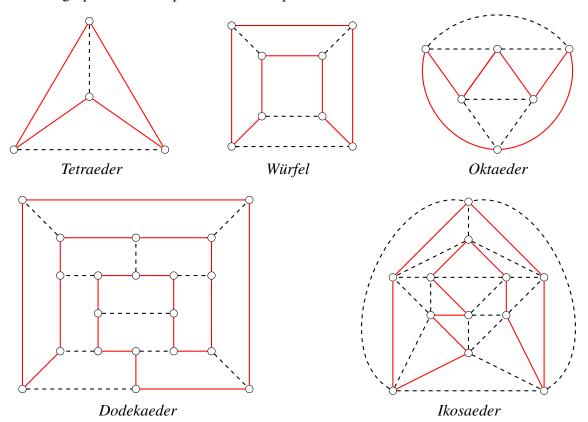
HAMILTON'SCHE GRAPHEN

Ein endlicher ungerichteter Graph G=(V,E) ist ein **Hamilton'scher Graph**, bzw. G ist **hamiltonsch**, wenn G einen Kreis – einen sogenannten **Hamilton-Kreis** – besitzt der alle Knoten von G enthält. Mit anderen Worten, G ist hamiltonsch genau dann, wenn es in G einen Kreis gibt, der alle Knoten von G enthält. Es ist kein einfaches Kriterium bekannt, mit welchem entschieden werden kann, ob ein Graph hamiltonsch ist (im Gegensatz zum Beispiel zu Euler'schen Graphen).

Beispiele für hamiltonsche Graphen sind die vollständigen Graphen K_n (für $n \geq 2$) sowie die Kantengraphen der fünf platonischen Körper:



Ebenfalls hamiltonsch sind die Kantengraphen der k-dimensionalen Würfel (für $k \geq 2$). Dafür zeigen wir zuerst den folgenden Satz über Gray-Codes: Eine zyklische Folge, bestehend aus den 2^k verschiedenen binären Wörtern der Länge $k \geq 1$, heisset Gray-Code, falls sich je zwei aufeinander folgende Wörter in genau einer Stelle unterscheiden.

PROPOSITION 7.7. Zu jedem $k \ge 1$ existiert ein Gray-Code.

Beweis. Mit Induktion nach k. Für k = 1 ist die zyklische Folge 0, 1 der einzige Gray-Code. Ist

$$(a_1,\ldots,a_{2^k})$$

ein Gray-Code für k, wobei jedes a_i ein binäres Wort der Länge k ist, so sind die 2^{k+1} binären Wörter

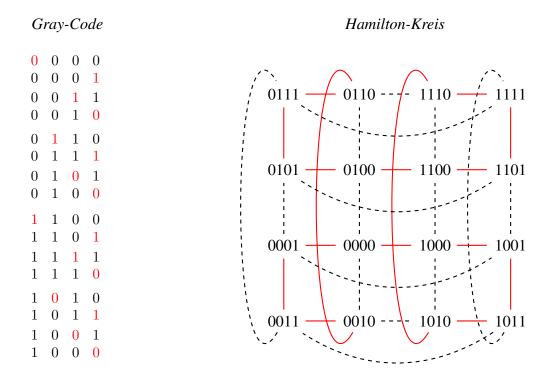
$$(0 a_1, \ldots, 0 a_{2^k}, 1 a_{2^k}, 1 a_{2^k-1}, \ldots, 1 a_1)$$

der Länge k + 1 ein Gray-Code für k + 1.

KOROLLAR 7.8. Der Kantengraph des k-dimensionalen Würfels (für $k \geq 2$) ist hamiltonsch.

Beweis. Die binären Wörter der Länge k können als Ecken eines k-dimensionalen Würfels aufgefasst werden. Ein Gray-Code entspricht dann einem Hamilton-Kreis im Kantengraphen des k-dimensionalen Würfels.

Beispiel: Im Fall k=4 gibt uns der Beweis von Proposition 7.7 den folgenden Gray-Code mit dem entsprechenden Hamilton-Kreis im Kantengraphen des 4-dimensionalen Würfels.



DER HEIRATSSATZ

Die Knotenmenge eines **bipartiten Digraphen** (A,B,E) besteht aus zwei disjunkten Mengen A,B (d. h. die Knotenmenge ist $A \dot{\cup} B$) und einer Kantenmenge $E \subseteq A \times B$. Für $X \subseteq A$ und $Y \subseteq B$ sei

$$EX:=\left\{y\in B:\exists x\in X\left(xEy\right)\right\}\quad\text{und}\quad E^{-1}Y:=\left\{x\in A:\exists y\in Y\left(xEy\right)\right\}.$$

Erweitern wir die Kantenmenge E eines bipartiten Digraphen (A, B, E) zu

$$E^* := E \cup \{\langle y, x \rangle : \langle x, y \rangle \in E\},\$$

so ist (A, B, E^*) ein ungerichteter bipartiter Graph.

Ist (A, B, E) ein bipartiter Digraph und gilt xEy, also insbesondere $x \in A$ und $y \in B$, so sagen wir, dass x und y befreundet sind. Eine injektive Funktion $\pi : A \to B$ mit $\pi \subseteq E$ ist dann eine **Verheiratung** aller Elemente von A mit Elementen der Menge B, wobei nur befreundete Elemente miteinander verheiratet werden.

DER HEIRATSSATZ (Hall). Sei (A, B, E) ein bipartiter Digraph. Dann sind die folgenden Aussagen äquivalent:

- (a) $\exists \pi \in {}^{A}B(\pi \subseteq E \text{ und } \pi \text{ ist injektiv}), d.h.$ es gibt eine Verheiratung aller Elemente von A mit Elementen von B.
- (b) Hall'sche Bedingung: $\forall X \subseteq A (|X| \le |EX|)$

Beweis. (a) \Rightarrow (b): Aus (a) folgt $|X| = |\pi[X]| \le |EX|$ für alle $X \subseteq A$.

(b) \Rightarrow (a): Mit Induktion nach |A| =: n. Der Fall n = 1 ist klar. Sei n > 1 und sei der Satz bewiesen für alle n' mit $1 \le n' < n$. Wir betrachten die folgenden beiden Fälle.

1. Fall: Für alle $X \subseteq A$ sei |X| < |EX|. Sei a'Eb' und sei $A' := A \setminus \{a'\}$, $B' := B \setminus \{b'\}$ und $E' := E \cap (A' \times B')$, d. h. E' ist die Menge aller Kanten in E die weder in a' starten noch in b' enden. Dann ist (A', B', E') ein bipartiter Digraph und mit unserer Annahme folgt

$$X \subseteq A' \Rightarrow |X| < |EX| \Rightarrow |X| \le |EX| - 1 \le |EX \setminus \{b'\}| = |E'X|.$$

Mit der Induktionsvoraussetzung für n':=|A'|=n-1 erhalten wir eine Injektion $\pi':A'\to B'$ mit $\pi'\subseteq E'$ und

$$\pi := \pi' \cup \{\langle a', b' \rangle\}$$

hat die gewünschten Eigenschaften.

2. Fall: Es existiert $A_1 \subsetneq A$ mit $|A_1| = |EA_1|$. Sei $B_1 := EA_1$, und sei $A_2 := A \setminus A_1$, $B_2 := B \setminus B_1$, $E_1 := E \cap (A_1 \times B_1)$ und $E_2 := E \cap (A_2 \times B_2)$. Nun kann die Induktionsvoraussetzung sowohl auf (A_1, B_1, E_1) wie auch auf (A_2, B_2, E_2) angewandt werden und wir erhalten zwei Injektionen $\pi_1 : A_1 \to B_1$ und $\pi_2 : A_2 \to B_2$ mit $\pi_1 \subseteq E_1$ und $\pi_2 \subseteq E_2$. Die Existenz einer Injektion π_1 ist klar, denn aus $X \subseteq A_1$ folgt $EX \subseteq B_1$. Um zu sehen, dass eine Injektion $\pi_2 : A_2 \to B_2$ existiert, nehmen wir für einen Widerspruch an, dass eine Menge $X \subseteq A_2$ existiert mit $|X| > |E_2X|$, wobei $E_2X \subseteq B_2$. Mit der Definition der Mengen A_1 und A_2 , der Annahmen $|A_1| = |EA_1|$ und $|E_2X| < |X|$, sowie der Induktionsvoraussetzung erhalten wir

$$|E(A_1 \dot{\cup} X)| = |EA_1 \cup EX| = |EA_1 \dot{\cup} E_2 X| = |EA_1| + |E_2 X| < |A_1| + |X| = |A_1 \dot{\cup} X|,$$

was aber ein Widerspruch zur Voraussetzung (b) ist.

Mit den Injektionen π_1 und π_2 definieren wir nun $\pi:A\to B$ wie folgt:

$$\pi(a) := \begin{cases} \pi_1(a) & \text{für } a \in A_1, \\ \pi_2(a) & \text{sonst.} \end{cases}$$

Dann ist $\pi:A\to B$ eine Injektion mit $\pi\subseteq E$, d. h. π hat die gewünschten Eigenschaften.

Das folgende Resultat behandelt den Fall, wenn jedes Element aus A (bzw. B) mit r (bzw. s) Elementen aus B (bzw. A) befreundet ist.

KOROLLAR 7.9. Sei (A, B, E) ein bipartiter Digraph mit $|A| = n \le m = |B|$. Existieren positive ganze Zahlen r und s, sodass gilt $\forall a \in A \ (|E\{a\}| = r)$ und $\forall b \in B \ (|E^{-1}\{b\}| = s)$, so existiert eine Verheiratung aller Elemente von A mit Elementen von B.

Beweis. Es genügt zu zeigen, dass die Hall'sche Bedingung erfüllt ist. Nach Voraussetzung gilt $r\cdot n=|E|=s\cdot m$. Somit ist $s=\frac{r\cdot n}{m}$, und weil $n\leq m$ ist $s\leq r$. Wäre nun die Hall'sche Bedingung nicht erfüllt, so gäbe es eine Menge $X\subseteq A$ mit l:=|X|>|EX|=:k. Sei B':=EX und $E':=E\cap (X\times B')$. Dann ist $r\cdot l=|E'|\leq s\cdot k$, also $s\geq \frac{r\cdot l}{k}$. Weil l>k ist $\frac{r\cdot l}{k}>r$ und somit erhalten wir s>r, was aber $s\leq r$ widerspricht.

Um den nächsten Satz zu formulieren, müssen wir die Begriffe trennende Knotenmenge und Paarung einführen.

Sei G=(V,E) ein beliebiger ungerichteter Graph und seien $A,B\subseteq V$ zwei disjunkte Knotenmengen (d. h. $A\cap B=\emptyset$). Weiter sei $U\subseteq V$ eine beliebige Knotenmenge. Dann werden die Mengen A und B durch die Menge U getrennt, wenn jeder Kantenzug von einem Knoten $a\in A$ nach einem Knoten $b\in B$ mindestens einen Knoten aus U enthält. Die Menge U ist dann eine trennende Knotenmenge (engl. Separator) bzgl. den Mengen A und B.

Sei G=(V,E) ein beliebiger ungerichteter Graph. Eine **Paarung** (engl. *matching*) ist eine Teilmenge $\pi\subseteq E$ für die gilt:

$$\forall \langle x, y \rangle, \langle x', y' \rangle \in \pi \left(\langle x, y \rangle \neq \langle x', y' \rangle \rightarrow \{x, y\} \cap \{x', y'\} = \emptyset \right)$$

Eine Paarung in einem ungerichteten Graphen G=(V,E) ist also eine Injektion $\pi:A\to B$, wobei A und B zwei disjunkte Knotenmengen von V sind und für alle $\langle a,b\rangle\in\pi$ gilt, dass a und b adjazent sind.

THEOREM 7.10. Sei (A, B, E) ein ungerichteter bipartiter Graph mit |A| =: n. Dann gilt:

$$\max_{\pi \text{ Paarung}} |\pi| = n - \max_{X \subseteq A} \left(\underbrace{|X| - |EX|}_{\text{Defekt von } X} \right) = \min_{U \text{ trennt } A \& B}$$

Beweis. $\max |\pi| \ge n - \max(|X| - |EX|)$: Wir definieren l als den maximalen Defekt, also

$$l := \max_{X \subseteq A} (|X| - |EX|).$$

Sei $X_0 \subseteq A$ mit $|X_0| - |EX_0| = l$ und sei $k := |X_0|$. Dann ist $|EX_0| = k - l$. Sei nun weiter $Y_0 := A \setminus X_0$, $E' := \{\langle x, y \rangle \in E : x \in X_0\}$, $E'' := \{\langle x, y \rangle \in E : x \in Y_0 \land y \notin EX_0\}$.

1. Behauptung: $(Y_0, E''Y_0, E'')$ erfüllt die Hall'sche Bedingung.

Denn: Sei $Y\subseteq Y_0$ mit |Y|>|E''Y|, dann wäre $|X_0\dot{\cup}Y|-|E(X_0\dot{\cup}Y)|>l$, was der Definition von l widerspricht. Also existiert eine Injektion $\pi'':Y_0\to E''Y_0$ mit $\pi''\subseteq E''$, insbesondere ist π'' eine Paarung.

2. Behauptung: $(EX_0, X_0, (E')^{-1})$ erfüllt die Hall'sche Bedingung.

Denn: Sei
$$Z \subseteq EX_0$$
 mit $|Z| > |\underbrace{(E')^{-1}Z}_{=:Z_0}|$, d. h. $|Z| > |Z_0|$.

Dann wäre

$$|X_0 \setminus Z_0| - |E(X_0 \setminus Z_0)| = |X_0| - |Z_0| - (|EX_0| - |Z|) = (|X_0| - |EX_0|) + (|Z| - |Z_0|) > l,$$

was der Definition von l und X_0 widerspricht. Also existiert eine Injektion $\pi': EX_0 \to X_0$ mit $\pi' \subseteq E'$, insbesondere ist π' eine Paarung.

Mit den Paarungen π'' und π' lässt sich dann die Paarung $\pi := \pi'' \cup \pi'$ konstruieren für die gilt $|\pi| = n - l$, insbesondere ist $\max |\pi| \ge n - l$.

 $n - \max(|X| - |EX|) \ge \min |U|$: Seien X_0 und l wie oben und sei

$$U_0 := (A \setminus X_0) \dot{\cup} EX_0.$$

Dann trennt U_0 sicher A und B und es gilt

$$|U_0| = (n - |X_0|) + (|X_0| - l) = n - l.$$

 $\min |U| \ge \max |\pi|$: Sei π eine Paarung und $U \subseteq A \cup B$ eine Knotenmenge die A und B trennt. Dann gilt für alle $\langle x,y \rangle \in \pi$, $\{x,y\} \cap U \ne \emptyset$ (d. h. $1 \le |\{x,y\} \cap U| \le 2$), und aus der Definition einer Paarung folgt $|\pi| \le |U|$.

Wir haben somit $\max |\pi| \ge n - \max(|X| - |EX|) \ge \min |U| \ge \max |\pi|$, womit das Theorem bewiesen ist.