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0. Introduction

A theory of groups first began to take form at the end of the eighteenth century.
It developed slowly and attracted very little notice during the first decades of the
nineteenth century. Then, in a few years around 1830, the theory of groups took
a giant leap forward and made a major contribution to the general development of
mathematics in the work of Galois and Abel on the solvability of algebraic equations.
Since then, the concepts underlying the theory of groups have been elaborated and

extended into many branches of mathematics. There have been applications to such
diverse fields as number theory, crystallography, and the theory of knots.
This module is mainly concerned with finite groups, especially the groups of rigid

motions of the five Platonic solids, which are tetrahedron, cube, octahedron, dodec-
ahedron, and icosahedron. But our first task is to clarify what is meant by a group.

Let us consider two different sets, each with a binary operation: The first set is
Z := {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers, and the binary operation on Z is
addition.
The second set is the set of non-zero rational numbers Q∗ := Q \ {0}, where

Q :=
{
n/m : n ∈ Z∧m ∈ Z\{0}

}
, and the binary operation on Q∗ is multiplication.

Thus, we have two so-called structures, which we denote by (Z,+) and (Q∗, · )
respectively.
In Z, there is an element x such that for each y ∈ Z we have x + y = y + x = y,

namely x = 0. Such an element we call a neutral element. Hence, we get:

Observation 1. (Z,+) has a neutral element.

Similarly, in Q∗, there is an element x such that for each y ∈ Q∗ we have x · y =
y · x = y, namely x = 1. Hence, we get:

Observation 2. (Q∗, · ) has a neutral element.

Are there some neutral elements in (Z,+) other than 0, or are there some neutral
elements in (Q∗, · ) other than 1 ?

No, of course, you would say, but why not? Let us prove it for the structure (Z,+):
Assume that z ∈ Z is a neutral element. So, for any y ∈ Z we have z+y = y+z = y. In
particular we get z+0 = 0+z = 0, but since 0 is neutral, we also have z+0 = 0+z = z,
hence, z = 0. This proves the following:

Observation 3. (Z,+) has exactly one neutral element, namely 0.

Similarly, one can prove the following (see Hw1.Q1a):

Observation 4. (Q∗, · ) has exactly one neutral element, namely 1.

For every x ∈ Z there is a y ∈ Z such that x+ y = y+x = 0, in fact, y = −x. Such
a y is called an inverse of x.

Observation 5. In (Z,+), each element has an inverse.

Notice that this is not true in (N,+), where N = {0, 1, 2, . . .}. Why ?

Similarly, for every q ∈ Q∗ there is a p ∈ Q∗ such that q · p = p · q = 1, in fact,
q = 1/p. Hence, we get:

1



2

Observation 6. In (Q∗, · ), each element has an inverse.

Notice that this is not true in (Q, · ). Why ?

Is there more than one inverse element to some x ∈ Z, or is there more than one
inverse element to some q ∈ Q∗ ?

No, of course, you would say again, but why not? Let us prove it for the structure
(Z,+): Assume that there are y1, y2 ∈ Z such that x+ y1 = y1 + x = 0 and x+ y2 =
y2 + x = 0. Therefore we have

y2 + x = 0 add y1 on both sides from the right

y2 + x+ y1
︸ ︷︷ ︸

= 0

= 0 + y1
︸ ︷︷ ︸

= y1

y2 + 0
︸ ︷︷ ︸

= y2

= y1 and we finally get

y2 = y1

This proves the following:

Observation 7. In (Z,+), each element has exactly one inverse.

In a similar way, one can prove the following (see Hw1.Q1b):

Observation 8. In (Q∗, · ), each element has exactly one inverse.

As we have seen so far, (Z,+) and (Q∗, · ) are very similar: Both structures have
a unique neutral element and in both structures there are inverse elements. In fact,
such structures, i.e., sets with a binary operation satisfying certain axioms, are called
groups.

In this module we will investigate different types of (mainly finite) groups. In other
words, we will set up the axioms for groups and look what we get out of them. It
will be seen that the input (just three axioms) is small, but the output (dozens of
theorems and propositions) is quite extensive.
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1. The Axioms

A binary operation on a set is a correspondence that assigns to each ordered pair
of elements of the set a uniquely determined element of the set. For example addition
is a binary operation on N, Z, Q, and {0}, and multiplication is a binary operation
on Q, Q∗, N, Z, {−1, 1}, and {0, 1}; on the other hand, addition is neither a binary
operation on {−1, 1} nor on {0, 1}. Why ?

A set G together with some binary operation, say “ ◦ ” is a group, if the following
axioms are satisfied:

(A0) For any a, b, c ∈ G we have:

a ◦ (b ◦ c) = (a ◦ b) ◦ c .

This says that the operation “ ◦ ” is associative.

(A1) There is an element e ∈ G such that for all a ∈ G we have:

e ◦ a = a ◦ e = a .

The element e is called a neutral element of (G, ◦ ).

(A2) If e is a neutral element of (G, ◦ ), then for each a ∈ G there is an ā ∈ G such
that

a ◦ ā = ā ◦ a = e .

The element ā is called an inverse of a.

Any binary operation on some set which satisfies (A0) is called associative. It is
a consequence of (A0) that we can omit brackets. In particular, whenever “ ◦ ” is a
binary associative operation on some set S, then for any a, b, c, d ∈ S we have (see
Hw1.Q2):

(a ◦ b) ◦ (c ◦ d) =
(
a ◦ (b ◦ c)

)
◦ d .

On the other hand, a binary operation is not necessarily associative (see Hw1.Q3).
A binary operation “ ◦ ” on some set S is called commutative if for all x, y ∈ S

we have

x ◦ y = y ◦x .

Definition. A group (G, ◦ ) is called abelian, if the binary operation “ ◦ ” is com-
mutative.

For example (Z,+), (Q∗, · ),
(
{0},+

)
and

(
{−1, 1}, ·

)
are abelian groups. On the

other hand, as we will see later, not every group is abelian.

Let us now show that the neutral element of a group is unique and that each element
has exactly one inverse.

Proposition 1.1. Let (G, ◦ ) be a group, then there is exactly one neutral element
and each element of G has exactly one inverse.
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Proof. Let e, ẽ ∈ G be neutral elements of (G, ◦ ). Thus, for every x ∈ G we have
x ◦ ẽ = e ◦ x = x, and therefore,

e =
↑

ẽ neutral

e ◦ ẽ =
↑

e neutral

ẽ ,

and hence, there is exactly one neutral element.
Let a ∈ G be arbitrary and let x, x̃ ∈ G be such that a ◦ x = x̃ ◦ a = e, where e ∈ G

is the unique neutral element of (G, ◦ ). Now,

x̃ =
↑

e neutral

x̃ ◦ e = x̃ ◦ (a ◦x) =
↑

“ ◦ ” is associative

(x̃ ◦ a) ◦ x = e ◦ x =
↑

e neutral

x ,

and hence, a has exactly one inverse, and since a ∈ G was arbitrary, this completes
the proof. ⊣

Notation. For an “abstract” group we often write just G and instead of (G, ◦ ),
and for a, b ∈ G we often write just ab instead of a ◦ b. In other words, if the binary
operation is not specified, we handle it like multiplication, and consequently, we
usually denote the inverse of a ∈ G by a−1.

We can weaken the axioms (A1) and (A2) a little bit:

Proposition 1.2. G is a group if the following axioms hold:

(A0) The binary operation is associative.

(A1∗) There is an element e ∈ G such that for all a ∈ G we have:

ea = a .

The element e is called a left-neutral element of G.

(A2∗) If e is a left-neutral element of G, then for each a ∈ G there is an ā ∈ G such
that

āa = e .

The element ā is called left-inverse of a.

Proof. We have to prove that e is also a right-neutral element of G and that ā is also
a right-inverse of a.
Let a ∈ G be arbitrary and let ¯̄a be a left-inverse of ā, where ā is a left-inverse of

a. Now we have:

aā =
↑

e left-neutral

e(aā) = (¯̄aā)(aā) =
↑

by associativity

¯̄a

e
︷︸︸︷

(āa)ā = ¯̄a

ā
︷︸︸︷

(eā) = ¯̄aā = e .

Thus, aā = āa = e, which shows that each left-inverse of some a ∈ G is also a
right-inverse, hence an inverse of a.
Further, we have:

ae = a(āa) =
↑

by associativity

e
︷︸︸︷

(aā)a = ea =
↑

e left-neutral

a .
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Thus, since a ∈ G was arbitrary, e is also a right-neutral element, hence, a neutral
element of G. ⊣

In (A1∗) and (A2∗) we can replace “left-neutral” and “left-inverse” by “right-
neutral” and “right-inverse” respectively (see Hw2.Q9), but we cannot mix left and
right:

Proposition 1.3. If a set S with an associative operation has a left-neutral element
and each element of S has a right-inverse, then S is not necessarily a group.

Proof. Let S = {0, 1} and for x, y ∈ S define x ∗ y := y. Now, the binary operation
“ ∗ ” is associative and 0 is a left-neutral element of (S, ∗ ), 0 is the right-inverse of 0
as well as of 1, so, each element of S has a right-inverse. On the other hand, there is
no x ∈ S such that x ∗ 1 = 0, or in other words, 1 has no left-inverse. Hence, (S, ∗ )
is not a group. ⊣

Of course, in Proposition 1.3, we can swap “left” and “right” (see Hw2.Q10). How-
ever, the situation is different, if the left-neutral element is unique:

Proposition 1.4. If a set G with an associative operation has a unique left-neutral
element and each element of G has a right-inverse, then G is a group.

Proof. Let e be the unique left-neutral element of G. Let

E(G) = {a ∈ G : aa = a} .

First we show that E(G) = {e}. Take any a ∈ E(G) and b ∈ G, then

ab = a(eb) = a(aa−1)b = (aa)(a−1b) = a(a−1b) = (aa−1)b = eb = b .

Therefore, since b was arbitrary, a is a left-neutral element, and since the left-neutral
element is unique, we have a = e.
Consider Ge = {ge : g ∈ G}, and let us show that Ge is a group. By definition

of Ge, any x ∈ Ge is of the form x = ge (for some g ∈ G). Now, xe = (ge)e =
g(ee) = ge = x, and therefore, e (or more precisely ee) is a right-neutral element of
Ge. Further, let g−1 be a right-inverse element of g, then g−1e ∈ Ge is a right-inverse
of x = ge. Indeed,

x(g−1e) = (ge)(g−1e) = g(eg−1)e = (gg−1)e = ee = e .

So, Ge has a right-neutral element and each element of Ge has a right inverse, which
implies (by the “right-version” of Proposition 1.2) that Ge is a group.
In order to show that G is a group, by Proposition 1.2 it is enough to show that

each element in G has a left-inverse.
Let g be any element of G, and let x ∈ Ge be such that x(ge) = (ge)x = e (such

an x exists since Ge is a group). We claim that xg ∈ E(G):

(xg)(xg) = (xg)e(xg) (since x ∈ Ge, ex = x)
= xeg (since (ge)x = e)
= xg (since x ∈ Ge, xe = x).

Thus, xg ∈ E(G) = {e}, or in other words, xg = e. Since g ∈ G was arbitrary,
each element of G has a left-inverse, which implies (by Proposition 1.2) that G is a
group. ⊣
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Definition. The order of a group (G, ◦ ), denoted by |G|, is the cardinality (or size)
of the underlying set G.

If G has finitely many elements, then |G| = n for some positive integer n (why
there is no group with 0 elements?) and if G is infinite, then we set |G| = ∞.

To state the next result we have first to give some definitions.

Definition. A set S with a binary operation is left cancellative if whenever
x, y, z ∈ S and xy = xz, one has y = z. The notion right cancellative is de-
fined similarly. Further, S is cancellative if S is left cancellative as well as right
cancellative.

If the binary operation on S is commutative and S is left cancellative, then S is also
right cancellative. On the other hand, if S is cancellative, then the binary operation
on S is not necessarily commutative, as we will see later.
However, it is easy to see that every group is cancellative. Moreover, for finite sets,

axioms (A1) and (A2) can be replaced by just one axiom:

Proposition 1.5. Let G be a finite set with an associative operation. If G is can-
cellative, then G is a group.

Proof. Let a ∈ G be arbitrary. Consider the set aG = {ax : x ∈ G}. It is easy to
see that |aG| ≤ |G|. On the other hand, if |aG| < |G|, then would find two distinct
x, y ∈ G such that ax = ay, and since G is left cancellative, this would imply that
x = y, a contradiction. So, |aG| = |G|, which implies that aG = G.
Now, there must be an element e ∈ G such that ae = a. Further, we have ae =

(ae)e = a(ee), which implies, since G is left cancellative, that e = ee. Let now b ∈ G
be arbitrary. We get be = b(ee) = (be)e, and since G is right cancellative, be = b, and
hence, e is a right-neutral element of G.
Let b ∈ G be arbitrary. Again, we have bG = G, which implies that there is a b̄ ∈ G

such that bb̄ = e, thus, the element b ∈ G has a right-inverse, and since b ∈ G was
arbitrary, every element of G has a right-inverse. By Proposition 1.2 (replacing “left”
by “right”), this proves that G is a group. ⊣

Notice that in the proof of Proposition 1.5 we used that G is both, left and right
cancellative and that G is finite. In fact, we cannot do better:

Proposition 1.6.

(a) A finite set S with an associative operation which is right cancellative is not
necessarily a group.

(b) An infinite set S with an associative operation which is cancellative is not
necessarily a group.

Proof. (a) Let S = {0, 1} and for x, y ∈ S define x ∗ y := x. Then the operation “ ∗ ”
is associative and S is right cancellative (since y ∗ x = z ∗ x implies y = z). But S is
obviously not a group (see also the proof of Proposition 1.3).

(b) Consider (N,+), where N = {0, 1, 2, 3, . . .} denotes the set of natural numbers.
The operation “+” is associative and N is cancellative (since x + y = x + z ⇔ y =
z ⇔ y+ x = z+ x). But (N,+) is not a group, since for example 1 does not have an
inverse. ⊣
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2. Examples of Groups

2.1. Some infinite abelian groups. It is easy to see that the following are infinite
abelian groups:

(Z,+), (Q,+), (R,+), (C,+),

where R is the set of real numbers and C is the set of complex numbers,

(Q∗, · ), (R∗, · ), (C∗, · ),

where the star means “without 0”,

(Q+, · ), (R+, · ),

where the plus-sign means “just positive numbers”, and

(U, · ),

where U = {z ∈ C : |z| = 1}.

Let 2Z := {2x : x ∈ Z} = {1, 2, 1
2
, 4, 1

4
, 8, 1

8
, . . .}, then (2Z, · ) is a group:

(0) Multiplication is associative (and even commutative): For all x, y, z ∈ Z we
have

2x ·
(
2y · 2z

)
= 2x+(y+z) = 2(x+y)+z =

(
2x · 2y

)
· 2z .

(1) 20 = 1 is the neutral element: For all x ∈ Z we have

20 · 2x = 2x · 20 = 2x+0 = 2x .

(2) Every element in 2Z has an inverse: For all x ∈ Z we have

2−x · 2x = 2x · 2−x = 2x+(−x) = 20 .

The groups (2Z, · ) and (Z,+) are essentially the same groups. To see this, let

ϕ : Z → 2Z

x 7→ 2x

It is easy to see that ϕ is a bijection (i.e., a one-to-one mapping which is onto) between
Z and 2Z. Further, ϕ(x+y) = 2x+y = 2x ·2y = ϕ(x) ·ϕ(y), and ϕ(0) = 20 = 1. So, the
image under ϕ of x+ y is the same as the product of the images of x and y, and the
image of the neutral element of the group (Z,+) is the neutral element of the group
(2Z, · ). Thus, the only difference between (2Z, · ) and (Z,+) is that the elements as
well as the operations have different names. This leads to the following:

Definition. Let (G1, ◦ ) and (G2, • ) be two groups. If there exists a bijection ϕ
between G1 and G2 such that for all x, y ∈ G1 we have

ϕ(x ◦ y) = ϕ(x) •ϕ(y) ,

then the groups (G1, ◦ ) and (G2, • ) are called isomorphic, denoted by G1
∼= G2,

and the mapping ϕ is called an isomorphism.

In other words, two groups are isomorphic if they are essentially the same groups
(up to renaming the elements and the operation). In particular, all groups with 1
element are isomorphic.
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2.2. Some infinite non-abelian groups. Let M(n) be the set of all n by n matrices
with real numbers as entries. Notice that

(
M(n), ·

)
is not a group, even though there

exists a unique neutral element, namely the n by n identity matrix

In :=







1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1






.

Let GL(n) :=
{
A ∈ M(n) : det(A) 6= 0

}
, then

(
GL(n), ·

)
is a group, the so-called

general linear group. It is easy to see that GL(1) is isomorphic to (R∗, · ), but for
n > 1, GL(n) is a non-abelian group, consider for example

(
1 2
0 2

)(
0 1
3 1

)

=

(
6 3
6 2

)

,

(
0 1
3 1

)(
1 2
0 2

)

=

(
0 2
3 8

)

.

The so-called special linear group is SL(n) :=
{
A ∈ GL(n) : det(A) = 1

}
, where

the operation is again matrix-multiplication. It is easy to see that SL(1) is isomorphic
to

(
{1}, ·

)
, but for n > 1, SL(n) is non-abelian group.

The so-called orthogonal group is O(n) :=
{
A ∈ M(n) : AAt = In

}
. It is easy

to see that O(1) is isomorphic to
(
{−1, 1}, ·

)
, but for n > 1, O(n) is a non-abelian

group.
The so-called special orthogonal group is SO(n) :=

{
A ∈ O(n) : det(A) = 1

}
.

It is easy to see that SO(1) is isomorphic to
(
{1}, ·

)
. Further, each A ∈ SO(2) is of

the form

A =

(
cos(α) − sin(α)
sin(α) cos(α)

)

for some α ∈ R, and therefore, the matrices in SO(2) are just rotations and the group
SO(2) is abelian. In fact, SO(2) is isomorphic to (U, · ). But for n > 2, SO(n) is a
non-abelian group, consider for example the matrices





0 −1 0
1 0 0
0 0 1



 and





1 0 0
0 0 −1
0 1 0



 .

2.3. Some finite abelian groups. For a positive integer n, consider the set Cn :=
{a0, a1, . . . , an−1}. On Cn define a binary operation as follows:

aℓam =

{

aℓ+m if ℓ+m < n,

a(ℓ+m)−n if ℓ+m ≥ n.

For every positive integer n, Cn is an abelian group: First note that every x ∈ Z
is of the form x = sn + r, where s ∈ Z and r ∈ {0, 1, . . . , n − 1}, and we write
x ≡ r (mod n). In fact, aℓam = ar, where ℓ + m ≡ r (mod n). Thus, ak

(
aℓam

)
=

(
akaℓ

)
am = ar, where r is such that k+ ℓ+m ≡ r (mod n), and amaℓ = aℓam, which

implies that the operation is associative and commutative.
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The element a0 is a neutral element, since a0am = a0+m = am. Further, for all
s ∈ Z we have an = asn = a0, since sn ≡ 0 (mod n). The inverse of am ∈ Cn is an−m,
since aman−m = am+(n−m) = an = a0.

Definition. The group Cn is called the cyclic group of order n (since |Cn| = n).

2.4. Some finite non-abelian groups. Let X, Y and Z be three sets and let f :
X → Y and g : Y → Z be two functions. The composition of f and g is a function
from X to Z defined as follows:

(g◦f)(x) := g
(
f(x)

)
.

Let X = {1, 2, . . . , n} be a finite set and let Sn be the set of all bijections σ : X →
X . The composition “ ◦ ” of two bijections σ, τ : X → X is again a bijection, and
therefore, “ ◦ ” is a binary operation on Sn.

The operation “ ◦ ” is associative:
For every x ∈ X and any σ, τ, π ∈ Sn we have

(
(σ ◦ τ) ◦ π

)
(x) =

(
σ ◦ τ

)(
π(x)

)
= σ

(
τ
(
π(x)

))

(
σ ◦ (τ ◦ π)

)
(x) = σ

(
(τ ◦π)(x)

)
= σ

(
τ
(
π(x)

))

The identity mapping is a bijection and a neutral element of Sn, and the inverse
mapping of a bijection is also a bijection. So, Sn has a neutral element and each
σ ∈ Sn has an inverse, denoted by σ−1, and therefore, Sn is a group.

Definition. The group Sn is called the symmetric group of degree n, or the
permutation group of degree n.

Notice that |Sn| = n!, so, except for n = 1 and n = 2, the order of Sn is strictly
greater than n. Let us consider Sn for small values of n.

S1: |S1| = 1, namely the identity mapping ι : 1 7→ 1. Since every group with just one
element is isomorphic to C1, we have S1

∼= C1.

S2: |S2| = 2, namely the identity mapping ι and the permutation σ :

{
1 7→ 2
2 7→ 1

.

Since every group with just two elements is isomorphic to C2, we have S2
∼= C2.

S3: |S3| = 6. Consider the permutations σ :







1 7→ 2
2 7→ 1
3 7→ 3

and τ :







1 7→ 1
2 7→ 3
3 7→ 2

.

Now,

(σ ◦ τ)(1) = σ
(
τ(1)

)
= σ(1) = 2 ,

(τ ◦ σ)(1) = τ
(
σ(1)

)
= τ(2) = 3 ,

thus, S3 is a non-abelian group. In fact, for every n ≥ 3, Sn is a non-abelian group.

Let us now consider a special class of groups, namely the group of rigid motions of
a two or three-dimensional solid.

Definition. A rigid motion of a solid S is a bijection ϕ : S → S which has the
following property: The solid S can be moved through 3-dimensional Euclidean space
in such a way that it does not change its shape and when the movement stops, each
point p ∈ S is in position ϕ(p).
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Since rigid motions are special kinds of bijections, for every solid S, the set of all
rigid motions of S together with composition (as operation) is a group. In this course
we will investigate in depth the groups of rigid motions of the five Platonic solids,
which are tetrahedron, cube, octahedron, dodecahedron, and icosahedron. But first,
let us consider a simpler solid, namely a regular n-sided polygon.

Definition. The group of rigid motions of a regular n-sided polygon (for n ≥ 3) is
called the dihedral group of degree n and is denoted by Dn.

Let us consider first D3: D3 has 6 elements, namely the identity ι, two non-trivial
rotations say ρ1 and ρ2, and three reflections say σ1, σ2, and σ3. If we label the
vertices of the regular triangle with 1, 2, and 3, then every permutation of {1, 2, 3}
corresponds to an element of D3, and since |D3| = 6 = |S3|, D3

∼= S3. In particular,
D3 is a non-abelian group. In fact, for every n ≥ 3, Dn is a non-abelian group.

2.5. Representing finite groups by multiplication tables. Let S = {a, b, c, . . .}
be a finite set with some binary operation “ ◦ ”. Then the following table is the
so-called multiplication table of S:

◦ a b c · · ·
a a ◦ a a ◦ b a ◦ c · · ·
b b ◦ a b ◦ b b ◦ c · · ·
c c ◦ a c ◦ b · · · · · ·
...

...
...

...
...

For example, the multiplication table of C4 = {e, a, a2, a3}, where e = a0, is as follows:

◦ e a a2 a3

e e a a2 a3

a a a2 a3 e
a2 a2 a3 e a
a3 a3 e a a2

A multiplication table of a group is often called its Cayley table. Note that not
every multiplication table is a Cayley table (see Hw3.Q11).

2.6. Products of groups. Let (G, ∗G) and (H, ∗H) be any groups (not necessarily
finite groups), then

G×H :=
{
〈x, y〉 : x ∈ G and y ∈ H

}
.

On the set G×H we define an operation “ ◦ ” as follows:

〈x1, y1〉 ◦ 〈x2, y2〉 := 〈x1 ∗G x2, y1 ∗H y2〉 .

It is easy to verify that (G ×H, ◦) is a group and that it is abelian if and only if G
and H are both abelian (see Hw3.Q12).
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Let us consider the abelian group C2 ×C2: By definition we have |C2 ×C2| = 4. Let
C2 = {a0, a1} and let e = 〈a0, a0〉, x = 〈a0, a1〉, y = 〈a1, a0〉, and z = 〈a1, a1〉. In this
notation, C2 × C2 has the following Cayley table:

◦ e x y z
e e x y z
x x e z y
y y z e x
z z y x e

It is easy to see that C2 × C2 is not isomorphic to C4 and we will see later that
these two groups are essentially the only groups of order 4. If p and q are positive
integers such that gcd(p, q) = 1, then Cp×Cq

∼= Cpq (see Hw3.Q14.a), but in general,
Cp × Cq is not isomorphic to Cpq, e.g., let p = q = 2 (see also Hw3.Q14.b).
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3. Subgroups

Definition. Let G be a group. A non-empty set H ⊆ G is a subgroup of G if for
all x, y ∈ H , x y−1 ∈ H .

Notation. If H is a subgroup of G, then we write H 6 G. If H 6= G is a subgroup
of G, then we write H < G and call H a proper subgroup of G.

Proposition 3.1. If H 6 G, then H is a group.

Proof. We have to show that H satisfies (A0), (A1), and (A2):

(A1) Let x ∈ H , then by definition, xx−1 = e ∈ H , so, the neutral element e ∈ H .
(A2) Let x ∈ H , then by definition e x−1 = x−1 ∈ H .
(A0) Let x, y ∈ H , then also y−1 ∈ H , and by definition x(y−1)−1 = xy ∈ H .

⊣

Definition. The subgroups {e} and G are called the trivial subgroups of G.

Proposition 3.2. The intersection of arbitrarily many subgroups of a group G is
again a subgroup of G.

Proof. Let Λ be any set and assume that for every λ ∈ Λ, Hλ 6 G. Let

H =
⋂

λ∈Λ

Hλ ,

and take any x, y ∈ H . Then, for every λ ∈ Λ, x, y ∈ Hλ, and thus, for every λ ∈ Λ,
x y−1 ∈ Hλ. Thus, x y

−1 ∈ H , and since x, y ∈ H were arbitrary, H 6 G. ⊣

Definition. Let G be a group with neutral element e and let x ∈ G. Then the least
positive integer n such that xn = e is called the order of x, denoted by ord(x). If
there is no such integer, then the order of x is “∞”.

The order of an element x of a finite group G is well-defined: Because the set
{x1, x2, x3, . . .} ⊆ G is finite, there are 0 < n < m such that xn = xm = xn xm−n,
which implies e = xm−n, where m− n is a positive integer.

Definition. For a group G and a set X ⊆ G, let
〈
X
〉
:=

⋂

H6G
X⊆H

H .

By Proposition 3.2,
〈
X
〉
is a subgroup of G and it is called the subgroup generated

by X . If X = {x}, then we write just 〈x〉 instead of
〈
{x}

〉
.

Fact 3.3. If G is a group and x ∈ G of order n, then 〈x〉 is a cyclic group (i.e.,
subgroup of G) of order n.

Proof. The group 〈x〉 consists of the elements x1, x2, . . . , xn, where xn = e. On the
other hand, {x1, x2, . . . , xn} is a cyclic group of order n. ⊣

This leads to the following:

Corollary 3.4. Let G be a group. If x ∈ G is of finite order, then ord(x) = |〈x〉|.

Theorem 3.5. Subgroups of cyclic groups are cyclic.
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Proof. Let Cn = {a0, a1, . . . , an−1} be a cyclic group of order n (for some positive
integer n) and let H 6 Cn. If H = {a0}, then we are done. So, let us assume that
am ∈ H , where m ∈ {1, . . . , n − 1}. Take the least such m. Evidently, we have
〈am〉 6 H . Now, let h ∈ H be arbitrary. Since h ∈ Cn, there is a k ∈ {0, 1, . . . , n−1}
such that h = ak. Write k in the form k = ℓm + r, where ℓ, r ∈ N and 0 ≤ r < m.
Now,

(am)−1 · · · (am)−1

︸ ︷︷ ︸

ℓ-times

= (am)−ℓ ∈ H ,

and therefore, h(am)−ℓ = ak(am)−ℓ = ar ∈ H . Thus, by the choice of m, we must
have r = 0, which implies that h ∈ 〈am〉. Since h ∈ H was arbitrary, this implies
H 6 〈am〉 and completes the proof. ⊣

Definition. For H 6 G and x ∈ G, let

xH := {xh : h ∈ H} and Hx := {hx : h ∈ H} .

The sets xH and Hx are called left cosets and right cosets ofH in G (respectively).

In the sequel, left and right cosets will play an important role and we will use the
following lemma quite often.

Lemma 3.6 (left-version). Let G be a group, H 6 G and let x, y ∈ G be arbitrary.
(a) |xH| = |H|, in other words, there exists a bijection between H and xH .
(b) x ∈ xH .
(c) xH = H if and only if x ∈ H .
(d) xH = yH if and only if x−1y ∈ H .
(e) xH = {g ∈ G : gH = xH}.

Proof. (a) Define the function ϕx : H → xH by stipulating ϕx(h) := xh. We have to
show that ϕx is a bijection. If ϕx(h1) = ϕx(h2) for some h1, h2 ∈ H , i.e., xh1 = xh2,
then xh1h

−1
2 = xh2h

−1
2 = xe = x, which implies h1h

−1
2 = e, and consequently, h1 = h2.

Thus, the mapping ϕx is injective (i.e., one-to-one). On the other hand, every element
in xH is of the form xh (for some h ∈ H), and since xh = ϕx(h), the mapping ϕx is
also surjective (i.e., onto), thus, ϕx is a bijection between H and xH .

(b) Since e ∈ H , xe = x ∈ xH .

(c) If xH = H , then, since e ∈ H , xe = x ∈ H . For the other direction assume that
x ∈ H : Because H is a group we have xH ⊆ H . Further, take any element h ∈ H .
Since x−1 ∈ H we have x−1h ∈ H and therefore xH ∋ x(x−1h) = h, which implies
xH ⊇ H . Thus, we have xH ⊆ H ⊆ xH which shows that xH = H .

(d) If xH = yH , then

x−1xH
︸ ︷︷ ︸

= H

= x−1yH
by (c)
=⇒ x−1y ∈ H .

If x−1y ∈ H , then by (c) we have x−1yH = H , and therefore, xx−1yH
︸ ︷︷ ︸

yH

= xH .

(e) If g ∈ xH , then g = xh for some h ∈ H , and hence, gH = xhH = xH . Therefore,
xH ⊆ {g ∈ G : gH = xH}. Conversely, if xH = gH for some g ∈ G, then by (b),
g ∈ xH , which implies {g ∈ G : gH = xH} ⊆ xH and completes the proof. ⊣
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Obviously, there exists also a right-version of Lemma 3.6, which is proved similarly.
As a consequence of Lemma 3.6 (b), combining left-version and right-version, we get:

Corollary 3.7. Let H 6 G, then
⋃

x∈G

xH = G =
⋃

x∈G

Hx .

The following lemma is a consequence of Lemma 3.6 (d):

Lemma 3.8 (left-version). Let H 6 G, then for any x, y ∈ G we have either xH = yH
or xH ∩ yH = ∅.

Proof. Either xH ∩ yH = ∅ (and we are done) or there exists a z ∈ xH ∩ yH . If
z ∈ xH ∩ yH , then z = xh1 = yh2 (for some h1, h2 ∈ H), thus, x−1z ∈ H and
z−1y ∈ H . Since H is a group, we get (x−1z)(z−1y) = x−1y ∈ H , which implies by
Lemma 3.6 (d) that xH = yH . ⊣

Obviously, there exists also a right-version of Lemma 3.8, which is proved similarly.

Definition. For a subgroup H 6 G let

G/H := {xH : x ∈ G} and H\G := {Hx : x ∈ G} .

Definition. A partition of a set S is a collection of pairwise disjoint non-empty
subsets of S such that the union of these subsets is S.

As a consequence of Lemma 3.6 (a), Corollary 3.7 and Lemma 3.8 (left-versions and
right-versions) we get:

Corollary 3.9. Let H 6 G, then G/H as well as H\G is a partition of G, where
each part has the same order as H .

Definition. Let H 6 G, then |G/H| = |H\G| is called the index of H in G and is
written |G : H|.

As a consequence of Corollary 3.9 we get:

Corollary 3.10. Let G be a group and let H 6 G. If |G : H| = 2, then for all
x ∈ G we have xH = Hx.

Proof. If x ∈ H , then xH = Hx = H (since H is a group). Now, let x ∈ G
be not in H . By Corollary 3.9 we have G = H ∪ xH and G = H ∪ Hx, where
H ∩ xH = ∅ = H ∩Hx, which implies xH = Hx. ⊣

If H 6 G, then in general we do not have xH = Hx (for all x ∈ G). For example,
let C be the cube-group and let D4 be the dihedral group of degree 4. It is easy to
see that D4 6 C and that the index of D4 in C is 3. Now, holding a cube in your
hand, it should not take too long to find a rotation ρ ∈ C such that ρD4 6= D4ρ.

Theorem 3.11. Let G be a (finite) group and let H 6 G, then |G| = |G : H| · |H|.
In particular, for finite groups we get |H| divides |G|.

Proof. Consider the partition G/H of G. This partition has |G : H| parts and each
part has size |H| (by Lemma 3.6 (a)), and thus, |G| = |G : H| · |H|. In particular, if
|G| is finite, |H| divides |G|. ⊣
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Corollary 3.12. If G is a finite group of order p, for some prime number p, then G
is a cyclic group. In particular, G is abelian.

Proof. For every x ∈ G, 〈x〉 is a subgroup of G, hence, by Theorem 3.11, |〈x〉| divides
p = |G|, which implies |〈x〉| = 1 or |〈x〉| = p. Now, |〈x〉| = 1 iff x = e. So, if x 6= e,
then |〈x〉| = p, which implies 〈x〉 = G. Hence, G is cyclic, and since cyclic groups are
abelian, G is abelian. ⊣

Definition. A transversal for a partition is a set which contains exactly one element
from each part of the partition. For H 6 G, a transversal for the partition G/H
(H\G) is called a left (right) transversal for H in G.

For example, let G = (C∗, · ) and H = (U, · ), where U = {z ∈ C : |z| = 1}. First
notice that the set C∗/U consists of concentric circles. So, an obvious (left or right)
transversal for U in C∗ is R+, which is even a subgroup of C∗. Another (left or right)
transversal for U in C∗ is R− = {x ∈ R : x < 0}, which is not a subgroup of C∗, but
there are many other choices of transversals available.

If H is a subgroup of G and x ∈ G, then, as we have seen above, in general
xH 6= Hx. This implies that a left transversal for H in G is not necessarily also a
right transversal. However, by Lemma 3.6, it is straightforward to transform a left
transversal into a right transversal:

Proposition 3.13. Let H 6 G and let {a0, a1, . . .} be a left transversal for H in G,
then {a−1

0 , a−1
1 , . . .} is a right transversal for H in G.

Proof. Let x and y be two distinct elements of {a0, a1, . . .}. Since {a0, a1, . . .} is a left
transversal for H in G, we have xH 6= yH , and by Lemma 3.6 (left and right version)
we get:

x−1y /∈ H ⇐⇒ (x−1y)−1 /∈ H ⇐⇒ y−1x /∈ H ⇐⇒

⇐⇒ H 6= Hy−1x ⇐⇒ Hx−1 6= Hy−1 .

Hence, xH 6= yH if and only if Hx−1 6= Hy−1, and since x and y were arbitrary, this
shows that {a−1

0 , a−1
1 , . . .} is a right transversal for H in G. ⊣
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4. The Groups (Zm, + ) and (Z∗
p, · )

For m ∈ Z, let mZ = {mx : x ∈ Z}, then, by Hw2.Q6.(d), mZ 6 (Z,+). In the
sequel we investigate the sets Z/mZ for positive integers m.
The set Z/mZ contains m pairwise disjoint “copies” of mZ and every set in Z/mZ

is of the form x+mZ, for some x ∈ Z. If x+mZ = y+mZ, then, by Lemma 3.6 (d),
x− y ∈ mZ, so, x− y = km for some k ∈ Z. Hence,

x+mZ = y +mZ ⇐⇒ x = km+ y ⇐⇒ x ≡ y (mod m) .

Instead of x ≡ y (mod m) we write just x ≡m y.
It is easy to see that Z/mZ = {0 +mZ, 1 +mZ, . . . , (m− 1) +mZ}, and hence,

Zm := {0, 1, . . . , m− 1}

is a transversal for mZ in Z. In particular, for every x+mZ ∈ Z/mZ there is exactly
one a ∈ Zm such that x+mZ = a+mZ, namely the unique a ∈ Zm such that x ≡m a.
Let us define an operation “+ ” on Z/mZ as follows:

+ : Z/mZ × Z/mZ → Z/mZ
(x+mZ , y +mZ) 7→ (x+ y) +mZ

It remains to show that “+ ” is an operation on Z/mZ, or in other words, that “+ ”
is well defined:

Fact 4.1. If x+mZ = x′ +mZ and y+mZ = y′+mZ, then (x+mZ) + (y+mZ) =
(x′ +mZ) + (y′ +mZ).

Proof. If x+mZ = x′+mZ and y+mZ = y′+mZ, then, by Lemma 3.6 (d), x′−x ∈ mZ
and y′ − y ∈ mZ. Now, (x + mZ) + (y + mZ) = (x + y) + mZ, and therefore, by
Lemma 3.6 (c), (x+y)+mZ = (x+y)+

(
(x′−x)+(y′−y)+mZ

)
= (x′+y′)+mZ =

(x′ +mZ) + (y′ +mZ). Thus, (x+mZ) + (y +mZ) = (x′ +mZ) + (y′ +mZ), which
shows that the operation “+ ” on Z/mZ is well defined. ⊣

The following fact is straightforward:

Fact 4.2.
(
Z/mZ,+

)
is an abelian group.

Since every element of Z/mZ is of the form a+mZ for some a ∈ Zm, let us identify
the set Z/mZ with the set Zm. This identification induces an operation “+ ” on Zm:

+ : Zm × Zm → Zm

(a , b) 7→ a+ b =: c

where c ∈ Zm is such that a+ b ≡m c. So, by Fact 4.2, (Zm,+) is an abelian group.

Since every integer x ∈ Z belongs to exactly one coset of Z/mZ, each x ∈ Z
corresponds to exactly one element of Zm, say to (x)m ∈ Zm. Now, by Fact 4.1, if
(x)m = (x′)m and (y)m = (y′)m, which is the same as x ≡m x′ and y ≡m y′, then
(x+ y)m = (x′ + y′)m. Moreover, we get

(x)m = (x′)m and (y)m = (y′)m =⇒ (x · y)m = (x′ · y′)m ,

or in other words,

x ≡m x′ and y ≡m y′ =⇒ x · y ≡m x′ · y′ .
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Proposition 4.3. The group (Zm,+) is a cyclic group of order m.

Proof. By definition, |Zm| = m. Now, since the order of 1 is m, we have 〈1〉 = Zm

which implies that Zm is cyclic. ⊣

Multiplication is also an operation on Zm and for all a, b, c ∈ Zm we have a·(b+c) =
(a · b) + (a · c), which is called the distributive law.

In the following, let m ≥ 2 and let Z∗
m := Zm \ {0} = {1, . . . , m− 1}. Is (Z∗

m, · ) a
group?

Lemma 4.4. (Z∗
m, · ) is a group if and only if multiplication is an operation on Z∗

m.

Proof. (⇐) If multiplication is an operation on Z∗
m, then it is obviously associative

and even commutative. Let us assume that multiplication is an operation on Z∗
m.

Suppose a · b ≡m a · c (for some a, b, c ∈ Z∗
m), then (a · b) − (a · c) ≡m 0, and thus,

by the distributive law, a · (b − c) ≡m 0. Now, 0 /∈ Z∗
m, and since we assumed that

multiplication is an operation on Z∗
m, we must have (b − c) ≡m 0, which implies

b ≡m c, and since b, c ∈ Zm, we get b = c. Because multiplication is commutative,
this shows that (Z∗

m, · ) is cancellative. So, by Proposition 1.5 (since Z∗
m is finite),

(Z∗
m, · ) is a group.

(⇒) This is obvious. ⊣

Theorem 4.5. (Z∗
p, · ) is a group if and only if p is a prime number.

Proof. (⇒) If p is not a prime number, then there are n,m ∈ Z∗
p such that p = n ·m.

Thus, n ·m = p ≡p 0 /∈ Z∗
p, which implies that multiplication is not an operation on

Z∗
p. Hence, by Lemma 4.4, (Z∗

p, · ) is not a group.
(⇐) Suppose p is prime and let n,m ∈ Z∗

p. So, 1 ≤ n,m < p, which implies that p
neither divides n nor m. Now, since p is prime, p ∤ n ·m, which is the same as saying
n ·m 6≡m 0. Hence, multiplication is an operation on Z∗

p and by Lemma 4.4, (Z∗
p, · )

is a group. ⊣

In fact, for every prime number p, (Z∗
p, · ) is even a cyclic group, or in other words,

there is always an element in (Z∗
p, · ) of order p− 1 (we omit the proof).

Lemma 4.6. If p is prime, then for each k ∈ Z∗
p we have kp−1 ≡p 1 .

Proof. We work in (Z∗
p, · ). Let k ∈ Z∗

p, then 〈k〉 is a cyclic subgroup of (Z∗
p, · ), and

since |(Z∗
p, · )| = p− 1, by Theorem 3.11 we get that ord(k) = |〈k〉| divides p− 1. So,

there is some positive integer ℓ such that ℓ · ord(k) = p− 1. Now, in Z∗
p we have

kp−1 = kℓ·ord(k) =
(
kord(k)

)ℓ
= 1ℓ = 1 ,

which implies kp−1 ≡p 1 . ⊣

Let us conclude this section with Fermat’s little theorem:

Theorem 4.7. If p is prime and n is a positive integer such that p ∤ n, then

p
∣
∣ np−1 − 1 .

Proof. We work in (Z∗
p, · ). |(Z∗

p, · )| = p − 1 and by Lemma 4.6, for every k ∈ Z∗
p

we have kp−1 ≡p 1 . Now, if k ≡p n, then kp−1 ≡p n
p−1. In particular, if n 6≡p 0

(or equivalently, if p ∤ n), then np−1 ≡p 1. Hence, np−1 − 1 ≡p 0, or in other words,
p
∣
∣ np−1 − 1 . ⊣
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5. Normal Subgroups

Before we define the notion of a normal subgroup, let us prove the following:

Fact 5.1. Let G be a group. If H 6 G and x ∈ G, then

xHx−1 = {xhx−1 : h ∈ H}

is a subgroup of G.

Proof. Let xh1x
−1 and xh2x

−1 be in xHx−1. Then
(
xh2x

−1
)−1

= xh−1
2 x−1 and

(
xh1x

−1
)(
xh−1

2 x−1
)
= x

(
h1h

−1
2

)
x−1 ∈ xHx−1. So, by definition, xHx−1 6 G. ⊣

This leads to the following definition.

Definition. Suppose that G is a group and that N 6 G, then N is called a normal
subgroup of G if for all x ∈ G we have

xNx−1 = N ,

or equivalently, if for all x ∈ G, xN = Nx.

In particular, the trivial subgroups are normal and all subgroups of an abelian group
are normal.

Notation. If N 6 G (N < G) is a normal subgroup of G, then we write N E G
(N ⊳ G).

The following is just a consequence of Corollary 3.10:

Fact 5.2. If H < G and |G : H| = 2, then H ⊳ G.

Proof. By Corollary 3.10 we know that if |G : H| = 2, then for all x ∈ G we have
xH = Hx, and therefore H ⊳ G. ⊣

Proposition 5.3. If N 6 G, then N E G if and only if for all x ∈ G and all n ∈ N
we have

xnx−1 ∈ N .

Proof. If N E G, then xNx−1 = N (for all x ∈ G), thus, xnx−1 ∈ N for all x ∈ G
and n ∈ N .
On the other hand, if xnx−1 ∈ N for all x ∈ G and n ∈ N , then xNx−1 ⊆ N (for all
x ∈ G). Further, replacing x by x−1 we get

N = x (x−1Nx)
︸ ︷︷ ︸

⊆N

x−1 ⊆ xNx−1 .

Hence, xNx−1 = N (for all x ∈ G). ⊣

The following Fact is similar to Proposition 3.2:

Fact 5.4. If K,H E G, then (K ∩H) E G.

Proof. If K,H E G, then, by Proposition 5.3, for all x ∈ G and n ∈ K ∩ H we
have xnx−1 ∈ K (since K E G) and xnx−1 ∈ H (since H E G), and therefore,
xnx−1 ∈ K ∩H (for all x ∈ G and n ∈ K ∩H). ⊣
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Notice that if H ⊳ K ⊳ G, then H is not necessarly a normal subgroup of G. To
see this, let T be the tetrahedron-group, let ρ1, ρ2 and ρ3 be the three elements of
T of order 2, and let ι be the neutral element of T . Further, let H = {ι, ρ1} and
K = {ι, ρ1, ρ2, ρ3}. Since the group K is isomorphic to C2 × C2, it is abelian and
therefore we get H ⊳ K. Further, for each τ ∈ T and ρ ∈ K, τρτ−1 has either order
1 or 2. Thus, τρτ−1 ∈ K, which implies by Proposition 5.3 that K ⊳ T . Finally, it is
not hard to see that H is not a normal subgroup of T .

Let us now give some examples of normal subgroups:

(1) T ⊳ C (since |C : T | = 2).
(2) For n ≥ 3, Cn ⊳ Dn (since |Dn : Cn| = 2).
(3) For n ≥ 1, SO(n) ⊳ O(n) (since |O(n) : SO(n)| = 2).
(4) As we have seen above, T contains a normal subgroup which is isomorphic to

C2 × C2.
(5) For n ≥ 1, SL(n) ⊳ GL(n): For all B ∈ GL(n) and A ∈ SL(n) we have

det
(
BAB−1

)
= det(A) = 1, thus, BAB−1 ∈ SO(n).

Definition. Suppose that G is a group. We define the centre Z(G) of G by

Z(G) :=
{
a ∈ G : ∀x ∈ G(ax = xa)

}
.

In other words, Z(G) consists of those elements of G which commute with every
element of G.

Fact 5.5. Z(G) = G if and only if G is abelian.

Proof. If G is abelian, then for all a ∈ G and for all x ∈ G we have ax = xa, thus,
Z(G) = G. On the other hand, Z(G) = G implies that for all a ∈ G and for all
x ∈ G, ax = xa, thus, G is abelian. ⊣

Fact 5.6.

(a) Z(G) 6 G (see Hw7.Q31.a).
(b) Z(G) E G (see Hw7.Q31.b).
(c) Z(G) is abelian (see Hw7.Q31.c).
(d) If H 6 Z(G), then H E G (see Hw7.Q31.d).

It is possible that the centre of a group is just the neutral element, e.g., Z(T ) = {ι}.

Definition. Let G be a group and let H and K be subgroups of G. If G = HK,
then we say that G is the inner product of H and K.

Proposition 5.7. Let G be a finite group and let H,K 6 G. Then

|HK| =
|H| · |K|

|H ∩K|
.

Proof. First notice that HK =
⋃

h∈H

hK and that (H ∩K) 6 H .

Now, for h1, h2 ∈ H we have

h1K = h2K ⇐⇒ h1h
−1
2 ∈ K ,

and further we have

h1(H ∩K) = h2(H ∩K) ⇐⇒ h1h
−1
2 ∈ (H ∩K) ⇐⇒ h1h

−1
2 ∈ K .
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Therefore,

|HK| =
∣
∣
∣

⋃

h∈H

hK
∣
∣
∣ =

∣
∣H : (H ∩K)

∣
∣ · |K| =

|H|

|H ∩K|
· |K| =

|H| · |K|

|H ∩K|
.

⊣

Notice that if H and K are subgroups of a group G, then HK is not necessarly
a subgroup of G (see Hw7.Q34). On the other hand, if at least one of these two
subgroups is a normal subgroup, then HK is a subgroup of G:

Theorem 5.8. If K 6 G and N E G, then KN = NK 6 G.

Proof. Let us first show that KN = NK: Let k ∈ K and n ∈ N , and let n1 = knk−1

and n2 = k−1nk. Then, since N E G, n1, n2 ∈ N , and further we have

kn = n1k and nk = kn2 ,

which shows that KN = NK. To see that KN 6 G, pick two elements (k1n1) and
(k2n2) of KN . We have to show that (k1n1)(k2n2)

−1 ∈ KN :

(k1n1)(k2n2)
−1 = k1 n1n

−1
2

︸ ︷︷ ︸

=n3∈N

k−1
2 = k1k

−1
2

︸ ︷︷ ︸

=k∈K

k2n3k
−1
2

︸ ︷︷ ︸

=n∈N

= kn ∈ KN .

⊣

Let us give an example for Theorem 5.8: Consider the cube-group C. Let a, b,
and c be the three axes joining centres of opposite faces and let ρa, ρb, ρc ∈ C be the
rotations about the axes a, b, and c respectively through π and let δ ∈ C be the
rotation about the axis a through π/2. Now, let N = 〈{ρa, ρb, ρc}〉 and let K = 〈δ〉.
It is easy to see that K and N are both subgroups of C of order 4. Notice that
K ∼= C4 and that N ∼= C2 × C2, so, K and N are not isomorphic, but they are both
abelian. Let us now show that N is a normal subgroup of C: For this, we consider the
set of axes {a, b, c}. Now, every x ∈ C corresponds to a permutation τx on {a, b, c},
and n ∈ N if and only if τn(a) = a, τn(b) = b, and τn(c) = c, or in other words,
n ∈ N iff n corresponds to the identity permutation on {a, b, c}. For any x ∈ C and
n ∈ N , the permutation τxnx−1 = τxτnτx−1 is the identity permutation on {a, b, c},
and hence, xnx−1 ∈ N , which shows that N ⊳ C. Thus, by Theorem 5.8, KN 6 C.

Since |K ∩N | = 2, by Proposition 5.7 we have |KN | = |K|·|N |
|K∩N |

= 8 and it is not hard

to see that KN ∼= D4.

Proposition 5.9. If K and H are subgroups of the finite group G, |H ∩K| = 1 and
|H| · |K| = |G|, then HK = G = KH .

Proof. Let us just prove that HK = G (to show that KH = G is similar). Since
HK = {hk : h ∈ H and k ∈ K} ⊆ G, HK = G if and only if |HK| = |G|, which
implies that h1k1 = h2k2 if and only if h1 = h2 and k1 = k2. So, let us assume that
h1k1 = h2k2, then h

−1
1 (h1k1)k

−1
2 = h−1

1 (h2k2)k
−1
2 , and hence, k1k

−1
2 = h−1

1 h2 ∈ H ∩K,
but since H ∩K = {e}, this implies that h1 = h2 and k1 = k2. ⊣

The following proposition shows that if K and H are normal subgroups of G such
that |H ∩K| = 1, then the elements of H commute with the elements of K and vice
versa. Notice that this is stronger than just saying KH = HK.
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Proposition 5.10. If K and H are normal subgroups of G and |H ∩ K| = 1, then
for all h ∈ H and all k ∈ K, hk = kh.

Proof. Let h ∈ H and k ∈ K. Consider the element hkh−1k−1 : On the one hand we
have

h

∈H
︷ ︸︸ ︷

kh−1k−1
︸ ︷︷ ︸

∈H

∈ H ,

and on the other hand we have
∈K

︷ ︸︸ ︷

hkh−1k−1
︸ ︷︷ ︸

∈K

∈ K .

Thus, hkh−1k−1 ∈ H ∩ K, and since |H ∩ K| = 1, hkh−1k−1 = e, which implies
kh = hkh−1k−1(kh) = hk. ⊣

Proposition 5.11. If K and H are normal subgroups of G, then KH E G.

Proof. For any x ∈ G, xkhx−1 = (xkx−1)
︸ ︷︷ ︸

∈K

(xhx−1)
︸ ︷︷ ︸

∈H

∈ KH , thus, xKHx−1 = KH .

⊣

Definition. A group G is called simple if it does not contain any non-trivial normal
subgroup.

In particular, any abelian group which has a non-trivial subgroup cannot be sim-
ple, but there are also simple abelian groups, e.g., the cyclic groups Cp, where p is
prime (see Hw7.Q35). An example of a simple group which is not abelian is the
dodecahedron-group D (as we will see later). On the other hand, there are many
non-abelian groups which are not simple groups:

(1) The cube-group C, because T ⊳ C.
(2) Dn for n ≥ 3, because Cn ⊳ Dn.
(3) O(n) for n ≥ 2, because SO(n) ⊳ O(n).
(4) The tetrahedron-group T , because T contains a normal subgroup which is

isomorphic to C2 × C2.
(5) GL(n) for n ≥ 2, because SL(n) ⊳ GL(n).



22

6. The Homomorphism Theorems

In this section, we investigate maps between groups which preserve the group-
operations.

Definition. Let G and H be groups and let ϕ : G → H be a mapping from G to
H . Then ϕ is called a homomorphism if for all x, y ∈ G we have:

ϕ(xy) = ϕ(x)ϕ(y) .

A homomorphism which is also bijective is called an isomorphism.

A homomorphism from G to itself is called an endomorphism.

An isomorphism from G to itself is called an automorphism, and the set of all
automorphisms of a group G is denoted by Aut(G).

Before we show that Aut(G) is a group under compositions of maps, let us prove
that a homomorphism preserves the group structure.

Proposition 6.1. If ϕ : G → H is a homomorphism, then ϕ(eG) = eH and for all
x ∈ G, ϕ(x−1) = ϕ(x)−1.

Proof. Since ϕ is a homomorphism, for all x, y ∈ G we have ϕ(xy) = ϕ(x)ϕ(y).
In particular, ϕ(y) = ϕ(eGy) = ϕ(eG)ϕ(y), which implies ϕ(eG) = eH . Further,
ϕ(eG) = ϕ(xx−1) = ϕ(x)ϕ(x−1) = eH , which implies ϕ(x−1) = ϕ(x)−1. ⊣

Corollary 6.2. If ϕ : G→ H is a homomorphism, then the image of ϕ is a subgroup
of H .

Proof. Let a and b be in the image of ϕ. We have to show that also ab−1 is in the
image of ϕ. If a and b are in the image of ϕ, then there are x, y ∈ G such that
ϕ(x) = a and ϕ(y) = b. Now, by Proposition 6.1 we get

ab−1 = ϕ(x)ϕ(y)−1 = ϕ(x)ϕ(y−1) = ϕ(xy−1) .

⊣

Proposition 6.3. For any group G, the set Aut(G) is a group under compositions
of maps.

Proof. Let ϕ, ψ ∈ Aut(G). First we have to show that ϕ ◦ψ ∈ Aut(G): Since ϕ and
ψ are both bijections, ϕ ◦ψ is a bijection too, and since ϕ and ψ are both homomor-
phisms, we have

(ϕ ◦ψ)(xy) = ϕ
(
ψ(xy)

)
= ϕ

(
ψ(x)ψ(y)

)
=

ϕ
(
ψ(x)

)
ϕ
(
ψ(y)

)
= (ϕ ◦ψ)(x) (ϕ ◦ψ)(y) .

Hence, ϕ ◦ψ ∈ Aut(G). Now, let us show that
(
Aut(G), ◦

)
is a group:

(A0) Let ϕ1, ϕ2, ϕ3 ∈ Aut(G). Then for all x ∈ G we have
(
ϕ1 ◦ (ϕ2 ◦ϕ3)

)
(x) = ϕ1

(
ϕ2 ◦ϕ3)(x)

)
= ϕ1

(
ϕ2

(
ϕ3(x)

))
=

(
ϕ1 ◦ϕ2

)(
ϕ3(x)

)
=

(
(ϕ1 ◦ϕ2) ◦ϕ3

)
(x) ,

which implies that ϕ1 ◦ (ϕ2 ◦ϕ3) = (ϕ1 ◦ϕ2) ◦ϕ3, thus, “ ◦ ” is associative.
(A1) The identity mapping ι on G is of course a bijective homomorphism from G

to itself, and in fact, ι is the neutral element of
(
Aut(G), ◦

)
.
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(A2) Let ϕ ∈ Aut(G), and let ϕ−1 be such that for every x ∈ G, ϕ
(
ϕ−1(x)

)
= x.

It is obvious that ϕ ◦ϕ−1 = ι and it remains to show that ϕ−1 is a homomorphism:
Since ϕ is a homomorphism, for all x, y ∈ G we have

ϕ−1(xy) = ϕ−1
(
ϕ(ϕ−1(x))
︸ ︷︷ ︸

=x

ϕ(ϕ−1(y))
︸ ︷︷ ︸

=y

)
= ϕ−1

(
ϕ
(
ϕ−1(x)ϕ−1(y)

))
= ϕ−1(x)ϕ−1(y) ,

which shows that ϕ−1 ∈ Aut(G). ⊣

Definition. If ϕ : G → H is a homomorphism, then
{
x ∈ G : ϕ(x) = eH

}
is called

the kernel of ϕ and is denoted by ker(ϕ).

Theorem 6.4. Let ϕ : G→ H be a homomorphism, then ker(ϕ) E G.

Proof. First we have to show that ker(ϕ) 6 G: If a, b ∈ ker(ϕ), then

ϕ(ab−1) = ϕ(a)ϕ(b−1) = ϕ(a)ϕ(b)−1 = eH e
−1
H = eH ,

thus, ab−1 ∈ ker(ϕ), which implies ker(ϕ) 6 G.

Now we show that ker(G) E G: Let x ∈ G and a ∈ ker(ϕ), then

ϕ(xax−1) = ϕ(x)ϕ(a)ϕ(x)−1 = ϕ(x) eH ϕ(x)
−1 = ϕ(x)ϕ(x)−1 = eH ,

thus, xax−1 ∈ ker(ϕ), which implies ker(ϕ) E G. ⊣

Let us give some examples of homomorphisms:

(1) The mapping
ϕ : (R,+) → (R+, · )

x 7→ ex

is an isomorphism, and ϕ−1 = ln.

(2) Let n be a positive integer. Then

ϕ : (O(n), · ) →
(
{1,−1}, ·

)

A 7→ det(A)

is a surjective homomorphism and ker(ϕ) = SO(n). Further, for n = 1, ϕ is
even an isomorphism.

(3) The mapping
ϕ : R3 → R2

(x, y, z) 7→ (x, z)

is a surjective homomorphism and ker(ϕ) =
{
(0, y, 0) : y ∈ R

}
.

(4) Let n ≥ 3 be an integer, let Cn = {a0, . . . , an−1}, and let ρ ∈ Dn be the rota-
tion through 2π/n. Then ϕ : Cn → Dn, defined by ϕ(ak) := ρk is an injective
homomorphism from Cn into Dn. Thus, Cn is isomorphic to a subgroup of
Dn.
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(5) Let n ≥ 3 be an integer. For any x ∈ Dn, let

sg(x) =

{

1 if x is a rotation,

−1 if x is a reflection,

then
ϕ : Dn →

(
{1,−1}, ·

)

x 7→ sg(x)

is a surjective homomorphism.

(6) The mapping
ϕ : (Z12,+) → (Z12,+)

x 7→ 4x

is an endomorphism of (Z12,+), where ker(ϕ) = {0, 3, 6, 9} and the image of
ϕ is {0, 4, 8}.

(7) For every r ∈ Q∗, the mapping

ϕ : (Q,+) → (Q,+)

q 7→ rq

is an automorphism of (Q,+).

(8) Let C2 × C2 = {e, a, b, c}, then every permutation of {a, b, c} is a bijective
homomorphism from C2 ×C2 to itself. Hence, Aut(C2 × C2) is isomorphic to
S3 (or to D3).

In order to define an operation on the set G/N , where N E G, we need the following:

Fact 6.5. If N E G, then for all x, y ∈ G, (xN) (yN) = (xy)N .

Proof. Since N is a normal subgroup of G, we have

(xN) (yN) =
(
x(yNy−1

︸ ︷︷ ︸

=N

)
)
(yN) = (xy)(NN) = (xy)N .

⊣

This leads to the following:

Proposition 6.6. If N E G, then the set G/N = {xN : x ∈ G} is a group under the
operation (xN) (yN) := (xy)N .
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Proof. First we have to show that the operation (xN) (yN) is well-defined: If (xN) =
(x̃N) and (yN) = (ỹN), then, by Lemma 3.6 (d), x−1x̃, y−1ỹ ∈ N . Now, since N is a
normal subgroup of G,

(xy)−1(x̃ỹ) = y−1 (x−1x̃
︸︷︷︸

∈N

) ỹ ∈ y−1Nỹ = y−1N(y
︸ ︷︷ ︸

=N

y−1)ỹ = N(y−1ỹ) = N ,

which implies (xN) (yN) = (xy)N = (x̃ỹ)N = (x̃N) (ỹN).
Now, let us show that G/N is a group:
(A0) (xN)

(
(yN) (zN)

)
=

(
x(yz)

)
N =

(
(xy)z

)
N =

(
(xN) (yN)

)
(zN).

(A1) For all x ∈ G we have

(eN) (xN) = (ex)N = xN ,

therefore, eN = N is the neutral element of G/N .
(A2) For all x ∈ G we have

(xN) (x−1N) = (xx−1)N = eN = N = (x−1x)N = (x−1N) (xN) ,

therefore, (xN)−1 = (x−1N). ⊣

For example, let C be the cube-group and let N be the normal subgroup of C which
is isomorphic to C2×C2. Then, by Proposition 6.6, C/N is a group, and in fact, C/N
is isomorphic to S3 (see Hw9.Q41).

Lemma 6.7. If N E G, then

π : G → G/N

x 7→ xN

is a surjective homomorphism, called the natural homomorphism from G onto G/N ,
and ker(π) = N .

Proof. For all x, y ∈ G we have π(xy) = (xy)N = (xN) (yN) = π(x) π(y), thus, π is
a homomorphism. Further, let xN ∈ G/N , then π(x) = xN , which shows that π is
surjective. Finally, by Lemma 3.6 (c), ker(π) = {x ∈ G : xN = N} = N . ⊣

By Theorem 6.4 we know that if ϕ : G→ H is a homomorphism, then ker(ϕ) E G.
On the other hand, by Lemma 6.7, we get the following:

Corollary 6.8. If N E G, then there exists a group H and a homomorphism
ϕ : G→ H such that N = ker(ϕ).

Proof. Let H = G/N and let ϕ be the natural homomorphism from G onto H . ⊣

Theorem 6.9 (First Isomorphism Theorem). Let ψ : G → H be a surjective homo-
morphism, let N = ker(ψ) E G and let π : G→ G/N be the natural homomorphism
from G onto G/N . Then there is a unique isomorphism ϕ : G/N → H such that
ψ = ϕ ◦ π. In other words, the following diagram “commutes”:

G

��

ψ
// H

π

G/N

ϕ

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
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Proof. Define ϕ : G/N → H by stipulating ϕ(xN) := ψ(x) (for every x ∈ G). Then
ψ = ϕ ◦ π and it remains to be shown that ϕ is well-defined, a bijective homomorphism
and unique.

ϕ is well-defined: If xN = yN , then x−1y ∈ N (by Lemma 3.6 (d)). Thus, since
N = ker(ψ), ψ(x−1y) = eH and since ψ is a homomorphism we have eH = ψ(x−1y) =
ψ(x)−1 ψ(y), which implies ψ(x) = ψ(y). Therefore, ϕ(xN) = ψ(x) = ψ(y) = ϕ(yN).

ϕ is a homomorphism: Let xN, yN ∈ G/N , then

ϕ
(
(xN)(yN)

)
= ϕ

(
(xy)N

)
= ψ(xy) = ψ(x)ψ(y) = ϕ(xN)ϕ(yN) .

ϕ is injective:

ϕ(xN) = ϕ(yN) ⇐⇒ ψ(x) = ψ(y) ⇐⇒

⇐⇒ eH = ψ(x)−1 ψ(y) = ψ(x−1)ψ(y) = ψ(x−1y) ⇐⇒

⇐⇒ x−1y ∈ N ⇐⇒ xN = yN .

ϕ is surjective: Since ψ is surjective, for all z ∈ H there is an x ∈ G such that
ψ(x) = z, thus, ϕ(xN) = z.

ϕ is unique: Assume towards a contradiction that there exists an isomorphism ϕ̃ :
G/N → H different from ϕ such that ϕ̃ ◦ π = ψ. Then there is a coset xN ∈ G/N
such that ϕ̃(xN) 6= ϕ(xN), which implies

ψ(x) = (ϕ̃ ◦ π)(x) = ϕ̃
(
π(x)

)
= ϕ̃(xN) 6= ϕ(xN) = ϕ

(
π(x)

)
= (ϕ ◦ π)(x) = ψ(x) ,

a contradiction. ⊣

For example, let m be a positive integer and let Cm = {a0, . . . , am−1} be the cyclic
group of order m. Further, let ψ : Z → Cm, where ψ(k) := ak. Then ψ is a
surjective homomorphism from Z to Cm and ker(ψ) = mZ. Thus, by Theorem 6.9,
Z/mZ and Cm are isomorphic and the isomorphism ϕ : Z/mZ → Cm is defined by
ϕ(k +mZ) := ak.

Let us consider some other applications of Theorem 6.9:

(1) Let n be a positive integer. Then

ψ : (O(n), · ) →
(
{1,−1}, ·

)

A 7→ det(A)

is a surjective homomorphism with ker(ψ) = SO(n), and thus, O(n)/ SO(n)
and {1,−1} are isomorphic (where {1,−1} ∼= C2).

(2) Let n be a positive integer and let GL(n)+ = {A ∈ GL(n) : det(A) > 0}.
Then

ψ : (GL(n)+, · ) → (R+, · )

A 7→ det(A)

is a surjective homomorphism with ker(ψ) = SL(n), and thus, GL(n)+/ SL(n)
and R+ are isomorphic.
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(3) The mapping
ψ : (C∗, · ) → (R+, · )

z 7→ |z|

is a surjective homomorphism with ker(ψ) = U = {z ∈ C : |z|}, and thus,
C∗/U and R+ are isomorphic.

(4) The mapping
ψ : R3 → R2

(x, y, z) 7→ (x, z)

is a surjective homomorphism with ker(ψ) =
{
(0, y, 0) : y ∈ R

}
∼= R, and

thus, R3/R and R2 are isomorphic.

(5) The mapping
ψ : (Z12,+) → (Z3,+)

x 7→ x (mod 3)

is a surjective homomorphism with ker(ψ) = {0, 3, 6, 9} = 3Z12, and thus,
Z12/3Z12 and Z3 are isomorphic.

Theorem 6.10 (Second Isomorphism Theorem). Let N E G and K 6 G. Then

(1) KN = NK 6 G.
(2) N E KN .
(3) (N ∩K) E K.
(4) The mapping

ϕ : K/(N ∩K) → KN/N

x(N ∩K) 7→ xN

is an isomorphism.

Proof. (1) This is Theorem 5.8.

(2) Since KN 6 G and N ⊆ KN , N 6 KN . Hence, since N E G, N E KN .

(3) Let x ∈ K and a ∈ N ∩K. Then xax−1 belongs to K, since x, a ∈ K, but also to
N , since N E G, thus, xax−1 ∈ N ∩K.

(4) Let ψ : K → KN/N be defined by stipulating ψ(k) := kN . Then ψ is a surjective
homomorphism and ker(ψ) = {k ∈ K : k ∈ N} = N ∩K.
Consider the following diagram:

K

��

ψ
// KN/N

π

K/(N ∩K)

ϕ

::
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

Since ψ is a surjective homomorphism, by Theorem 6.9, ϕ is an isomorphism. ⊣
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For example, let m and n be two positive integers. Then mZ and nZ are normal sub-
groups of Z, and by Theorem 6.10, mZ/(mZ∩nZ) and (mZ+nZ)/nZ are isomorphic.
In particular, for m = 6 and n = 9 we have mZ ∩ nZ = 18Z and mZ + nZ = 3Z.
Thus, 6Z/18Z and 3Z/9Z are isomorphic, in fact, both groups are isomorphic to C3.

Theorem 6.11 (Third Isomorphism Theorem). Let K E G, N E G, and N E K. Then
K/N E G/N and

ϕ : G/K → G/N
/

K/N

xK 7→ (xN)(K/N)

is an isomorphism.

Proof. First we show that K/N E G/N . So, for any x ∈ G and k ∈ K, we must have
(xN)(kN)(xN)−1 ∈ K/N :

(xN)(kN)(xN)−1 = xNkNx−1N = xNkx−1 xNx−1
︸ ︷︷ ︸

=N

N =

= xNkx−1N = xNx−1
︸ ︷︷ ︸

=N

xkx−1
︸ ︷︷ ︸

=:k′∈K

N = Nk′N = k′NN = k′N ∈ K/N .

Let
ψ : G → G/N

/

K/N

x 7→ (xN)(K/N)

Then ψ is a surjective homomorphism and ker(ψ) = {x ∈ G : xN ∈ K/N} = K.
Consider the following diagram:

G

��

ψ
// G/N

/

K/N

π

G/K

ϕ

<<
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①

Since ψ is a surjective homomorphism, by Theorem 6.9, ϕ is an isomorphism. ⊣

For example, let m and n be two positive integers such that m
∣
∣ n. Then mZ and

nZ are normal subgroups of Z, nZ E mZ, and by Theorem 6.11,

Z/mZ ∼= Z/nZ
/

mZ/nZ .

In particular, for m = 6 and n = 18,

Z6
∼= Z18

/

6Z/18Z ,

and in fact, both groups are isomorphic to C6.
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7. Permutation Groups

Recall that the set of all permutations of {1, . . . , n} under composition is a group
of oder n!, denoted by Sn, which is called the symmetric group or permutation
group of degree n. Permutations are usually denoted by Greek letters like π, ρ, and
σ.
The following theorem indicates that permutation groups and their subgroups play

a key-role in the investigation of finite groups.

Theorem 7.1. If G is a finite group of order n, then G is isomorphic to a subgroup
of Sn.

Proof. Let G = {a1, . . . , an} and let

ϕ : G → Sn

x 7→ πx

where for i ∈ {1, . . . , n}, πx(i) is such that xai = aπx(i).

ϕ is well-defined: We have to show that for all x ∈ G, ϕ(x) ∈ Sn. Let x ∈ G, then
for all i, j ∈ {1, . . . , n} we have

πx(i) = πx(j) ⇐⇒ xai = xaj ⇐⇒ ai = aj ⇐⇒ i = j .

Thus, for each x ∈ G, ϕ(x) = πx is an injective mapping from {1, . . . , n} into
{1, . . . , n}, which implies – since {1, . . . , n} is a finite set – that ϕ(x) is a permu-
tation of {1, . . . , n}, or equivalently, ϕ(x) ∈ Sn.

ϕ is injective: If ϕ(x) = ϕ(y), then for each i ∈ {1, . . . , n} we have πx(i) = πy(i),
thus

xai = aπx(i) = aπy(i) = yai ,

which implies x = y.

ϕ is a homomorphism: We have to show that ϕ(xy) = ϕ(x)ϕ(y). For x, y ∈ G and
for any i ∈ {1, . . . , n} we have

aπxy(i) = (xy)ai = x(yai) = xaπy(i) = aπx(πy(i)) .

Thus, πxy(i) = πx
(
πy(i)

)
(for all i ∈ {1, . . . , n}), and hence, ϕ(xy) = ϕ(x)ϕ(y).

By Corollary 6.2 and since ϕ is injective, G is isomorphic to a subgroup of Sn, namely
to the image of ϕ. ⊣

It is common to write a permutation π ∈ Sn in two-row notation, in which the
top row of the 2 × n matrix contains the integers 1, . . . , n and the effect of π on the
integer i is written under i:

π =

(
1 2 . . . i . . . n

π(1) π(2) . . . π(i) . . . π(n)

)

In particular, the identity permutation is
(
1 2 . . . i . . . n
1 2 . . . i . . . n

)

and is denoted by ι. For any permutation π and any integer k we set π0 := ι and
πk+1 := π(πk).
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A more compact notation is the so-called cycle notation, which avoids repeating
the same first row in each permutation. The theoretical basis for this notation is in
the following result.

Proposition 7.2. Let π ∈ Sn, i ∈ {1, . . . , n}, and let k be the smallest positive
integer for which πk(i) is in the set

{
i, π(i), π2(i), . . . , πk−1(i)

}
. Then πk(i) = i.

Proof. If πk(i) = πr(i) for some non-negative r < k − 1, then, for k′ = k − r we
have k ≥ k′ > 0 and πk′ = ι, which implies πk′(i) = i ∈

{
i, π(i), . . . , πk−1(i)

}
, and

therefore, by our assumption, k′ = k. ⊣

Definition. A permutation ρ ∈ Sn is a k-cycle if there exists a positive integer k
and an integer i ∈ {1, . . . , n} such that

(1) k is the smallest positive integer such that ρk(i) = i, and
(2) ρ fixes each j ∈ {1, . . . , n} \ {i, ρ(i), . . . , ρk−1(i)}.

The k-cycle ρ is usually denoted
(
i, ρ(i), . . . , ρk−1(i)

)
.

For example the five non-identity elements of S3 are all cycles, and may be written
as

(1, 2, 3), (3, 2, 1), (1, 2), (1, 3), and (2, 3) .

Notice that for example (1, 2, 3) = (2, 3, 1) = (3, 1, 2) and that not every permutation
is a cycle, e.g., (

1 2 3 4
4 3 2 1

)

is not a cycle.

Definition. Two permutations ρ and σ are disjoint if each number moved by ρ is
fixed by σ, or equivalently, each number moved by σ is fixed by ρ.

It is quite easy to see that disjoint permutations commute.

Fact 7.3. Let σ and ρ be disjoint permutations, then σρ = ρσ, and in general, for all
positive integers k, (σρ)k = σkρk.

Proof. Since σ and ρ are disjoint permutations, each number moved by σ is fixed by ρ
and vice versa. So, the set of numbers moved by σ is disjoint from the set of numbers
moved by ρ, and therefore it does not matter which permutation we carry out first.
Consequently we get (σρ)k = σkρk (for all positive integers k). ⊣

The next result shows that cycles are the “atoms” of permutations.

Proposition 7.4. Every permutation π ∈ Sn may be written as a product of disjoint
cycles.

Proof. Let π ∈ Sn. By Proposition 7.2 and since the set {1, . . . , n} is finite, for
every i ∈ {1, . . . , n} there is a positive integer ki such that πki(i) = i and ρi =
(
i, π(i), . . . , πki−1(i)

)
is a ki-cycle. We proceed by induction. Let i1 := 1 and for

j ≥ 1 with
∑j

ℓ=1 kiℓ < n let ij+1 be the least number of the non-empty set
{
1, . . . , n

}
\
⋃{

πk(iℓ) : k ∈ Z and 1 ≤ ℓ ≤ j
}
.

Further, let m be the least positive integer such that
∑m

ℓ=1 kiℓ = n, then, by construc-
tion, π = ρi1 ρi2 . . . ρim and the ρ’s are disjoint cycles. ⊣
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Definition. A decomposition of a permutation π into disjoint cycles is called a cycle
decomposition of π.

For example the cycle decomposition of the permutation

π =

(
1 2 3 4 5 6 7 8 9
6 2 5 3 4 1 7 9 8

)

is (1, 6)(2)(3, 5, 4)(7)(8, 9). It is usual to omit cycles of length 1, those integers fixed
by π, and so π is abbreviated to (1, 6)(3, 5, 4)(8, 9).

Proposition 7.5. If ρ is a k-cycle, then ord(ρ) = k, and consequently, if π is a
product of disjoint cycles of length k1, . . . , kr, then ord(π) = lcm(k1, . . . , kr), where
lcm(k1, . . . , kr) is the lowest common multiple of the integers k1, . . . , kr.

Proof. Let ρ be an arbitrary k-cycle, then there exists an i ∈ {1, . . . , n} such that
ρ =

(
i, ρ(i), . . . , ρk−1(i)

)
where ρk(i) = i. Hence, for every non-negative ℓ < k we

have ρk
(
ρℓ(i)

)
= ρℓ

(
ρk(i)

)
= ρℓ(i), which shows that ρk = ι, thus ord(ρ) ≥ k. On the

other hand, by definition of k, ρℓ 6= ι for any positive ℓ < k, thus, ord(ρ) = k.

Let π be a product of disjoint cycles ρ1, . . . , ρr of length k1, . . . , kr and let ord(π) = k.
By Fact 7.3 we have ι = πk = ρk1 . . . ρ

k
r which implies that for every 1 ≤ j ≤ r, kj

divides k, thus, ord(π) ≥ lcm(k1, . . . , kr). On the other hand, it is easy to see that
for k = lcm(k1, . . . , kr), π

k = ι, thus, ord(π) = k. ⊣

For example, the order of (1, 2, 3, 4)(5, 6, 7)(8, 9) is equal to lcm(4, 3, 2) = 12. How-
ever, the permutation (1, 2, 3, 4)(2, 6, 7)(3, 9) is not a product of disjoint cycles (and
so need not have order 12). In fact,

(1, 2, 3, 4)(2, 6, 7)(3, 9) = (1, 2, 6, 7, 3, 9, 4) ,

and therefore has order 7.
The following result shows that for any permutations π and ρ, π has the same cycle

structure as ρπρ−1.

Proposition 7.6. Let π and ρ be permutations in Sn. The cycle decomposition of
the permutation ρπρ−1 is obtained from that of π by replacing each integer i in the
cycle decomposition of π with the integer ρ(i).

Proof. Consider the effect that ρπρ−1 has on the integer ρ(i):

ρπρ−1
(
ρ(i)

)
= ρ

(
π(i)

)
,

or in other words, ρπρ−1 maps ρ(i) to ρ
(
π(i)

)
. Hence, in the cycle decomposition of

ρπρ−1, the number ρ(i) stands to the left of ρ
(
π(i)

)
, so

ρπρ−1 = . . .
(
. . . ρ(i), ρ

(
π(i)

)
. . .

)
. . . ,

whereas in the cycle decomposition of π, i stands to the left of π(i), so

π = . . .
(
. . . i, π(i) . . .

)
. . . ,

which completes the proof. ⊣
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Definition. A transposition is a cycle of length 2, and an elementary transpo-
sition is a transposition of the form (i, i+ 1).

Lemma 7.7. Every k-cycle can be written as a product of k − 1 transpositions and
every transposition can be written as product of an odd number of elementary trans-
positions.

Proof. It is easily verified that

(i1, i2, . . . , ik) = (i1, i2)(i2, i3) . . . (ik−1, ik) ,

thus, every k-cycle can be written as a product of k − 1 transpositions. Further, let
j be a positive integer and let (i, i+ j) be a transposition. If j = 1, then (i, i+ 1) is
an elementary transposition and we are done. Otherwise, it is easy to see that

(i, i+ j) = (i, i+ 1) . . . (i+ j − 1, i+ j)
︸ ︷︷ ︸

j elementary transpositions

(i+ j − 2, i+ j − 1) . . . (i, i+ 1)
︸ ︷︷ ︸

j − 1 elementary transpositions

,

thus, (i, i+ j) is the product of 2j− 1 elementary transpositions and 2j− 1 is always
odd. ⊣

Proposition 7.8.

(1) Each permutation can be written as a product of (elementary) transpositions.
(2) Sn is generated by the transpositions (1, 2), (1, 3), . . . , (1, n).
(3) Sn is generated by the two permutations (1, 2) and (1, 2, . . . , n).

Proof. (1) follows from Proposition 7.4 and Lemma 7.7.

(2) By (1), it is enough to show that every transposition (i, j), where i < j, belongs
to

〈{
(1, 2), (1, 3), . . . , (1, n)

}〉
. Now, if i = 1, then we are done. Otherwise, it is easy

to see that (i, j) = (1, i)(1, j)(1, i).

(3) See Hw10.Q47. ⊣

The factorisation of a cycle into transpositions is not unique. Moreover, it is not
even true that the number of transpositions in any factorisation of a given cycle is
always the same, for example (1, 3) = (2, 3)(1, 2)(2, 3). However, we will see that
the numbers of transpositions in any two decompositions of a given permutation are
either both even or both odd.

Definition. For any positive integer n, let ∆n be the polynomial in n variables
x1, . . . , xn defined by

∆n(x1, . . . , xn) =
∏

1≤i<j≤n

(
xi − xj

)
,

and for any permutation π ∈ Sn let π ·∆n be the polynomial

∏

1≤i<j≤n

(
xπ(i) − xπ(j)

)
.
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The following properties are easily checked.

Fact 7.9.

(a) ι ·∆n = ∆n.
(b) (πρ) ·∆n = π · (ρ ·∆n).
(c) For any real number λ, π · (λ∆n) = λ(π ·∆n).

Definition. For any π ∈ Sn, the polynomial ∆n is either equal to π ·∆n, in which
case we say that the permutation π is even, or ∆n = −π ·∆n, in which case we say
that π is odd. We write sgn(π) = 1 if π is even and sgn(π) = −1 if π is odd, so that
π ·∆n = sgn(π)∆n.

Theorem 7.10. The map sgn : Sn → C2 is a homomorphism.

Proof. We must show that sgn(πρ) = sgn(π) sgn(ρ):

sgn(πρ)∆n = (πρ) ·∆n by definition

= π · (ρ ·∆n) by Fact 7.9 (b)

= π ·
(
sgn(ρ)∆n

)
by definition

= sgn(ρ)(π ·∆n) by Fact 7.9 (c)

= sgn(ρ) sgn(π)∆n by definition

Thus, sgn(πρ) = sgn(ρ) sgn(π) = sgn(π) sgn(ρ), as required. ⊣

Corollary 7.11. For any permutation π ∈ Sn, sgn(π−1) = sgn(π), and for any
π, ρ ∈ Sn,

sgn(ρπρ−1) = sgn(π) .

Proof. By Fact 7.9 and from the definition we have sgn(ι) = 1. Thus, by Theo-
rem 7.10, we have

1 = sgn(ι) = sgn(ππ−1) = sgn(π) sgn(π−1) ,

which implis sgn(π) = sgn(π−1).

Further, since
sgn(π) sgn(ρ) = sgn(ρ) sgn(π) ,

by Theorem 7.10 it follows that

sgn(ρπρ−1) = sgn(ρ) sgn(π) sgn(ρ−1) = sgn(π) sgn(ρ) sgn(ρ−1) = sgn(π) .

⊣

Corollary 7.12. All transpositions are odd, and a k-cycle is odd if and only if k is
even.

Proof. Firstly notice that by the definition of sgn, every elementary transposition
(i, i+ 1) is odd. Indeed, we change the sign of just one factor of the polynomial ∆n,
namely of the factor

(
xi − xi+1

)
. Now, by Lemma 7.7, every transposition can be

written as product of an odd number of elementary transpositions, and therefore, by
Theorem 7.10, all transpositions are odd.
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Again by Lemma 7.7, every k-cycle can be written as a product of k−1 transpositions,
and therefore, by Theorem 7.10, a k-cycle is odd if and only if k is even. ⊣

As an immediate consequence of Corollary 7.12 we get

Corollary 7.13. A permutation is even (odd) if and only if it can be written as a
product of an even (odd) number of transpositions. In particular, ι is even.

By the way, if A = (ai,j) is an n× n matrix, then

det(A) :=
∑

π∈Sn

(

sgn(π)

n∏

i=1

ai,π(i)

)

.

Definition. The kernel of the homomorphism sgn : Sn → C2 is the alternating
group An. Or in other words,

An = {π ∈ Sn : π is even } .

For example, A3 =
{
ι, (1, 2, 3), (3, 2, 1)

}
, and therefore, A3

∼= C3. But for n ≥ 4,
An is a non-abelian group of order n!/2. In particular, as we will see later, A4 is
isomorphic to the tetrahedron-group T and A5 is isomorphic to the dodecahedron-
group D, whereas the cube-group C is isomorphic to S4.
By the First Isomorphism Theorem and the fact that for n ≥ 2 the map sgn is

surjective, for every n ≥ 2, An E Sn and |Sn : An| = 2. This implies that for every
n ≥ 3, Sn is not simple. It is easy to see that A3 is the only non-trivial normal
subgroup of S3 and that A3 is simple (since it is isomorphic to C3). On the other
hand, the group S4 has a normal subgroup of order 4 (cf. Hw10.Q50 (c)) which is also
a normal subgroup of A4, thus, A4 is not the only non-trivial normal subgroup of S4

and A4 is not simple. But one can show that for every n ≥ 5, An is simple and it is
the only non-trivial normal subgroup of Sn (we omit the proof).
We have seen that Sn is generated by its transpositions and that all transpositions

are odd. Thus, no transposition belongs to An. To find simple generators for An,
we have to consider even permutations. The simplest even permutations, beside the
identity, are 3-cycles, and indeed:

Proposition 7.14. The alternating group An is generated by its 3-cycles.

Proof. Let π be an element of An. By Corollary 7.13, π can be written as a product
of an even number of transpositions. So, it is enough to show that any product of
two different transpositions can be written as a product of 3-cycles. Let us consider
the product (i, j)(r, s):

If the four integers i, j, r, s are distinct, then

(i, j)(r, s) = (i, r, j)(i, r, s) .

Otherwise, we may assume without loss of generality that i = r, in which case

(i, j)(i, s) = (i, s, j) .

⊣

Let us now consider the centres of Sn and An. Since S1 = A1
∼= A2

∼= C1, Z(S1) =
Z(A1) ∼= Z(A2) = {ι}. Further, S2

∼= C2 and A3
∼= C3, which implies that S2 and

A3 are abelian, and therefore, Z(S2) = S2 and Z(A3) = A3. In general, we get the
following:
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Theorem 7.15.

(a) For any n ≥ 3, Z(Sn) = {ι}.
(b) For any n ≥ 4, Z(An) = {ι}.

Proof. (a) Let σ ∈ Sn be any permutation except the identity: Since σ 6= ι, there is
an i ∈ {1, . . . , n} such that σ(i) = j 6= i. Pick any k ∈ {1, . . . , n} distinct from i and
j. Now, σ (i, k) σ−1 =

(
j, σ(k)

)
6= (i, k), since j /∈ {i, k}. Hence, σ (i, k) 6= (i, k) σ,

which implies that σ /∈ Z(Sn).

(b) Let π ∈ An be any permutation except the identity: Since π 6= ι, there is an
i ∈ {1, . . . , n} such that π(i) = j 6= i. Pick any distinct k, ℓ ∈ {1, . . . , n}, both distinct
from i and j. Now, π (i, k, ℓ) π−1 =

(
j, π(k), π(ℓ)

)
6= (i, k, ℓ), since j /∈ {i, k, ℓ}. Hence,

π (i, k, ℓ) 6= (i, k, ℓ) π, which implies that π /∈ Z(An). ⊣

Finally, let us consider the automorphism group of Sn:

For any group G and for any x ∈ G, the mapping ϕx : G → G defined by ϕx(a) :=
xax−1 is an automorphism of G (cf. Hw8.Q38). Such an automorphism is called an
inner automorphism of G. Let Inn(G) denote the set of all inner automorphisms of
G. Further, the mapping ψ : G→ Aut(G) defined by ψ(x) := ϕx is a homomorphism
from G to Aut(G), which implies that Inn(G) is a subgroup of Aut(G) and, by the
First Isomorphism Theorem, that G/Z(G) ∼= Inn(G) (cf. Hw10.Q46).

Let us turn back to the group Sn. As an immediate consequence of Theorem 7.15 we
get the following:

Proposition 7.16. For any n ≥ 3, Inn(Sn) ∼= Sn.

In the following we will show that for any n ≥ 3, where n 6= 6, every automorphism
of Sn is an inner automorphism. Let us first consider what an automorphism is doing
with transpositions.

Lemma 7.17. Let n ≥ 3, where n 6= 6, ϕ ∈ Aut(Sn) and (i, j) a transposition in Sn.
Then ϕ(i, j) is a transposition.

Proof. The transposition (i, j) has order 2, and therefore, ϕ(i, j) has order 2 (see
Hw9.Q44 (c)). Thus, ϕ(i, j) must be the product of r disjoint transpositions where
2r ≤ n. There are

(
n
2

)
transpositions in Sn, and there are

(
n

2

)

·

(
n− 2

2

)

· . . . ·

(
n− 2(r − 1)

2

)

︸ ︷︷ ︸

r factors

·
1

r!

products of r disjoint transpositions. Now, if ϕ
(
(i, j)

)
is a product of r disjoint

transpositions, then for every transposition (k, ℓ), ϕ
(
(k, ℓ

)
) is also a product of r

disjoint transpositions. Indeed, by Proposition 7.6 there exists a permutation ρ such
that ρ (i, j) ρ−1 = (k, ℓ), and since ϕ is an automorphism we get ϕ

(
ρ (i, j) ρ−1) =

ϕ(ρ)ϕ
(
(i, j)

)
ϕ(ρ)−1 = ϕ

(
(k, ℓ)

)
, and therefore, by Proposition 7.6 again, ϕ

(
(i, j)

)

has the same cycle structure as ϕ
(
(k, ℓ)

)
. So, the number of transpositions in Sn

must correspond to the number of products of r disjoint transpositions in Sn. In
other words, we must have

n(n− 1)

2
=
n(n− 1)(n− 2) · . . . · (n− 2r + 1)

2r · r!
,
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or equivalently,
2r−1 · r! = (n− 2)(n− 3) · . . . · (n− 2r + 1) . (∗)

Obviously, equation (∗) holds for r = 1. So, let us consider the other cases:

For r = 2 we get 4 = (n− 2)(n− 3), which is impossible.

For r = 3 we get 24 = (n − 2)(n− 3)(n− 4)(n − 5) which holds just for n = 6, but
we excluded this case.

For n ≥ 4 we get

(n− 2)(n− 3) · . . . · (n− 2r + 1) ≥
↑

n≥2r

(2r − 2)(2r − 3) · . . . · 1 = (2r − 2)! =

= (2r − 2) · . . . · (r + 1)
︸ ︷︷ ︸

r − 2 factors, each > 4

· r! ≥ 4r−2 · r! = 22(r−2) · r! > 2r−1 · r! ,

which shows that also in this case the equation (∗) does not hold.

Thus, r = 1, or in other words, ϕ
(
(i, j)

)
is a transposition. ⊣

Theorem 7.18. Let n ≥ 3, where n 6= 6, then Aut(Sn) ∼= Sn.

Proof. By Proposition 7.16 it is enough to show that every automorphism of Sn is an
inner automorphism. By Proposition 7.8 we know that Sn is generated by the trans-
positions (1, 2), (1, 3), . . . , (1, n), so, it is enough to consider these transpositions. By
Lemma 7.17 we know that for any ϕ ∈ Aut(Sn) and for any i ∈ {2, . . . , n}, ϕ

(
(1, i)

)

is a transposition. Pick any two distinct numbers i, j from the set {2, 3, . . . , n} and
let

ϕ
(
(1, i)

)
= (k, ℓ) and ϕ

(
(1, j)

)
= (p, q) .

Now, (1, i)(1, j) = (1, j, i) and has order 3, and hence, (k, ℓ)(p, q) must also have order
3, which implies that two of the four element k, ℓ, p, q must be equal. Without loss of
generality, let us assume that p = k. Then ϕ

(
(1, i)

)
= (k, ℓ) and ϕ

(
(1, j)

)
= (k, q). If

n > 3, then we can pick an number h ∈ {1, . . . , n} \ {1, i, j}. Let ϕ
(
(1, h)

)
= (r, s),

then {r, s} has one element in common with {k, ℓ} and with {k, q}. If r = ℓ and
s = q, then we would have

ϕ
(
(1, j, i)

)
= ϕ

(
(1, i)(1, j)

)
= (k, ℓ)(k, q) = (k, q, ℓ) =

= (q, ℓ, k) = (k, q)(ℓ, q) = ϕ
(
(1, j)(1, h)

)
= ϕ

(
(1, h, j)

)
,

but this is a contradiction since ϕ is injective and (1, j, i) 6= (1, h, j). So, we have
either r = k or s = k.

In general, for every i ∈ {2, . . . , n} there exists a unique π(i) ∈ {1, . . . , n} \ {k} such
that

ϕ
(
(1, i)

)
=

(
k, π(i)

)
.

Further, it is not hard to see that we stipulate π(1) := k, then π is a permutation of
{1, . . . , n}. Hence, by Proposition 7.6 we finally have

ϕ
(
(1, i)

)
=

(
k, π(i)

)
=

(
π(1), π(i)

)
= π (1, i) π−1 ,

which shows that every automorphism of Sn is an inner automorphism, which com-
pletes the proof. ⊣
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What about Aut(S6) ? One can show that there exists an automorphism ϕ ∈
Aut(S6) such that ϕ(i, j) is the product of 3 disjoint transpositions, and hence, by
Proposition 7.6, ϕ /∈ Inn(S6). Moreover one can show that |Aut(S6)| = 1440, and
since Inn(S6) ∼= S6 and |S6| = 720, this implies that |Aut(S6) : Inn(S6)| = 2, and
therefore Inn(S6) ⊳ Aut(S6) (we omit the proof).
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8. The Sylow Theorems

In the sequel, G is always a finite group.

Definition. For a ∈ G, the set C(a) := {x ∈ G : xax−1 = a} is called the central-
izer of a in G.

Note that x ∈ C(a) iff xa = ax, and that for any a ∈ G we have a ∈ C(a).

Fact 8.1. For any a ∈ G, C(a) 6 G.

Proof. We have to verify the axioms (A0), (A1) and (A2).

(A0) For x, y ∈ C(a) we have

(xy)a = x(ya) =
↑

y∈C(a)

x(ay) = (xa)y =
↑

x∈C(a)

(ax)y = a(xy) ,

hence, xy ∈ C(a).

(A1) ea = ae, thus, e ∈ C(a).

(A2) If x ∈ C(a), then

x−1a = x−1a(xx−1) = x−1(ax)x−1 =
↑

x∈C(a)

x−1(xa)x−1 = (x−1x)ax−1 = ax−1 ,

hence, x−1 ∈ C(a). ⊣

Definition. For a ∈ G, the set orbit(a) := {xax−1 : x ∈ G} is called the orbit of a.

Fact 8.2. For a, a′ ∈ G we either have orbit(a) = orbit(a′) or orbit(a)∩orbit(a′) = ∅.
Further, | orbit(a)| = 1 iff a ∈ Z(G).

Proof. If orbit(a) ∩ orbit(a′) 6= ∅, then xax−1 = ya′y−1 (for some x, y ∈ G). Thus,
a′ = y−1xax−1y = y−1xa(y−1x)−1 ∈ orbit(a) and a = x−1ya′y−1x = x−1ya′(x−1y)−1 ∈
orbit(a′), which implies that orbit(a) = orbit(a′).

If | orbit(a)| = 1, then for all x ∈ G we have xax−1 = a, thus, for all x ∈ G we have
xa = ax, which implies Z(G). On the other hand, if a ∈ Z(G), then xax−1 = a (for
all x ∈ G), thus, | orbit(a)| = 1. ⊣

Lemma 8.3. For every a ∈ G we have

| orbit(a)| = |G : C(a)| .

Proof. |G : C(a)| = |G/C(a)| =
∣
∣{xC(a) : x ∈ G}

∣
∣. Further, we have

xC(a) = yC(a) ⇐⇒ x−1y ∈ C(a) ⇐⇒ (x−1y)a(y−1x = a ⇐⇒ yay−1 = xax−1 ,

which implies that
∣
∣{xax−1 : x ∈ G}

∣
∣ =

∣
∣{xC(a) : x ∈ G}

∣
∣. ⊣

As a consequence of Fact 8.2 and Lemma 8.3 we get

Corollary 8.4. Let a1, . . . , an be representatives for the n orbits which have size
larger than 1. Then

|G| = |Z(G)|+
n∑

i=1

| orbit(ai)| = |Z(G)|+
n∑

i=1

|G : C(ai)| .

Proposition 8.5. If G is a group of order p2, where p is prime, then G is abelian.
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Proof. Assume that G is not abelian, then, by Corollary 8.4, we can choose some
a1, . . . , an ∈ G such that | orbit(ai)| > 1 (for all ai ∈ {a1, . . . , an}) and p2 = |G| =
|Z(G)| +

∑n
i=1 |G : C(ai)|. By Lemma 8.3, for each ai ∈ {a1, . . . , an} we get 1 <

| orbit(ai)| = |G : C(ai)|, so, p
∣
∣ |C(ai)|, and therefore p

∣
∣ Z(G), which implies that

|Z(G)| ≥ p. If we assume that G is not abelian, then Z(G) < G, thus, |Z(G)| = p.
Choose some x ∈ G \ Z(G), then Z(G) 6 C(x), and since x ∈ C(x) we get |C(x)| ≥
p + 1. Now, since C(x) 6 G, |C(x)|

∣
∣ |G| = p2, and because |C(x)| ≥ p + 1 we get

C(x) = G, thus x ∈ Z(G), which is absurd. Hence, we must have Z(G) = G, which
shows that G is abelian. ⊣

Theorem 8.6 (Cauchy). Suppose that p
∣
∣ |G| for some prime number p. Then there

is an element g ∈ G of order p.

Proof. The proof is by induction on |G|. If |G| = 1, then the result is vacuously true.
Now, let us assume that |G| > 1 and that for every proper subgroup H < G we have
p ∤ |H|, (in other words, p

∣
∣ |G : H|), else we are home by induction. By Corollary 8.4

we get p
∣
∣ |Z(G)|, and by our assumption we get G = Z(G) which implies that G is

abelian. A proper subgroup H < G is called maximal if H 6 H ′ 6 G implies H ′ = H
or H ′ = G. If H,K are distinct maximal proper subgroups of G, then HK 6 G (since
G is abelian) and by maximality of H and K we get HK = G (since H,K 6 HK).

Now, |G| = |HK| = |H|·|K|
|H∩K|

, but because p ∤ |H| and p ∤ |K|, this implies p ∤ |G|,
which is a contradiction. Therefore, G has a unique maximal proper subgroup, say
M . Since M is the only maximal proper subgroup of G, all proper subgroups H < G
are subgroups of M . Choose g ∈ G with g /∈ M , then 〈g〉 = G, (since otherwise,

〈g〉 6 M), and hence, G is cyclic. The order of g is |G|, and if we put n = |G|
p
, then

〈gn〉 is a subgroup of G of order p, which completes the proof. ⊣

Definition. Let H 6 G, then the set N(H) := {x ∈ G : xHx−1 = H} is called the
normalizer of H in G, and orbit(H) := {xHx−1 : x ∈ G} is called the orbit of H .

Fact 8.7. For every H 6 G, N(H) 6 G and | orbit(H)| = |G : N(H)|.

Proof. Just follow the proofs of Fact 8.1 and Lemma 8.3. ⊣

Fact 8.8. For every H 6 G, H E N(H).

Proof. By definition, for every x ∈ N(H) we have xHx−1 = H , thus, H E N(H). ⊣

Lemma 8.9. Let G be such that |G| = pmn, where p is prime, m,n > 0 and p ∤ n, and
let P,Q 6 G be such that |P | = |Q| = pm. Then Q 6 N(P ) if and only if Q = P .

Proof. Of course, Q = P implies Q 6 N(P ). On the other hand, if Q 6 N(P ), then,
since P E N(P ) (by Fact 8.8), PQ 6 N(P ) 6 G. Thus,

|PQ| =
|P | · |Q|

|P ∩Q|
=
pm · pm

|P ∩Q|

must divide |G| = pmn, which implies |P ∩Q| = pm, hence, Q = P . ⊣
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Definition. Let G be a finite group of order pmn, where p is prime and does not
divide n. Then any subgroup of G of order pm is called a Sylow p-subgroup of G,
and the set of all such subgroups of G is denoted Sylp(G).

In order to state Sylow’s Theorem, we need one more definition.

Definition. Two subgroups H1 and H2 of a group G are called conjugate in G if
H1 = xH2x

−1 for some x ∈ G.

Theorem 8.10 (Sylow). Let G be a finite group of order pmn, where p is prime and
does not divide n.

(i) There is a Sylow p-subgroup P of G.
(ii) All elements of Sylp(G) are conjugate in G.
(iii) | Sylp(G)| ≡ 1 mod p.

(iv) | Sylp(G)|
∣
∣ n.

Proof. We prove (i) by induction on |G|. If |G| = 1, then the result is vacuously
true, and therefore we may assume that |G| > 1. By Corollary 8.4 we have |G| =
|Z(G)|+

∑s
j=1 |G : C(xj)| , where the xj are a collection of representatives for those

orbits which are not singletons. Thus, each C(xj) is a proper subgroup of G. If
p
∣
∣ |G : C(xj)| for every 1 ≤ j ≤ s, then p

∣
∣ |Z(G)| 6= 1. Thanks to Cauchy’s

Theorem 8.6 we can choose z ∈ Z(G) of order p, so, since z ∈ Z(G), 〈z〉 E G. Let
π : G→ G/〈z〉 be the natural projection. By induction, there is a Sylow p-subgroup
P1 of G/〈z〉. This group has order pm−1, since |G/〈z〉| = pm−1n. The preimage of P1

under π is P 6 G, where P/〈z〉 has order pm−1 = |P |
p
. Thus, |P | = pm and we have

found a Sylow p-subgroup of G. The other possibility is that there is some xj with
p ∤ |G : C(xj)|, so, |G : C(xj)| = pmk with k < n and p ∤ k. By induction, C(xj) has
a Sylow p-subgroup P of order pm, and since P 6 G, P is a Sylow p-subgroup of G.

For part (ii) and (iii), let P be a Sylow p-subgroup of G. Let Ω = {xPx−1 : x ∈ G}
denote the set of all G-conjugates of P . Now, by Fact 8.7 we have |Ω| = |G : N(P )|.
Further, for Pi ∈ Ω, let Ωi = {yPiy

−1 : y ∈ P}, then Ω is the disjoint union of some
Ωi’s, so, |Ω| =

∑

i |Ωi|. Again by Fact 8.7 we get |Ωi| = |P : N(Pi)∩P |, which tells us
that the orbits Ωi have size divisible by p, unless P 6 N(Pi), in which case |Ωi| = 1
and P = Pi (by Lemma 8.9). Hence, of the orbits Ωi there is exactly one of length 1
and all the others have size divisible by p, thus, |Ω| =

∑

i |Ωi| ≡ 1 (mod p). If we can
show that Ω = Sylp(G), then we are done. So, assume towards a contradiction that
Ω 6= Sylp(G), which means that there is a Sylow p-subgroupQ which is not a conjugate
of P . Now, all Q-orbits Ωi = {yPiy

−1 : y ∈ Q}, where Pi ∈ Ω have size divisible by
p, since otherwise, Q 6 N(Pi) (for some i) and therefore Q = Pi (by Lemma 8.9),
which implies that Q is a conjugate of P . Since Ω is a disjoint union of sets – namely
the Ωi’s – of size divisible by p we deduce that |Ω| ≡ 0 (mod p). However, we already
know that |Ω| ≡ 1 (mod p) so this is absurd. Thus, Ω = Sylp(G), which implies that
all Sylow p-subgroups of G are conjugate and | Sylp(G)| ≡ 1 (mod p).

To verify (iv), let P ∈ Sylp(G). Then, by (ii), Sylp(G) = {xPx−1 : x ∈ G}, and by

Fact 8.7 we get | Sylp(G)| = |G : N(P )|. Since P 6 N(P ) it follows that pm
∣
∣ |N(P )|,

and so |G : N(P )| must divide n. ⊣
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As a consequence of Theorem 8.10 (ii) we get

Corollary 8.11. Let G be a finite group of order pmn, where n,m > 0 and p is
prime and does not divide n. Then | Sylp(G)| = 1 if and only if the unique Sylow
p-subgroup is a normal subgroup of G. In particular, | Sylp(G)| = 1 implies that G is
not simple.
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9. The Groups T , C, and D

In the sequel, T denotes the tetrahedron-group, C denotes the cube-group and D
denotes the dodecahedron-group. Further, O denotes the octahedron-group and I
denotes the icosahedron-group.
We already know that O ∼= C and I ∼= D, so, we do not have to consider O and I.

Theorem 9.1. T ∼= A4, C ∼= S4 and D ∼= A5.

Proof. T ∼= A4: Let 1, 2, 3, 4 denote the four faces of the tetrahedron, then each
τ ∈ T can be considered as a permutation of {1, 2, 3, 4} and the corresponding map
ϕ : T → S4 is an injective homomorphism. Thus, T is isomorphic to a subgroup of
S4 of order |T | = 12. Further, each cycle (i1, i2, i3) ∈ S4 of length 3 can be realized
by a rotation τ ∈ T of order 3. Thus, since A4 is generated by the cycles of length 3,
A4 is isomorphic to a subgroup of T . Now, because |A4| = |T |, this implies T ∼= A4.

C ∼= S4: Let 1, 2, 3, 4 denote the four long diagonals of the cube, then each γ ∈ C can
be considered as a permutation of {1, 2, 3, 4}. Further, it is easily verified that every
elementary transposition of {1, 2, 3, 4} corresponds to an element of C. Thus, since
S4 is generated by the elementary transpositions, S4 is isomorphic to a subgroup of
C of order |S4| = 24 = |C|, and consequently we get C ∼= S4.

D ∼= A5: Let 1, 2, 3, 4, 5 denote the five different cubes we can put into a dodecahedron
in such a way that each edge of each cube lies on one face of the dodecahedron. Thus,
each δ ∈ D can be considered as a permutation of {1, 2, 3, 4, 5} and the corresponding
map ϕ : D → S5 is a homomorphism. Now, since a dodecahedron has 20 vertices,
the five cubes have 5 ·8 = 40 vertices and there are

(
5
2

)
= 10 pairs of cubes, every two

cubes have exactly two vertices in common and these two vertices are opposite each
other. Now, if δ ∈ D is a rotation about an axis joining 2 opposite vertices through
2π/3, then ϕ(δ) is a 3-cycle. On the other hand, for every 3-cycle σ ∈ S5, there
is a δ ∈ D such that ϕ(δ) = σ. Hence, since by Proposition 7.14 every alternating
group is generated by its 3-cycles, A5 is isomorphic to a subgroup of D, and since
|A5| = |D|, we get D ∼= A5. ⊣

The subgroups of T. By Sylow’s Theorem, T has 1 or 4 Sylow 3-subgroups which
have order 3, and it has 1 or 3 Sylow 2-subgroups which have order 4. Further, T
must also have a subgroup of order 2 (since by Cauchy’s Theorem, a group of order
4 has always a subgroup of order 2), but we already know that T does not have a
subgroup of order 6.
In the following we give a complete list of all subgroups of A4

∼= T :

Of course, A4 has exactly one subgroup of order 1, namely {ι}, where ι is the identity,
and it has exactly one subgroup of order 12, namely A4 itself.

The subgroups of order 2 are: {ι, (1, 2)(3, 4)}, {ι, (1, 3)(2, 4)}, {ι, (1, 4)(2, 3)}, and
none of them is a normal subgroup of A4.

There is just one subgroup of order 4, namely {ι, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
Since a subgroup of order 4 is a Sylow 2-subgroup, by Corollary 8.11, {ι, (1, 2)(3, 4),
(1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of A4, and further, it is isomorphic to
C2 × C2.

The 4 subgroups of order 3 are: {ι, (1, 2, 3), (3, 2, 1)}, {ι, (1, 2, 4), (4, 2, 1)}, {ι, (1, 3, 4),
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(4, 3, 1)} and {ι, (2, 3, 4), (4, 3, 2)}. Since a subgroup of order 3 is a Sylow 3-subgroup,
by Corollary 8.11, none of these subgroups of order 3 can be a normal subgroup of
A4.

Corollary 9.2. T is not simple.

Proof. Since T has a normal subgroup of order 4, T is not simple. ⊣

The subgroups of C of order 6, 8 and 12. The group C has 4 subgroups of order
3, namely rotations about a long diagonal through 2π/3 and −2π/3. Each of these
4 Sylow 3-subgroups is isomorphic to C3. Thus, C has 4 subgroups of order 6 (just
turn the long diagonal), each of them is isomorphic to D3

∼= S3 and none of them
is a normal subgroup of C. A subgroup of order 8 is a Sylow 2-subgroup, and since
there are 3 subgroups of order 8, none of them is a normal subgroup. Further, each
subgroup of order 8 is isomorphic to D4. The group C has also a unique subgroup of
order 12, which is isomorphic to T and since |C : T | = 2, this subgroup is a normal
subgroup of C.

Corollary 9.3. C is not simple.

Proof. Since C has a normal subgroup of order 12, C is not simple. ⊣

The subgroups of D. A dodecahedron has 12 faces, 20 vertices and 30 edges.
Remember that since D ∼= A5 and An is simple (for n ≥ 5), D is simple, thus, D has
no normal subgroups (except {ι} and D), in particular for p = 2, 3, 5, | Sylp(D)| 6= 1.
In the following we give a complete list of all proper subgroups of D:

The subgroups of order 2 are the rotations about an axis joining midpoints of two
opposite edges and since there are 30 edges, D has 15 subgroups of order 2.

A subgroup of order 3 is a Sylow 3-subgroup and therefore, | Syl3(D)| is 4 or 10.
Further, subgroups of order 3 are rotations about an axis joining opposite vertices
and since there are 20 vertices, D has 10 subgroups of order 3.

A subgroup of order 4 is a Sylow 2-subgroup and therefore, | Syl2(D)| is 3 or 5.
Further, subgroups of order 4 are generated by rotations about three perpendicular
axes joining midpoints of two opposite edges and since there are 30 edges, and each
subgroup needs 6 edges, D has 5 subgroups of order 4 and each is isomorphic to
C2 × C2.

A subgroup of order 5 is a Sylow 5-subgroup and therefore, | Syl5(D)| is 6. Indeed,
subgroups of order 5 are rotations about an axis joining midpoints of opposite faces
and since there are 12 faces, D has 6 subgroups of order 5.

It is not hard to see that D has 10 subgroups of order 6 and each is those subgroups
is isomorphic to D3.

Further, D has 6 subgroups of order 10 and each of those subgroups is isomorphic to
D5.

Finally we have 5 subgroups of order 12 and each of those subgroups is isomorphic
to T .

Since D has no subgroups of order 15, 20 or 30, the 57 subgroups listed above are all
proper subgroups of D.
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Theorem 9.4. D is simple.

Proof. Let us define an equivalence relation “∼” on D as follows:

a ∼ b ⇐⇒ ∃x ∈ D(xax−1 = b)

First we have to check that “∼” is an equivalence relation:

a ∼ a: ιaι−1 = a.

a ∼ b→ b ∼ a: If xax−1 = b, then x−1bx = a.

a ∼ b and b ∼ c→ a ∼ c: If xax−1 = b and yby−1 = c, then (yx)a(yx)−1 = c.

The equivalence relation “∼” induces a partition of D into five pairwise disjoint parts,
namely

Pι = {ι} ,

P2π/3 =
{
rotations through 2π/3 about axes joining opposite vertices

}
,

Pπ =
{
rotations through π about axes joining midpoints of opposite edges

}
,

P2π/5 =
{
rotations through 2π/5 about axes joining centres of opposite faces

}
,

P4π/5 =
{
rotations through 4π/5 about axes joining centres of opposite faces

}
.

We have |Pι| = 1, |P2π/3| = 20, |P2π| = 15, |P2π/5| = |P4π/5| = 12. Notice that
|D| = 60 = |Pι| + |P2π/3| + |P2π| + |P2π/5| + |P4π/5|, thus, each element of D belongs
to exactly one part of the partition.

Assume that N E D and let a ∈ N . Firstly, since N is a normal subgroup of D, N
must contain all elements which are equivalent to a, which implies that N must be a
union of some of the five parts. Secondly, since N 6 D, |N | must divide |D| = 60.
Now, since Pι ⊆ N , this is just possible if N = Pι or N = Pι ∪ P2π/3 ∪ P2π ∪ P2π/5 ∪
P4π/5 = D. Thus, N = {ι} or N = D, and therefore, D is simple. ⊣


