the expectation, we get

E[X] = ∫

∞

0
( ∑

y∈W

1y>x ⋅ p(y))dx = ∑
y∈W

(∫

∞

0
1y>xdx) ⋅ p(y) = ∑

y∈W

y ⋅ p(y).

Now if X is not of constant sign, we use the decomposition X = X+ −X− and we apply
the formula above to X+and X−. We obtain

E[X] = E[X+] −E[X−] = ∑

y∈W

yP[X+ = y] − ∑
y∈W

yP[X− = y].

The definitions of X+ and X− imply that {X = y} is equal to the disjoint union {X+ =

y} ∪ {X− = −y}

Example 1: Bernoulli r.v.
Let X be a Bernoulli random variable with parameter p. We have

E[X] = p .

Indeed,
E[X] = 0 ⋅ P[X = 0] + 1 ⋅ P[X = 1] = 0 ⋅ (1 − p) + 1 ⋅ p = p.

Example 2: Bet on a die
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Consider the random variable X ∶ Ω→ {−1,0,+2} defined by Eq. (2.1) page 21. Then

E[X] = −1 ⋅
1

2
+ 0 ⋅

1

6
+ 2 ⋅

1

3
=

1

6
.

Example 3: Poisson r.v.
Let X be a Poisson random variable with parameter λ > 0, then

E[X] = λ .

Indeed,

E[X] =

∞

∑

k=0

k ⋅
λk

k!
⋅ e−λ = λ ⋅ (

∞

∑

k=1

λk−1

(k − 1)!
) ⋅ e−λ = λ.

Example 4: Indicator of an event
Let A ∈ F be an event. Consider the indicator function 1A of A, defined by

∀ω ∈ Ω 1A(ω) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 if ω ∉ A,

1 if ω ∈ A.

Then 1A is a random variable. Indeed, we have

{1A ≤ a} =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

∅ if a < 0,

Ac if 0 ≤ a < 1,

Ω if a ≥ 1,

and ∅, Ac and Ω are three elements of F . Furthermore, writing X = 1A, we have

P[X = 0] = 1 − P[A] and P[X = 1] = P[A].

Therefore 1A is a Bernoulli r.v. with parameter P[A]. Hence,

E[1A] = P[A] .

Proposition 4.7. Let X ∶ Ω → R be a discrete random variable with values in W
(finite or countable) almost surely. For every φ ∶ R→ R, we have

E[φ(X)] = ∑

x∈W

φ(x) ⋅ P[X = x] ,

provided the sum is well defined.

Proof. Admitted.

3 Expectation of a continuous random variable
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Proposition 4.8. Let X be a continuous random variable with density f . Then, we
have

E[X] = ∫

∞

−∞
x ⋅ f(x)dx, (4.3)

provided the integral is well defined.

Proof. We assume that X ≥ 0 almost surely. The general case (without sign constraint)
can be deduced from the positive case by using the decomposition X =X+−X− (similarly
as in the proof of Proposition 4.6). By definition of the density and Proposition 3.26, for
every x ∈ R we have

1 − FX(x) = ∫
+∞

x
f(y)dy = ∫

+∞

−∞
1x<y ⋅ f(y)dy.

By using this identity in the definition of the expectation, we get

E[X] = ∫

∞

0
(∫

+∞

−∞
1x<y ⋅ f(y)dy)dx = ∫

+∞

−∞
(∫

∞

0
1y>x ⋅ dx) ⋅ f(y)dy = ∫

∞

−∞
y ⋅ f(y)dy.

Example 1: Uniform random variable in [a, b], a < b

We have
E[X] =

1

b − a ∫
b

a
xdx =

1

b − a
⋅ (

1

2
b2
−

1

2
a2

).

Therefore,

E[X] =

a + b

2
.

Example 2: Exponential random variable with parameter λ > 0

By integration by parts, we have

E[X] = ∫

∞

0
xλe−λxdx = [−xe−λx]

∞

0
+ ∫

∞

0
e−λxdx.

Therefore,

E[X] =

1

λ
.

Proposition 4.9. Let X be a continuous random variable with density f . Let φ ∶

R→ R be such that φ(X) is a random variable. Then, we have

E[φ(X)] = ∫

∞

−∞
φ(x)f(x)dx, (4.4)
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provided the integral is well defined.

4 Calculus
One of the reasons why the expectation is a such a powerful tool in probability theory is
that we can do calculations: for example, one can calculate the expectation of X + Y if
one knows the expectations of X and Y . In this section we give the rules of calculus for
the basic operations on random variables.

Linearity

Theorem 4.10 (Linearity of the expectation). Let X,Y ∶ Ω→ R be random variables,
let λ ∈ R. Provided the expectations are well defined, we have

1. E[λ ⋅X] = λ ⋅E[X] .

2. E[X + Y ] = E[X] +E[Y ] .

Remark 4.11. The random variables X and Y do not need to be independent.

Remark 4.12. More generally, by induction we have: for every integer n ≥ 1

E[λ1X1 + λ2X2 +⋯ + λnXn] = λ1E[X1] + λ2E[X2] +⋯ + λnE[Xn],

for any n random variables X1,X2, . . . ,Xn ∶ Ω → E, and any λ1, λ2,⋯, λn ∈ R, provided
the expectations are well defined.

Proof. The proof of Item (i) follows from the definition. The proof of Item (ii) for general
random variables belongs to the abstract framework of measure theory and we admit
it. We give here the proof for a finite sample space, which illustrates well the key idea
behind the linearity property. Let us assume that Ω is finite, and is equipped with the
sigma-algebra F = P(Ω). In this case the two random variables X and Y are necessarily
discrete (see Remark 3.5). For every x ∈X,

P[X = x] = P[ ⋃

ω∈Ω ∶X(ω)=x

{ω}] = ∑
ω∈Ω

1X(ω)=x ⋅ P[ω],
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where we make the abuse of notation P[ω] = P[{ω}]. Therefore,

E[X] = ∑

x∈X(Ω)

x ⋅ P[X = x] = ∑

x∈X(Ω)

x ⋅ (∑
ω∈Ω

1X(ω)=x ⋅ P[ω])

= ∑

x∈X(Ω)

∑

ω∈Ω

x ⋅ 1X(ω)=x ⋅ P[ω]

= ∑

ω∈Ω

P[ω] ⋅ ∑

x∈X(Ω)

x ⋅ 1X(ω)=x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=X(ω)

= ∑

ω∈Ω

X(ω) ⋅ P[ω].

Using this formula for X + Y and Y , we obtain

E[X + Y ] = ∑

ω∈Ω

(X(ω)+ Y (ω)) ⋅P[ω] = ∑
ω∈Ω

X(ω) ⋅P[ω]+∑
ω∈Ω

Y (ω) ⋅P[ω] = E[X]+E[Y ].

Application 1: Expectation of a Binomial random variable.
Let n ≥ 1 and 0 ≤ p ≤ 1. Let S be a binomial random variable with parameters n and p.
What is the expectation of S?

By definition we have

E[S] =
n

∑

k=0

k ⋅ (
n

k
)pk(1 − p)n−k

and this sum does not look so nice... However, we can use that S has the same distribution
as Sn = X1 + ⋯ + Xn, where X1, . . . ,Xn are n i.i.d. Bernoulli random variables with
parameter p. By linearity we have

E[Sn] = E[X1] +⋯ +E[Xn].

Using that E[Xi] = p for every i, we deduce directly

E[S] = E[Sn] = np.

Application 2: Expectation of a normal random variable
If X is a normal distribution with parameters m and σ2, then it has the same distribution
as m+ σ ⋅ Y where Y is a standard normal random variable. By Proposition 4.9, we have

E[X] = E[m + σ ⋅ Y ] =m + σE[Y ],

hence it suffices to compute the expectation of Y . Writing f0,1 for the density of Y , we
have

E[Y ] = ∫

∞

−∞
x ⋅ f0,1(x)dx = 0

because x ⋅ f0,1(x) is an odd function. Finally, we obtain

E[X] =m.
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Theorem 4.13. Let X,Y be two random variables. If X and Y are independent,
then

E[XY ] = E[X]E[Y ].

Proof. Admitted.

5 Tailsum formulas
Proposition 4.14 (Tailsum formula for nonnegative random variables). Let X be a ran-
dom variable, such that X ≥ 0 almost surely. Then, we have

E[X] = ∫

∞

0
P[X > x]dx.

Proof. It follows form the definition of the expectation (Eq. (4.1)) and the identity

1 − FX(x) = 1 − P[X ≤ x] = P[X > x].

Application: Alternative computation of the expectation of an exponential random
variable.
We proved in the previous paragraph that the expectation of an exponential random
variable T with parameter λ ≥ 0 is equal to 1/λ. We here give an alternative derivation
of this result. We have T ≥ 0 almost surely, and P[T > x] = e−λx. Hence, the proposition
above gives

E[T ] = ∫

∞

0
e−λxdx =

1

λ
.

Proposition 4.15 (Tailsum formula for discrete random variables). Let X be a discrete
r.v. taking values in N = {0,1,2, . . .}. Then

E[X] =

∞

∑

n=1

P[X ≥ n].

Proof. Since X ≥ 0 almost surely, we can apply proposition 4.14 to write

E[X] = ∫

∞

0
P[X > x]dx =

∞

∑

n=1
∫

n

n−1
P[X > x]dx.

Now, for x ∈ [n − 1, n) we have P[X > x] = P[X ≥ n]. Therefore,

∫

n

n−1
P[X > x]dx = P[X ≥ n]∫

n

n−1
dx = P[X ≥ n].
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Application: Computation of the expectation of a geometric random variable.
Let T be a geometric random variable with parameter 0 < p ≤ 1. Then

E[T ] =

1

p
.

Indeed, T takes values in N and the proposition above gives

E[T ] =∑

n≥1

P[T ≥ n] =∑
n≥1

(1 − p)n−1
=

1

1 − (1 − p)
=

1

p
.

6 Characterizations via expectations

Density

If a random variable X has a density f , we can calculate the expectation of X via the
formula (4.4). Notice that two random variables with different densities may have the same
expectation. For example a uniform random variable in [−1,1] and a Gaussian random
variable with parameters m = 0 and σ2

> 0 have the same expectation, but different
densities. In other words, the expectation of a random variable does not characterize the
density.

Nevertheless it is possible to characterize the density of a random variable X, by
considering all the expectations of images φ(X) for a sufficiently large class of functions
φ. This is the content of the proposition below.

For this course we consider functions φ that are piecewise continuous, bounded func-
tions. Recall that a function φ ∶ R → R is piecewise continuous if there exists
a1 < a2 < ⋯ < an such that φ is continuous on each interval (ai, ai+1). It is bounded
if there exists C > 0 such that

∀x ∈ R ∣φ(x)∣ ≤ C.

Proposition 4.16. Let X be a random variable. Let f ∶ R → R+ such that
∫

+∞

−∞
f(x)dx = 1. Then the following are equivalent:

(i) X is continuous with density f ,

(ii) For every function φ ∶ R→ R piecewise continuous, bounded,

E[φ(X)] = ∫

∞

−∞
φ(x)f(x)dx. (4.5)

Proof.
(i)⇒ (ii) It follows from Prop. 4.9.

(ii)⇒ (i) Let a ∈ R, and consider the function φa defined by φa(x) = 1x≤a.
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By applying Eq. (4.5), we find

E[1X≤a] = E[φa(X)] = ∫

∞

−∞
φa(x)f(x)dx = ∫

a

−∞
f(x)dx.

By applying the identity E[1A] = P[A] to the event A = {X ≤ a}, we finally get

P[X ≤ a] = ∫
a

−∞
f(x)dx,

which concludes the proof.

Independence

If two random variables X and Y are independent, then we have seen in Theorem 6.1
that

E[XY ] = E[X]E[Y ]. (4.6)

Conversely, the formula above does not imply that X and Y are independent. See for
example Exercise 6.6. Nevertheless, if we consider a stronger form of Eq. (4.6), allowing
to take arbitrary images of X and Y we obtain a characterization of independence, as
stated below.

Theorem 4.17. Let X,Y be 2 discrete random variables. Then the following are
equivalent

(i) X,Y are independent,

(ii) For every φ ∶ R→ R, ψ ∶ R→ R piecewise continuous, bounded,

E[φ(X)ψ(Y )] = E[φ(X)]E[ψ(Y )] . (4.7)

Proof.

(i)⇒ (ii) Admitted.

(ii)⇒ (i) Let a, b ∈ R. By applying Eq. (4.7) to the two function defined by φa(x) = 1x≤a and
ψb(y) = 1y≤b, we get

E[1X≤a,Y ≤b] = E[1X≤a]E[1X≤b].

Using E[1A] = P[A], this concludes that X and Y are independent.

Above, we only considered a pair (X,Y ) of random variables, but the same ideas apply
to n random variables X1, . . . ,Xn, as in the following theorem.
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Theorem 4.18. Let X1, . . . ,Xn be n random variables. Then the following are equiv-
alent

(i) X1, . . . ,Xn are independent,

(ii) For every φ1 ∶ R→ R, . . . , φn ∶ R→ R piecewise continuous, bounded

E[φ1(X1)⋯φn(Xn)] = E[φ1(X1)]⋯E[φn(Xn)].

7 Inequalities

Monotonicity

Proposition 4.19. Let X,Y be two random variables such that

X ≤ Y a.s.

Then
E[X] ≤ E[Y ],

provided the two expectations are well defined.

Proof. Consider the random variable Z = Y −X. By hypothesis, we have Z ≥ 0, which
implies that E[Z] ≥ 0 (by Prop. 4.3). By linearity, we have

E[Y ] −E[X] = E[Z] ≥ 0.

Markov’s inequality

Theorem 4.20 (Markov’s inequality). Let X be a nonnegative random variable.
Then for every a > 0, we have

P[X ≥ a] ≤
E[X]

a
. (4.8)

Proof. Let a > 0. By monotonicity of the expectation, we have

E[X] ≥ E[X ⋅ 1X≥a] ≥ E[a ⋅ 1X≥a] = aP[X ≥ a].
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Jensen’s inequality

Theorem 4.21 (Jensen’s inequality). Let X be a random variable. Let φ ∶ R→ R be
a convex function. If E[φ(X)] and E[X] are well defined, then

φ(E[X]) ≤ E[φ(X)].

The Jensen inequality has several important consequences. First, by applying it to
φ(x) = ∣x∣, we obtain the triangle inequality. For every integrable discrete random variable
X, we have

∣E[X]∣ ≤ E[∣X ∣].

Another important consequence relates the average of ∣X ∣ with the average of X2. By
applying it to the convex function φ(x) = x2, we obtain that for every discrete random
variable, we have

E[∣X ∣] ≤

√

E[X2
]. (4.9)

8 Variance

Definition 4.22. Let X be a variable such that E[X2
] <∞. The variance of X is

defined by
σ2
X = E[(X −m)

2
], where m = E[X].

The square root σX of the variance is called the standard deviation of X.

Remark 4.23. If E[X2
] < ∞, then we also have E[∣X ∣] < ∞ by Eq. (4.9) and therefore

the average m = E[X] is well-defined.

The standard deviation is an indicator of how large the fluctuations of X around
m = E[X] are. We illustrate this fact on two simple examples.

Example 1: Deterministic random variable

Let a ∈ R. Consider the random variable defined by X(ω) = a for every ω. Then
m = E[X] = a and σ2

X = E[(X −m)
2
] = 0.

Example 2: Uniform random variable on two points

Let a < b be two real numbers. Consider a random variable X with distribution given
by P[X = a] = P[X = b] = 1/2. Then m = E[X] = (a + b)/2 and

σX =

√

E[(X −m)
2
] =

a − b

2
.

In general, a random variable X with a small variance is well concentrated on values
close to its expectation m = E[X]. This concentration phenomena can be quantified using
the Chebyshev’s inequality.
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Theorem 4.24. Let X be a random variable such that E[X2
] < ∞. Then for every

a ≥ 0 we have

P[∣X −m∣ ≥ a] ≤
σ2
X

a2
, where m = E[X].

Proof. Consider the random variable Y = (X −m)
2. By definition, we have σ2

X = E[Y ].
Furthermore, for every a ≥ 0

P[∣X −m∣ ≥ a] = P[Y ≥ a2
].

By applying Markov’s inequality to Y (which is nonnegative), we obtain

P[∣X −m∣ ≥ a] ≤
E[Y ]

a2
≤

σ2
X

a2
.

Proposition 4.25 (basic properties of the variance).

1. Let X be a random variable with E[X2
] <∞. Then

σ2
X = E[X2

] −E[X]
2.

2. Let X be a random variable with E[X2
] <∞, let λ ∈ R. Then

σ2
λX = λ2

⋅ σ2
X .

3. Let X1, . . . ,Xn be n pairwise independent random variables and S =X1+⋯+Xn.
Then

σ2
S = σ

2
X1
+⋯ + σ2

Xn .

Proof.

1. Let m = E[X]. Using linearity of the expectation, we get

E[(X −m)
2
] = [X2

− 2mX +m2
] = E[X2

] − 2mE[X] +m2
= E[X2

] −m2.

2. Using the formula of Item 1 and linearity of the expectation, we obtain

σ2
λX = E[(λX)

2
] − (E[λX])

2
= λ2

⋅E[X2
] − λ2

⋅E[X]
2
= λ2

⋅ σ2
X .

3. Writing mi = E[Xi], we have

S −E[S] =
n

∑

i=1

(Xi −mi),
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and therefore
σ2
S = ∑

1≤i,j≤n

E[(Xi −mi)(Xj −mj)].

However, for i ≠ j, independence implies E[(Xi−mi)(Xj−mj)] = E[(Xi−mi)]E[(Xj−

mj)] = 0. Hence only the diagonal terms (for which i = j) survive in the sum and
we obtain

σ2
S =

n

∑

i=1

E[(Xi −mi)
2
] =

n

∑

i=1

σ2
Xi
.

Application: Let S be a binomial random variables with parameters n and p. What is
the variance of S?

Here, again, we can use that S has the same distribution as Sn = X1 + ⋯ +Xn where
X1, . . . ,Xn are i.i.d. Bernoulli random variables with parameter p. Hence

σ2
S = σ

2
Sn

independence
= σ2

X1
+⋯ + σ2

Xn

ident. distrib.
= n ⋅ σ2

X1
.

One has σ2
X1

= E[X2
i ] − p

2
= p − p2

= p(1 − p). Hence

σ2
S = n ⋅ p(1 − p) .

Here, we have discovered an important effect of summing i.i.d. random variables. One
has

E[S] = n ⋅ p and σS =
√

n ⋅
√

p(1 − p)

so the expectation of S grows like n, while the fluctuations of Sn grow like
√

n thanks to
cancellations in the sum Sn − np = (X1 − p) +⋯ + (Xn − p).

9 Covariance
We introduce the notion of covariance, which can be used in some cases as to quantify
the dependence between two random variables.

Definition 4.26. Let X,Y be two random variables. Assume that E[X2
] <∞ and E[Y 2

] <

∞ (finite second moment). We define the covariance between X and Y as

Cov(X,Y ) = E[XY ] −E[X]E[Y ].

Remark: The condition that X and Y have finite second moment ensures that the
covariance is well defined. Indeed by the elementary inequality ∣XY ∣ ≤

1
2X

2
+

1
2Y

2 and
monotonie and linearity of the expectation, we have

E[∣XY ∣] ≤

1

2
E[X2

] +

1

2
E[Y 2

] <∞.
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As we have seen in Section 4, the covariance between two independent random variables
vanishes:

X,Y independent Ô⇒ Cov(X,Y ) = 0.

The reciprocal implication is not true in general (see Exercise 6.6). Nevertheless, as we
have seen in Section 6, we can obtain a characterization by using a stronger property
involving test functions. By Theorem 4.17, we have

X,Y independent ⇐⇒ ∀φ,ψ piecewise continuous, bounded Cov(φ(X), ψ(Y )) = 0.



Chapter 5

Joint distribution

Goals

• Definition of the joint distribution for discrete/continuous random variables.

• Calculation of marginals

• Interpretation of dependence/independence of random variables.

Framework We fix some probability space (Ω,F ,P). All the random variables consid-
ered in this chapter will be defined on this reference probability space.

61
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1 Discrete joint distributions

1.1 Definition

Definition 5.1. Let X1, . . . ,Xn be n discrete random variables with Xi ∈ Wi almost
surely, for some Wi ⊂ R finite or countable. The joint distribution of (X1, . . . ,Xn) is
the collection p = (p(x1, . . . , xn))x1∈W1,...,xn∈Wn defined by

p(x1, . . . , xn) = P[X1 = x1, . . . ,Xn = xn]

Example:
Let X,Y be two independent Bernoulli random variables with parameter 1/2. The

joint distribution of (X,Y ) is given by

∀x, y ∈ {0,1} p(x, y) =
1

4
.

The joint distribution of (X,X) is equal to

∀x, y ∈ {0,1} p(x, y) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1
2 x = y,

0 x ≠ y.

Let Z =X +Y , then the joint distribution p = (p(x, z))x∈{0,1},z∈{0,1,2} of (X,Z) is given
by the following table:

x
z

0 1 2

0 1/4 1/4 0
1 0 1/4 1/4

Proposition 5.2. The joint distribution of some random variables X1, . . . ,Xn satis-
fies

∑

x1∈W1,...,xn∈Wn

p(x1, . . . , xn) = 1. (5.1)

Proof. Consider the event A = {X1 ∈W1, . . . ,Xn ∈Wn}. A is a finite intersection of almost
sure events, hence P[A] = 1 (see Exercise 2.1, in Sheet 2). Furthermore, it can be written
as the disjoint union

A = ⋃

x1∈W1,...,xn∈Wn

{X1 = x1, . . . ,Xn = xn}.

Therefore,
1 = P[A] = ∑

x1∈W1,...,xn∈Wn

P[X1 = x1, . . . ,Xn = xn].
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Conversely, given some finite or countable sets W1, . . . ,Wn and a function p ∶W1 ×⋯×

Wn → [0,1] satisfying (5.1), there exists a probability space and some discrete random
variables with distribution p (see exercises).

1.2 Distribution of the image

One of the main advantages of working with random variables is that we can “manipulate”
them as numbers. For instance, if we are given n random variables X1,X2, . . . ,Xn, we
can think of them as n “random” numbers and we can make operations with them.

The following proposition gives the distribution of such random variables as images of
discrete random variables.

Proposition 5.3. Let n ≥ 1 and φ ∶ Rn
→ R be an arbitrary function. Let X1, . . . ,Xn be n

discrete random variables on (Ω,F ,P) with respective values in some finite or countable
sets W1, . . . ,Wn almost surely. Then Z = φ(X1, . . . ,Xn) is a discrete random with values
in W = φ(W1 ×⋯ ×Wn) almost surely and with distribution given by

∀z ∈W P[Z = z] = ∑

x1∈W1,...,xn∈Wn

φ(x1,...,xn)=z

P[X1 = x1, . . .Xn = xn].

Proof. First notice that the set W is finite or countable, as an image of a finite and
countable set. To prove that Z is a discrete random variable, it suffices to show that

• it takes values in W almost surely, and

• for every z in W , we have {Z = z} ∈ F .

Indeed, the second item implies that for every a ∈ R

{Z ≤ a} = ⋃
z∈W
z≤a

{Z = z}

is also an event (as a countable union of events).
Now, the first item follows from the inclusion {X1 ∈W1, . . . ,Xn ∈Wn} ⊂ {Z ∈W}. For

the second item, let z ∈W and observe that

{Z = z} = ⋃

x1∈W1,...,xn∈Wn

φ(x1,...,xn)=z

{X1 = x1, . . .Xn = xn}. (5.2)

Hence, {Z = z} ∈ F since it is a countable union of events. This implies that Z is a
discrete random vartiable. To compute the distribution, observe that the union in (5.2)
is disjoint and at most countable, hence,

P[Z = z] = ∑

x1∈W1,...,xn∈Wn

φ(x1,...,xn)=z

P[X1 = x1, . . .Xn = xn].
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Example:
Consider the random variable Z =X +Y defined (as in Section 1.1) as the sum of two

independent Bernoulli random variables with parameter 1/2. By applying the proposition
above to φ(x, y) = x + y we get

P[Z = 0] = ∑

x,y∈{0,1}
x+y=0

P[X = x,Y = y] = P[X = 0, Y = 0] = 1/4

P[Z = 1] = ∑

x,y∈{0,1}
x+y=1

P[X = x,Y = y] = P[X = 0, Y = 1] + P[X = 1, Y = 0] = 1/2

P[Z = 2] = ∑

x,y∈{0,1}
x+y=2

P[X = x,Y = y] = P[X = 1, Y = 1] = 1/4.

1.3 Marginal distributions

If one knows the joint distribution of X1, . . . ,Xn, one can recover the distribution of each
Xi separately. In this context the distribution of Xi is called the distribution of the i-th
marginal.

Proposition 5.4. Let X1, . . . ,Xn be n discrete random variables with joint distribu-
tion p = (p(x1, . . . , xn))x1∈W1,...,xn∈Wn. For every i, we have

∀z ∈Wi P[Xi = z] = ∑

x1,...,xi−1,xi+1,...,xn
p(x1, . . . , xi−1, z, xi+1, . . . , xn) .

Proof. Apply Proposition 5.3 to φ(x1, . . . , xn) = xi.

By the proposition above, if we know the joint distribution p of two random variables
X,Y , then we can compute the distribution of X and the distribution of Y , but the
converse is not true. Knowing the marginal distributions is not sufficient to compute the
joint distribution. For example, let X,Y be two independent random variables. Then
(X,Y ) and (X,X) have the same marginal distributions (both Bernoulli (1/2), but they
have different joint distributions.

This notion of marginal distributions may help to understand joint distributions:
Heuristically, the joint distribution of X1, . . . ,Xn encodes the distribution of each Xi

separately, as well as how the random variables depend on each other.

1.4 Expectation of the image

Proposition 5.5. Let X1, . . . ,Xn be n discrete random variables with joint distribu-
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tion p = (p(x1, . . . , xn))x1∈W1,...,xn∈Wn. Let φ ∶ Rn
→ R, then

E[φ(X1, . . . ,Xn)] = ∑

x1,...,xn

φ(x1, . . . , xn)p(x1, . . . , xn) ,

whenever the sum is well-defined.

Proof. Set W = φ(W1, . . . ,Wn). Using the formula of Prop. 3.9, we have

∑

z∈F

z ⋅ P[Z = z] = ∑
z∈F

∑

x1,...,xn∈E

z ⋅ 1φ(x1,...,xn)=zP[X1 = x1, . . . ,Xn = xn]

= ∑

x1,...,xn∈E

(∑

z∈F

z ⋅ 1φ(x1,...,xn)=z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=φ(x1,...,xn)

P[X1 = x1, . . . ,Xn = xn].

(the permutation of the two sums can be justified by the Fubini’s theorem, provided the
sum are well defined).

1.5 Independence

Proposition 5.6. Let X1, . . . ,Xn be n discrete random variabless with joint distri-
bution p = (p(x1, . . . , xn))x1∈W1,...,xn∈Wn. The following are equivalent

(i) X1, . . . ,Xn are independent,

(ii) p(x1, . . . , xn) = P[X1 = x1]⋯P[Xn = xn] for every x1 ∈W1, . . . , xn ∈Wn.

Proof.

(i)⇒ (ii) Consider the functions φ1, . . . , φn defined by φi(z) = 1z=xi . We have

P[X = x1, . . . ,Xn = xn] = E[1X1=x1,...,Xn=xn]

= E[φ1(X1)⋯φn(Xn)]

(i)
= E[φ1(X1)]⋯E[φn(Xn)]

= P[X1 = x1]⋯P[Xn = xn]

(ii)⇒ (i) Let φ1 ∶ W1 → R, . . . , φn ∶ Wn → R. By Proposition 5.3 applied to φ(x1, . . . , xn) =
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φ1(x1)⋯φn(xn), we have

E[φ1(X1)⋯φn(Xn)] = ∑

x1,...,xn

φ1(x1)⋯φn(xn) ⋅ p(x1, . . . , xn)

(ii)
= ∑

x1,...,xn

φ1(x1)⋯φn(xn) ⋅ P[X1 = xx]⋯P[Xn = xn]

= (∑

x1

φ1(x1) ⋅ P[X = x])⋯(∑

xn

φn(xn) ⋅ P[Xn = xn])

= E[φ1(X1)]⋯E[φn(Xn)].

By Theorem 4.18, X1,⋯,Xn are independent.

2 Continuous joint distribution

2.1 Definition

Definition 5.7. Let n ≥ 1, some random variables X1, . . . ,Xn ∶ Ω → R have a con-
tinuous joint distribution if there exists a function f ∶ Rn

→ R+ such that

P[X1 ≤ a1, . . . ,Xn ≤ an] = ∫
a1

−∞
⋯∫

an

−∞
f(x1,⋯, xn)dxn⋯dx1

for every a1, . . . , an ∈ R. A function f as above is called a joint density of (X,Y ).

Proposition 5.8. Let f be the joint density of n random variables X1, . . . ,Xn. Then we
have

∫

∞

−∞
⋯∫

∞

−∞
f(x1, . . . , xn)dxn . . . dx1 = 1. (5.3)

Conversely, given a non negative function f satisfying (5.3), one can always construct a
probability space (Ω,F ,P) and n random variables X1, . . . ,Xn ∶ Ω→ R with joint density
f (admitted).

Proof. By continuity of probability measures (Proposition 1.11) we have

1 = lim
a1,...,an→∞

P[X1 ≤ a1, . . . ,Xn ≤ an] = lim
a1,...,an→∞

∫

a1

−∞
⋯∫

an

−∞
f(x1,⋯, xn)dxn⋯dx1

= ∫

∞

−∞
⋯∫

∞

−∞
f(x1, . . . , xn)dxn . . . dx1.
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Interpretation: Informally, f(x1, . . . , xn)dx1⋯dxn represents the probability that the
random vector (X1, . . . ,Xn) lies in the small region [x1, x1 + dx1] ×⋯ × [xn, xn + dxn].

Example 1: Uniform point in the square

Consider two random variables X and Y with joint density f(x, y) = 10≤x,y≤1, i.e.

f(x, y) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 (x, y) ∈ [0,1]2

0 (x, y) ∉ [0,1]2.

Example 2: Uniform point in the disk

Let D = {(x, y) ∶ x2
+ y2

≤ 1} be the disk of radius 1 around 0. Consider two random
variables X and Y with joint density f(x, y) = 1

π1x2+y2≤1, i.e.

f(x, y) =

⎧
⎪⎪
⎨
⎪⎪
⎩

1
π x2

+ y2
≤ 1

0 x2
+ y2

> 1.

2.2 Expectation of the image

Proposition 5.9. Let φ ∶ Rn
→ R. If X1, . . . ,Xn have joint density f , then the

expectation of the random variable Z = φ(X1, . . . ,Xn) can be calculated by the formula

E[φ(X1, . . . ,Xn)] = ∫

∞

−∞
⋯∫

∞

−∞
φ(x1, . . . , xn) ⋅ f(x1, . . . , xn)dxn . . . dx1, (5.4)

whenever the integral is well defined.

Proof. Admitted.

Applications: Consider the pair (X,Y ) as in Example 1 above. By applying considering
the function φ(x, y) = 1(x,y)∈R, we have for every rectangle R = (a, a′) × (b, b′) ⊂ [0,1]2

P[(X,Y ) ∈ R] = E[φ(X,Y )] = ∫

a′

a
∫

b′

b
dxdy = (a′ − a)(b′ − b) = Area(R),

and (X,Y ) intuitively represents a uniform point in the square [0,1]2.

Equivalently, if we consider (X,Y ) as in example 2, we find that for every rectangle
R = (a, a′) × (b, b′) ⊂D

P[(X,Y ) ∈ R] =

1

π
(a′ − a)(b′ − b) =

Area(R)

Area(D)

,

and (X,Y ) intuitively represents a uniform point in the square [0,1]2.
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2.3 Marginal densities

As in the discrete case, ifX1, . . . ,Xn have a joint density f , then eachXi taken individually
is continuous, and the density of Xi can be calculated from f by integrating over all the
variables xj, j ≠ i.

Proposition 5.10. Let X1,⋯,Xn be n random variables with a joint density f = fX1,...,Xn.
Then for every i, Xi is a continuous random variable with density fi given by

fi(z) = ∫
(x1,...,xi−1,xi+1,...,xn)∈Rn−1

f(x1, . . . , xi−1, z, xi+1, . . . , xn)dx1 . . . dxi−1dxi+1dxn.

for every z ∈ R

Proof. We prove the result in the case two random variables X,Y (case n = 2). If X,Y
possess a joint density fX,Y , then we have

P[X ≤ a] = P[X ∈ [−∞, a], Y ∈ [−∞,∞]]

= ∫

a

−∞
(∫

∞

−∞
f(x, y)dy)dx,

and therefore X is continuous with density

fX(x) = ∫
∞

−∞
f(x, y)dy.

Equivalently Y is continuous with density

fY (y) = ∫
∞

−∞
f(x, y)dx.

Let us calculate the marginal densities in the two examples of joint densities we have
seen above.
Example 1: Uniform point in the square

If fX,Y (x, y) = 10≤x,y≤1, then X has density

fX(x) = ∫
0,1

10≤x≤110≤y≤1dy = 10≤x≤1.

and equivalently fY (y) = 10≤y≤1. In other words, both X and Y are uniform random
variables in [0,1].

Example 2: Uniform point in the disk

If fX,Y (x, y) = 1
π1x2+y2≤1, then the density of X is

fX(x) = ∫
∞

−∞

1

π
1x2+y2≤1dy = ∫

√
1−x2

−
√

1−x2

1

π
dy =

2

π

√

1 − x2,

and equivalently fY (y) = 2
π

√

1 − y2.
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2.4 Independence for continuous random variables

The following theorem gives a useful characterization for the independence of continuous
random variables.

Theorem 5.11. Let X1, . . . ,Xn be n continuous random variables with respective
densities f1, . . . , fn. The following are equivalent

(i) X1, . . . ,Xn are independent,

(ii) X1, . . . ,Xn are jointly continuous with joint density

f(x1, . . . , xn) = f1(x1) ⋯ fn(xn) .

Remark 5.12. An important consequence is that two independent continuous random
variables are automatically jointly continuous.

Proof. We prove the result for two random variables (n = 2). The more general case is
proved similarly. Let X,Y be two continuous random variables with density fX and fY
respectively.
(i) ⇒ (ii) If X and Y are independent, for every a, b ∈ R we have

P[X ≤ a, Y ≤ b] = P[X ≤ a] ⋅ P[Y ≤ b]

= ∫

a

−∞
fX(x)dx ⋅ ∫

b

−∞
fY (y)dy

= ∫

a

−∞
∫

b

−∞
fX(x)fY (y)dxdy.

Therefore, X and Y have joint density fX,Y (x, y) = fX(x) ⋅ fY (y).
(ii) ⇒ (i) Applying the formula (5.4), we find, for every a, b ∈ R,

E[φ(X)ψ(Y )] = ∫

∞

−∞
∫

∞

−∞
φ(x)ψ(y)fX,Y (x, y)dxdy

(ii)
= ∫

∞

−∞
∫

∞

−∞
φ(x)ψ(y)fX(x)fY (y)dxdy

= ∫

∞

−∞
φ(x)fX(x)dx ⋅ ∫

∞

−∞
ψ(y)fY (y)dy

= E[φ(X)] ⋅E[ψ(Y )].

Hence, by the characterization of independence (Theorem 4.18), we conclude that X and
Y are independent random variables.

Example 1: Uniform point in the square
If X and Y have joint density fX,Y (x, y) = 10≤x,y≤1, then

fX,Y (x, y) = 10≤x≤110≤y≤1 = fX(x) ⋅ fY (y).
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In other words, the two coordinates of a uniform random point in [0,1]2 are independent.

Example 2: Uniform point in the disk

If X and Y have joint density fX,Y =
1
π1D, then we have seen that fX(x) = 2

π

√

1 − x2 and
fY (y) =

2
π

√

1 − y2, and therefore

fX,Y (x, y) ≠ fX(x)fY (y).

The two coordinates X and Y of a uniform point in D are not independent! This fact can
easily be understood by looking at the event that X is larger than (say)

√

3/2. In this
case, we have some information about Y which is constrainted to belong to [−1/2,1/2].



Chapter 6

Asymptotic results

In this chapter, we fix a probability space (Ω,F ,P) and an infinite sequence of i.i.d.
random variables X1,X2, . . . In other words, we are given some random variables Xi ∶ Ω→
R such that

∀i1 < ⋯ < ik ∀x1, . . . xk ∈ R P[Xi1 ≤ x1, . . . ,Xik ≤ xk] = F (x1)⋯F (xk).

where F is the common distribution function. For every n, we consider the partial sum

Sn =X1 +⋯ +Xn,

and we are interested in the behavior (when n is large) of the random variable defined by

Sn
n

=

X1 +⋯ +Xn

n
. (6.1)

and sometimes called the empirical average.

71
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1 Law of large numbers
Theorem 6.1. Assume that E[∣X1∣] <∞. Defining m = E[X1] we have

lim
n→∞

X1 +⋯ +Xn

n
=m a.s. (6.2)

What does Eq. (6.2) mean?

If we fix ω ∈ Ω, the values X1(ω)
1 , X1(ω)+X2(ω)

2 , ⋯ simply define a sequence of real numbers.
The properties of this sequence depends on the outcome ω. We are here interested on
the ω’s for which the sequence X1(ω)+⋯+Xn(ω)

n converges to m. More precisely we consider
E ⊂ Ω defined by

E = {ω ∶ lim
n→∞

X1(ω) +⋯ +Xn(ω)

n
=m} (6.3)

One can check that E is an event and Eq. (6.2) says that P[E] = 1.

Remark 6.2. In the statement of the theorem, it may be surprising that the assumption
and the definition of m are in terms of X1 only. Actually, since the random variables are
i.i.d. we also have E[∣Xi∣] <∞ and m = E[Xi] for every i.

Example 1: Bernoulli random variables

If X1,X2, . . . is an infinite sequence of i.i.d. Bernoulli random variables with parameter p.
Then we have

lim
n→∞

X1 +⋯ +Xn

n
= p a.s.

Example 2: Exponential random variables

If T1, T2, . . . is an infinite sequence of i.i.d. Exponential random variables with parameter λ.
Then we have

lim
n→∞

T1 +⋯ + Tn
n

= λ a.s.

Proof. We prove the law of large numbers under a stronger moment assumption. We
assume that

C ∶= E[X4
1 ] <∞.

Without loss of generality, we may assume that

E[X1] = 0. (6.4)

Indeed, if we have the result for m = 0, we can extend it to m ≠ 0 by considering the
random variables Yi =Xi −m, i ≥ 1.

Fix n ≥ 1 and consider the random variable

Sn =X1 +⋯ +Xn.
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By expanding Z4 and using linearity of the expectation, we have

E[S4
n] = ∑

1≤i,j,k,`≤n

E[XiXjXkX`].

As soon as one factor Xα appears a single time in the product XiXjXkX` , then indepen-
dence and the hypothesis (6.4) imply that the expectation of the term vanishes. Hence,
the only non vanishing terms are of the form E[X4

i ] and E[X2
i Y

2
j ], for i ≠ j. By indepen-

dence and Jensen inequality, for i ≠ j we have E[X2
i Y

2
j ] = E[X2

1 ]
2
≤ C. Since there are at

most n2
+n non-vanishing terms in the sum above and each such term is smaller than C,

we obtain
E[S4

n] ≤ C(n2
+ n) ≤ 2Cn2.

For every n, consider the event

Fn = {ω ∈ Ω ∶
∣Sn(ω)∣
n < n−1/8

} .

By Markov inequality, we have

P[F c
n] = P[S4

n ≥ n
7/2

] ≤

E[S4
n]

n7/2
≤

2C

n3/2
.

Now, for N ≥ 1, consider the event

EN = ⋂

n≥N

Fn = {∀n ≥ N
∣Sn∣

n
≤ n−1/8

}.

By the union bound, we have

P[Ec
N] = P[⋃

n≥N

F c
n] ≤ ∑

n≥N

P[F c
n] ≤ ∑

n≥N

C

n3/2
.

Hence limN→∞ P[EN] = 1. Furthermore, for every N , we have EN ⊂ E where E is the
event defined in Eq. (6.3) (with m = 0). Therefore, P[EN] ≤ P[E], and the result follows
by taking the limit as N tends to infinity.

2 Application: Monte-Carlo integration
The law of large number can be useful to approximate integrals, that may be difficult to
compute exactly. Let d ≥ 1 be an integer. Let g ∶ [0,1]→ R such that

∫

1

0
∣g(x)∣dx <∞.

How goal is to calculate

I = ∫
1

0
g(x)dx.
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Such an integral may be delicate to compute exactly, and we give a general method to
obtain approximations of I. The key idea is to interpret I as an expectation. Let U be a
uniform random variable in [0,1]. Then,

E[g(U)] = ∫

1

0
g(x)dx = I.

Hence, approximating I is equivalent to approximating the expectation of g(U), which
can be achieved by the law of large numbers. Let U1, U2, . . . be an i.i.d. sequence of uniform
random variables in [0,1], and consider Xn = g(Un) for every n. The sequence X1,X2, . . .
is i.i.d. and we have

E[∣X1∣] = ∫

1

0
∣g(x)∣dx <∞,

and E[X1] = I. Hence, by the law of large numbers, we have

lim
n→∞

g(U1) +⋯ + g(Un)

n
= I.

Hence, we obtain an approximation of I by calculating g(U1)+⋯+g(Un)
n for some large n.

Notice that this quantity is easy to compute in practice, once we have simulated some
uniform random variables U1, . . . Un.

This method generalizes in several ways, one can use different densities to compute
integrals over R, and we can use joint densities to approximate d-dimensional integrals,
d ≥ 2.

3 Convergence in distribution
When we have deterministic numbers in R, we can measure the distance between them:
the distance between x and y is given by ∣x − y∣. This gives rise to a natural notion of
convergence. A sequence of real numbers (xn)n∈N converges to x if

lim
n→∞

∣xn − x∣ = 0.

For two random variables X and Y , one way to measure the “distance” between them
is to look at their distribution functions. X and Y have similar probabilistic properties
if their respective distribution functions FX and FY are close to each other. This gives
rise to the following notion of convergence for random variables, called “convergence in
distribution”.

Definition 6.3. Let (Xn)n∈N and X be some random variables. We write

Xn
Approx
≈ X as n→∞

if for every x ∈ R
lim
n→∞

P[Xn ≤ x] = P[X ≤ x].
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Example 1: Bernoulli random variables
For every n, let Xn be a Bernoulli random variable with parameter pn ∈ [0,1]. If

limn→∞ pn = p. Then we have

Xn
Approx
≈ X as n→∞,

where X is a Bernoulli random variable with parameter p.
Example 2: Approximation of the uniform

In the first example, we have discrete random variables converging towards another
discrete random variable. It is also possible that a sequence of discrete random variables
converge towards a continuous random variable, as in the following example.

For every n, let Xn be a uniform random variable in {0, 1
n ,

2
n , . . . ,

n−1
n ,1} (i.e. P[Xn =

k
n] =

1
n+1 for k = 0,1,2. . . . , n). Then we have

Xn
Approx
≈ X as n→∞,

where X is a uniform random variable in [0,1].
Indeed, for every x ∈ [0,1], we have

P[Xn ≤ x] =
⌊xn⌋

n
Ð→
n→∞

x = P[X ≤ x],

and the convergence for x ∉ [0,1] is trivial.

4 Central limit theorem

A question of fluctuation?

The law of large numbers tells us that for large n, the empirical average (6.1) is closed to
the expectation m = E[X1]. A second very natural question to ask is:

How far is
X1 +⋯ +Xn

n
from m typically?

The Gaussian case

Let us first look at the very instructive case when X1,X2, . . . is a sequence of i.i.d. normal
random variables with parameters m and σ2. Then the results we have seen on normal
random variables tell us that

Z =

X1 +⋯ +Xn

n
−m

is again a normal random variable with parameters m̄ = 0 and σ̄2
=

1
nσ

2. The standard
deviation σ̄ =

1√
n
σ represents the typical fluctuations of Z. Roughly one can say that the

typical distance between X1+⋯+Xn
n and m is of order σ√

n
.
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In this context, a more natural random variable to consider is to rescale Z by a
factor

√
n
σ in order to get fluctuations of order 1: using again the properties of normal

distributions we see that √

n

σ
Z =

X1 +⋯ +Xn − n ⋅m
√

σ2n

is a standard normal.
As a conclusion, if we consider i.i.d. normal distributions with expectation m and

variance σ2, then the random variable

X1 +⋯ +Xn − n ⋅m
√

σ2n

corresponds to a rescaled version of the fluctuations of X1+⋯+Xn
n and is a standard normal.

General case: the central limit theorem

If X1,X2, . . . are not normal, it is in general not easy to compute the law of

X1 +⋯ +Xn − n ⋅m
√

σ2n

Nevertheless, the central limit theorem tells us that this random variable always get close
to a standard normal if n is large.

Theorem 6.4 (Central limit theorem). Assume that the expectation E[X2
1 ] is well defined

and finite. Defining m = E[X1] and σ2
= Var(X1), we have

P[Sn − n ⋅m√

σ2n
≤ a]ÐÐ→

n→∞
Φ(a) =

1
√

2π
∫

a

−∞
e−x

2/2dx. (6.5)

for every a ∈ R

What does Eq. (6.5) mean? In words, the theorem above asserts that for n large, the
distribution of the random variable

Zn =
Sn − n ⋅m

√

σ2n

“looks like” the distribution of a normal random variables N (0,1) . With the notation of
Section 3, we have

Zn
Approx
≈ Z as n→∞,

where Z ∼ N (0,1).

Remark 1:
For every n, we can use linearity properties of the expectation and variance to show that

E[Zn] = 0 and Var(Zn) = 1.
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Remark 2:
The central limit theorem helps us predicting the behaviour of Sn for n large. For example
consider p ∶= P[Z ∈ [−2,2]], where Z is a standard normal random variable.

It is known that p ≃ 0.95 (this correspond to the blue and brown area in the picture
below).

Figure 6.1: Quantiles of a normal random variable with parameters µ and σ2

By the central limit theorem, we know that

lim
n→∞

P[mn − 2
√

σ2n ≤ Sn ≤mn + 2
√

σ2n] = p ≃ 95%.
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