Musterlösung Serie 25

Tensorprodukt, Körpererweiterungen

1. Betrachte Vektorräume V_1 und V_2 mit $0 < n := \min\{\dim_K(V_1), \dim_K(V_2)\} < \infty$. Zeige, dass jeder Tensor in $V_1 \otimes_K V_2$ eine Summe von n reinen Tensoren ist, aber im allgemeinen nicht von n-1 reinen Tensoren.

Lösung: Ohne Beschränkung der Allgemeinheit können wir $n = \dim_K(V_2) \leq \dim_K(V_1)$ annehmen. Sei $\{b_i\}_{i\in I}$ eine Basis von V_1 und sei $\{b'_1,\ldots,b'_n\}$ eine Basis von V_2 . Dann ist

$$\{b_i \otimes b'_i \mid i \in I, \ 1 \leqslant j \leqslant n\}$$

eine Basis von $V_1 \otimes V_2$. Jeder Vektor $v \in V_1 \otimes V_2$ lässt sich daher schreiben als

$$v = \sum_{i \in I}' \sum_{j=1}^{n} a_{ij} b_i \otimes b_j'$$

für eindeutige Koeffizienten $a_{ij} \in K$. Mit $v_j := \sum_{i \in I}' a_{ij} b_i \in V_1$ für alle j folgt

$$v = \sum_{j=1}^{n} v_j \otimes b_j'.$$

Also ist v die Summe der n reinen Tensoren $v_1 \otimes b'_1, \ldots, v_n \otimes b'_n$.

Wir müssen weiter zeigen, dass ein Tensor existiert, welcher nicht die Summe von n-1 reinen Tensoren ist. Wegen $\dim(V_1) \geqslant \dim(V_2)$ können wir dabei $\{1,\ldots,n\} \subset I$ annehmen.

Behauptung. Der Tensor $v:=\sum_{i=1}^n b_i\otimes b_i'$ lässt sich nicht als Summe von n-1 reinen Tensoren schreiben.

Beweis. Angenommen, es sei $v = \sum_{i=1}^{n-1} v_i \otimes w_i$ für Vektoren $v_i \in V_1$ und $w_i \in V_2$. Aus Dimensionsgründen existiert dann eine nicht-verschwindende Linearform $\ell \colon V_2 \to K$ mit $\ell(w_i) = 0$ für alle $i = 1, \ldots, n-1$. Durch Anwenden der linearen Abbildung id $V_1 \otimes \ell \colon V_1 \otimes_K V_2 \to V_1 \otimes_K K$ erhalten wir

$$\sum_{i=1}^{n} \ell(b'_i) \cdot (b_i \otimes 1) = \sum_{i=1}^{n} b_i \otimes \ell(b'_i) = (\mathrm{id}_{V_1} \otimes \ell)(v) = \sum_{i=1}^{n-1} v_i \otimes \ell(w_i) = 0.$$

Da die Vektoren $b_i \otimes 1$ für alle $i \in I$ eine Basis von $V_1 \otimes_K K$ bilden, folgt daraus $\ell(b_i') = 0$ für alle i. Da andererseits die b_i' eine Basis von V_2 bilden, folgt daraus $\ell = 0$, im Widerspruch zur Annahme.

2. Zeige: Für alle K-Vektorräume V und W existiert ein natürlicher injektiver Homomorphismus

$$V^{\vee} \otimes W^{\vee} \hookrightarrow (V \otimes W)^{\vee}.$$

Dieser ist ein Isomorphismus genau dann, wenn V oder W endlich-dimensional ist.

 $L\ddot{o}sung$: Nach einer Proposition der Vorlesung existiert ein natürlicher injektiver Homomorphismus

$$\varphi \colon V^{\vee} \otimes_K W^{\vee} \to \operatorname{Hom}_K(V, W^{\vee}) \text{ mit } \ell \otimes m \mapsto (v \mapsto \ell(v) \cdot m).$$

Andererseits liefert die Adjunktionsformel einen natürlichen Isomorphismus

$$\psi \colon \operatorname{Hom}_K(V, W^{\vee}) = \operatorname{Hom}_K(V, \operatorname{Hom}_K(W, K)) \xrightarrow{\sim} \operatorname{Hom}_K(V \otimes W, K) = (V \otimes W)^{\vee}.$$

Somit ist die zusammengesetzte Abbildung $\psi \circ \varphi$ ein natürlicher injektiver Homomorphismus $V^{\vee} \otimes W^{\vee} \to (V \otimes W)^{\vee}$.

Nach der Vorlesung ist das Bild von φ der Unterraum aller Homomorphismen von endlichem Rang. Dieser Unterraum ist gleich $\operatorname{Hom}_K(V,W^{\vee})$ genau dann, wenn V oder W^{\vee} endlich-dimensional ist. Aber W^{\vee} ist endlich-dimensional genau dann, wenn W endlich-dimensional ist. Da ψ immer ein Isomorphismus ist, ist folglich $\psi \circ \varphi$ ein Isomorphismus genau dann, wenn V oder W endlich-dimensional ist.

3. Sei V ein Vektorraum der Dimension n und sei t ein Element von $V \otimes_K V$. Seien $B = (b_1, \ldots, b_n)$ und $B' = (b'_1, \ldots, b'_n)$ geordnete Basen von V und schreibe

$$t = \sum_{i,j=1}^{n} \alpha_{ij} \cdot b_i \otimes b_j = \sum_{i,j=1}^{n} \alpha'_{ij} \cdot b'_i \otimes b'_j$$

mit eindeutigen Koeffizienten $\alpha_{ij},\alpha'_{ij}\in K$. Beschreibe die Beziehung zwischen den Matrizen

$$A := (\alpha_{ij})_{1 \le i,j \le n}$$
 und $A' := (\alpha'_{ij})_{1 \le i,j \le n}$

in Termen der Basiswechselmatrix $B'[id]_B$.

Lösung: Die Matrix $M:={}_{B'}[\mathrm{id}]_B=(m_{ij})_{i,j}$ ist charakterisiert durch die Formel $b_i=\sum_{k=1}^n m_{ki}b_k'$ für alle i. Es folgt

$$t = \sum_{i,j=1}^{n} \alpha_{ij} b_{i} \otimes b_{j} = \sum_{i,j} \alpha_{ij} \left(\sum_{k} m_{ki} b'_{k} \right) \otimes \left(\sum_{\ell} m_{\ell j} b'_{\ell} \right)$$
$$= \sum_{i,j,k,\ell} \alpha_{ij} m_{ki} m_{\ell j} b'_{k} \otimes b'_{\ell}$$
$$= \sum_{k,\ell} \left(\sum_{i,j} \alpha_{ij} m_{ki} m_{\ell j} \right) b'_{k} \otimes b'_{\ell}.$$

Da $\{b'_i \otimes b'_j \mid i, j = 1, \dots, n\}$ eine Basis von $V \otimes V$ bildet, folgt für alle k, ℓ

$$\alpha'_{k\ell} = \sum_{i,j} m_{ki} \alpha_{ij} m_{\ell j}.$$

In Matrizen bedeutet dies $A' = M \cdot A \cdot M^T$.

*4. Beweise: Für jeden Vektorraum V und für jede Menge $\{W_i\}_{i\in I}$ von Vektorräumen W_i existiert ein natürlicher Isomorphismus

$$V \otimes_K \left(\bigoplus_{i \in I} W_i \right) \stackrel{\cong}{\to} \bigoplus_{i \in I} (V \otimes_K W_i)$$

Lösung: Wir schreiben $\sum_{i\in I}' v_i X_i$ für Elemente $(v_i)_{i\in I}$ einer äusseren direkten Summe $\bigoplus_{i\in I} V_i$ von Vektorräumen V_i .

Betrachte die Abbildung

$$\varphi \colon V \times \left(\bigoplus_{i \in I} W_i \right) \to \bigoplus_{i \in I} \left(V \otimes_K W_i \right)$$
$$\left(v \, , \, \sum_{i \in I}' w_i X_i \right) \longmapsto \sum_{i \in I}' \left(v \otimes w_i \right) X_i \, .$$

Man zeigt direkt, dass φ bilinear ist. Durch Anwenden der universellen Eigenschaft des Tensorproduktes $(V \otimes_K(\overline{\vdash}_{i \in I} W_i), \kappa)$ auf φ erhalten wir eine lineare Abbildung

$$\Phi \colon V \otimes \left(\bigoplus_{i \in I} W_i \right) \to \bigoplus_{i \in I} \left(V \otimes_K W_i \right)$$

mit $\Phi \circ \kappa = \varphi$, also mit

$$v \otimes \left(\sum_{i \in I}' w_i X_i\right) \longmapsto \sum_{i \in I}' (v \otimes w_i) X_i$$

für alle $v \in V$ und $\sum_{i \in I}' w_i X_i \in \bigoplus_{i \in I} W_i$.

Sei $B = \{b_j \mid j \in J\}$ eine Basis von V und für jedes $i \in I$ sei $B_i' = \{b_{ik}'\}_{k \in K_i}$ eine Basis von W_i . Dann ist $\{b_{ik}'X_i \mid i \in I, k \in K_i\}$ eine Basis von $\bigoplus_{i \in I} W_i$, und somit ist

$$\{b_j \otimes (b'_{ik}X_i) \mid j \in J, k \in K_i, i \in I\}$$

eine Basis von $V \otimes (\bigoplus_{i \in I} W_i)$ und

$$\{(b_j \otimes b'_{ik})X_i \mid j \in J, k \in K_i, i \in I\}$$

eine Basis von $\coprod_{i \in I} (V \otimes W_i)$. Wegen

$$\Phi(b_i \otimes (b'_{ik}X_i)) = (b_i \otimes b'_{ik})X_i$$

für alle i, j, k bildet Φ die erste Basis bijektiv auf die zweite ab und ist somit ein Isomorphismus.

- 5. Sei $f: V \to V'$ eine lineare Abbildung von K-Vektorräumen, und sei L ein Oberkörper von K. Zeige:
 - (a) Die Abbildung $f_L := f \otimes id_L \colon V_L \to V'_L$ ist L-linear.
 - (b) $\operatorname{Kern}(f_L) = \operatorname{Kern}(f) \otimes_K L$.
 - (c) $Bild(f_L) = Bild(f) \otimes_K L$.
 - (d) $\operatorname{Rang}_L(f_L) = \operatorname{Rang}_K(f)$.

Lösung:

(a) Nach Konstruktion ist die Abbildung $f \otimes id_L$ K-linear, also insbesondere additiv. Ausserdem gilt für alle $v \in V$ und $x, y \in L$

$$(f \otimes \mathrm{id}_L)(x \cdot (v \otimes y)) = (f \otimes \mathrm{id}_L)(v \otimes xy) = f(v) \otimes xy$$
$$= x \cdot (f(v) \otimes y) = x \cdot (f \otimes \mathrm{id}_L)(v \otimes y).$$

Da jedes Element $\tilde{v} \in V \otimes_K L$ eine Summe von Elementen der Form $v \otimes y$ ist, folgt

$$(f \otimes id_L)(x \cdot \tilde{v}) = x \cdot (f \otimes id_L)(\tilde{v})$$

für alle $x \in L$. Insgesamt ist $f \otimes id_L$ also L-linear.

(b-c) Wähle eine Basis B von Kern(f), ein Komplement $U \subset V$ von Kern(f), sowie eine Basis B' von U. Dann induziert f eine bijektive Abbildung von B' auf eine Basis B'' = f(B') von Bild(f). Nach der Vorlesung sind dann

$$\begin{split} \tilde{B} &:= \{b \otimes 1 \mid b \in B\} & \text{eine Basis von Kern}(f) \otimes_K L, \\ \tilde{B}' &:= \{b' \otimes 1 \mid b' \in B'\} & \text{eine Basis von } U \otimes_K L, \\ \tilde{B} \cup \tilde{B}' &= \{b \otimes 1 \mid b \in B \cup B'\} & \text{eine Basis von } V \otimes_K L, \\ \tilde{B}'' &:= \{b'' \otimes 1 \mid b'' \in B''\} & \text{eine Basis von Bild}(f) \otimes_K L. \end{split}$$

Insbesondere ist somit

$$V \otimes_K L = (\operatorname{Kern}(f) \otimes_K L) \oplus (U \otimes_K L).$$

Für jedes $b \in B$ gilt $(f \otimes \operatorname{id}_L)(b \otimes 1) = f(b) \otimes 1 = 0 \otimes 1 = 0$; also ist $B \subset \operatorname{Kern}(f \otimes \operatorname{id}_L)$ und somit $\operatorname{Kern}(f) \otimes_K L \subset \operatorname{Kern}(f \otimes \operatorname{id}_L)$. Andererseits bildet $f \otimes \operatorname{id}_L$ die Menge \tilde{B}' bijektiv auf \tilde{B}'' ab und induziert daher einen Isomorphismus $U \otimes_K L \xrightarrow{\sim} \operatorname{Bild}(f) \otimes_K L$. Zusammen impliziert dies also $\operatorname{Bild}(f \otimes \operatorname{id}_L) = \operatorname{Bild}(f) \otimes_K L$ und $\operatorname{Kern}(f \otimes \operatorname{id}_L) = \operatorname{Kern}(f) \otimes_K L$, wie gewünscht.

(d) Aus der Definition des Rangs, der Aussage (c), und der Dimensionsinvarianz der Basiserweiterung folgt

$$\operatorname{Rang}_{L}(f \otimes \operatorname{id}_{L}) = \dim_{L}(\operatorname{Bild}(f \otimes \operatorname{id}_{L}))
= \dim_{L}(\operatorname{Bild}(f) \otimes_{K} L)
= \dim_{K}(\operatorname{Bild}(f)) = \operatorname{Rang}_{K}(f).$$

6. Sei V ein reeller Vektorraum und sei I ein Endomorphismus mit $I^2 = -id_V$. Bestimme die Eigenwerte und Eigenvektoren seiner Komplexifizierung

$$I_{\mathbb{C}} := I \otimes \mathrm{id}_{\mathbb{C}} \in \mathrm{End}_{\mathbb{C}}(V_{\mathbb{C}}).$$

Lösung: Im Fall V=0 gibt es keine Eigenwerte oder Eigenwerte. Andernfalls folgt aus $I^2 + \mathrm{id}_V = 0_V$ auch

$$(I_{\mathbb{C}} \mp i \cdot \mathrm{id}_{V_{\mathbb{C}}}) \cdot (I_{\mathbb{C}} \pm i \cdot \mathrm{id}_{V_{\mathbb{C}}}) = I_{\mathbb{C}}^2 + \mathrm{id}_{V_{\mathbb{C}}} = 0_{V_{\mathbb{C}}}.$$

Also ist

$$\operatorname{Bild}(I_{\mathbb{C}} \pm i \cdot \operatorname{id}_{V_{\mathbb{C}}}) \subset \operatorname{Kern}(I_{\mathbb{C}} \mp i \cdot \operatorname{id}_{V_{\mathbb{C}}}) = \operatorname{Eig}_{+i}(I_{\mathbb{C}}).$$

Andererseits impliziert $(I_{\mathbb{C}} + i \cdot \mathrm{id}_{V_{\mathbb{C}}}) + (I_{\mathbb{C}} - i \cdot \mathrm{id}_{V_{\mathbb{C}}}) = 2 \mathrm{id}_{V_{\mathbb{C}}}$ die Gleichung

$$V = \operatorname{Bild}(I_{\mathbb{C}} + i \cdot \operatorname{id}_{V_{\mathbb{C}}}) + \operatorname{Bild}(I_{\mathbb{C}} - i \cdot \operatorname{id}_{V_{\mathbb{C}}}).$$

Zusammen folgt daraus $V = \operatorname{Eig}_i(I_{\mathbb{C}}) \oplus \operatorname{Eig}_{-i}(I_{\mathbb{C}})$ und

$$\operatorname{Eig}_{+i}(I_{\mathbb{C}}) = \operatorname{Bild}(I_{\mathbb{C}} \pm i \cdot \operatorname{id}_{V_{\mathbb{C}}}).$$

Schliesslich gilt für jeden Vektor $v \in V \setminus \{0\}$

$$(I_{\mathbb{C}} \pm i \cdot \mathrm{id}_{V_{\mathbb{C}}})(v \otimes 1) = (I \otimes \mathrm{id}_{\mathbb{C}} \pm \mathrm{id}_{V} \otimes i \, \mathrm{id}_{\mathbb{C}})(v) = I(v) \otimes 1 \pm v \otimes i \neq 0,$$

da 1 und i als komplexe Zahlen \mathbb{R} -linear unabhängig sind. Folglich sind beide Eigenräume ungleich Null, und die Eigenwerte sind i und -i.

*7. Zeige: Zwei reelle $n \times n$ -Matrizen A und A' sind ähnlich über \mathbb{R} genau dann, wenn sie ähnlich über \mathbb{C} sind.

Lösung: Sind A und A' ähnlich über \mathbb{R} , so existiert eine invertierbare reelle und somit auch komplexe Matrix U mit $UAU^{-1} = UA'U^{-1}$; also sind A und A' auch ähnlich über \mathbb{C} .

Sei umgekehrt angenommen, dass A und A' ähnlich über \mathbb{C} sind. Dann existiert eine invertierbare komplexe $n \times n$ -Matrix U mit $A = UA'U^{-1}$. Schreiben wir U = K + iL für reelle $n \times n$ -Matrizen K, L, so folgt

$$A \cdot (K + iL) = A \cdot U = U \cdot A' = (K + iL) \cdot A'.$$

Nehmen wir von dieser Gleichung den Real- und Imaginärteil, so finden wir AK = KA' und AL = LA'. Für jedes $x \in \mathbb{R}$ gilt daher auch

$$A \cdot (K + xL) = (K + xL) \cdot A'.$$

Nun ist $p(X) := \det(K + XL)$ ein reelles Polynom in der Variablen X mit $p(i) = \det(K + iL) = \det(U) \neq 0$, weil U invertierbar ist. Also ist p nicht schon identisch

Null und hat daher höchstens endlich viele Nullstellen in \mathbb{C} . Insbesondere existiert ein $x \in \mathbb{R}$ mit $\det(K + xL) = p(x) \neq 0$. Dann ist V := K + xL eine invertierbare reelle Matrix mit $A \cdot V = V \cdot A'$, also mit $A = V \cdot A' \cdot V^{-1}$. Daher sind die Matrizen A und A' auch über \mathbb{R} ähnlich.

Aliter: Für jede reelle bzw. komplexe $n \times n$ -Matrix B bezeichne $L_{B,\mathbb{R}} \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^n)$ bzw. $L_{B,\mathbb{C}} \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}^n)$ die Linksmultiplikation mit B. Für eine reelle Matrix B können wir damit die Abbildungen $L_{B,\mathbb{R}}$ und $L_{B,\mathbb{C}}$ voneinander unterscheiden. Ausserdem gilt dann $L_{B,\mathbb{R}} \otimes_{\mathbb{R}} \operatorname{id}_{\mathbb{C}} = L_{B,\mathbb{C}}$ via dem natürlichen Isomorphismus $\mathbb{R}^n \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}^n$, und mit Aufgabe 5(d) folgt

(1)
$$\operatorname{Rang}_{\mathbb{R}}(L_{B,\mathbb{R}}) = \operatorname{Rang}_{\mathbb{C}}(L_{B,\mathbb{C}}).$$

Seien nun A und A' ähnlich über \mathbb{C} . Für jeden gemeinsamen Eigenwert $\alpha \in \mathbb{C}$ und jedes $i \geq 0$ gilt dann

(2)
$$\operatorname{Rang}_{\mathbb{C}}(L_{(A-\alpha I_n)^i,\mathbb{C}}) = \operatorname{Rang}_{\mathbb{C}}(L_{(A'-\alpha I_n)^i,\mathbb{C}}).$$

Ist $\alpha \in \mathbb{R}$, also $p(X) := X - \alpha$ ein in $\mathbb{R}[X]$ irreduzibler Faktor des (gemeinsamen) charakteristischen Polynoms, so folgt aus (1) für jedes $i \ge 0$ dann

(3)
$$\operatorname{Rang}_{\mathbb{R}}(L_{p(A)^{i}.\mathbb{R}}) = \operatorname{Rang}_{\mathbb{R}}(L_{p(A')^{i}.\mathbb{R}}).$$

Sei nun $\alpha \notin \mathbb{R}$, also $p(X) := (X - \alpha)(X - \overline{\alpha})$ ein in $\mathbb{R}[X]$ irreduzibler Faktor des (gemeinsamen) charakteristischen Polynoms.

Behauptung: Für jedes $i \ge 0$ gilt

(4)
$$\operatorname{Rang}_{\mathbb{C}}(L_{p(A)^{i},\mathbb{C}}) = \operatorname{Rang}_{\mathbb{C}}(L_{(A-\alpha I_{n})^{i},\mathbb{C}}) + \operatorname{Rang}_{\mathbb{C}}(L_{(A-\bar{\alpha}I_{n})^{i},\mathbb{C}}) - n.$$

Beweis: Betrachte die Hauptraumzerlegung $\mathbb{C}^n = \bigoplus_{\beta} \operatorname{Hau}_{X-\beta}(L_{A,\mathbb{C}})$, wobei $\beta \in \mathbb{C}$ alle Eigenwerte von A durchläuft. Dann induziert $(A - \alpha I_n)^i$ einen invertierbaren Endomorphismus von $\operatorname{Hau}_{X-\beta}(L_{A,\mathbb{C}})$ für jedes $\beta \neq \alpha$, und $(A - \bar{\alpha}I_n)^i$ induziert einen invertierbaren Endomorphismus von $\operatorname{Hau}_{X-\beta}(L_{A,\mathbb{C}})$ für jedes $\beta \neq \bar{\alpha}$. Ausserdem ist

$$p(A)^{i} = (A - \alpha I_{n})^{i} (A - \bar{\alpha} I_{n})^{i} = (A - \bar{\alpha} I_{n})^{i} (A - \alpha I_{n})^{i}.$$

Folglich ist

$$\operatorname{Kern}(L_{p(A),\mathbb{C}}) = \bigoplus_{\beta} \operatorname{Kern}(L_{p(A),\mathbb{C}} \mid \operatorname{Hau}_{X-\beta}(L_{A,\mathbb{C}}))$$

$$= \operatorname{Kern}(L_{(A-\alpha I_n)^i,\mathbb{C}} \mid \operatorname{Hau}_{X-\alpha}(L_{A,\mathbb{C}})) \oplus \operatorname{Kern}(L_{(A-\bar{\alpha} I_n)^i,\mathbb{C}} \mid \operatorname{Hau}_{X-\bar{\alpha}}(L_{A,\mathbb{C}}))$$

$$= \operatorname{Kern}(L_{(A-\alpha I_n)^i,\mathbb{C}}) \oplus \operatorname{Kern}(L_{(A-\bar{\alpha} I_n)^i,\mathbb{C}}).$$

Aus der bekannten Formel $\operatorname{Rang}_{\mathbb{C}}(B) = n - \dim_{\mathbb{C}} \operatorname{Kern}(L_{B,\mathbb{C}})$ für jede komplexe $n \times n$ -Matrix B folgt daraus die Behauptung. **q.e.d.**

Durch Einsetzen der Gleichung (2) in die Behauptung (4) und die analoge Formel für A' anstatt A folgt nun

$$\operatorname{Rang}_{\mathbb{C}}(L_{p(A)^{i},\mathbb{C}}) = \operatorname{Rang}_{\mathbb{C}}(L_{p(A')^{i},\mathbb{C}})$$

Mit (1) folgt daraus dann dieselbe Aussage wie oben:

(3)
$$\operatorname{Rang}_{\mathbb{R}}(L_{p(A)^{i},\mathbb{R}}) = \operatorname{Rang}_{\mathbb{R}}(L_{p(A')^{i},\mathbb{R}}).$$

Dies gilt also für alle normierten irreduziblen Faktoren $p(X) \in \mathbb{R}[X]$ des gemeinsamen charakteristischen Polynoms und für alle $i \geq 0$. Somit haben A und A' dieselbe Jordansche Normalform über \mathbb{R} ; also sind sie ähnlich.

- 8. Sei (V, \langle , \rangle) ein unitärer Vektorraum. Sei $V_{\mathbb{R}} := V$ aufgefasst als reeller Vektorraum. Zeige:
 - (a) Der Realteil Re \langle , \rangle ist ein (euklidisches) Skalarprodukt auf $V_{\mathbb{R}}$.
 - (b) Für jede Orthonormalbasis B von (V, \langle , \rangle) ist

$$\{v, iv \mid v \in B\}$$

eine Orthonormalbasis von $(V_{\mathbb{R}}, \operatorname{Re}\langle , \rangle)$.

(c) Jeder unitäre Endomorphismus von V ist ein orthogonaler Endomorphismus von $V_{\mathbb{R}}$.

Lösung:

(a) Man prüft direkt, dass Re \langle , \rangle bilinear ist; zum Beispiel gilt Re $\langle \lambda v, w \rangle = \text{Re}(\overline{\lambda}\langle v, w \rangle) = \lambda \text{Re}\langle v, w \rangle$ für alle $v, w \in V_{\mathbb{R}}$ und $\lambda \in \mathbb{R}$. Wegen Re $\overline{z} = \text{Re} z$ für alle $z \in \mathbb{C}$ ist

$$\operatorname{Re}\langle v, w \rangle = \operatorname{Re}(\overline{\langle w, v \rangle}) = \operatorname{Re}\langle w, v \rangle$$

für alle $v, w \in V_{\mathbb{R}}$, also $\operatorname{Re}\langle , \rangle$ symmetrisch, und wegen $\langle v, v \rangle > 0$ für alle $v \in V_{\mathbb{R}} \setminus \{0\}$ ist $\operatorname{Re}\langle , \rangle$ zudem positiv definit, also ein euklidisches Skalarprodukt.

(b) Jeder Vektor in V ist eine komplexe Linearkombination der Basisvektoren B, also auch eine reelle Linearkombination der Vektoren $\{v, iv \mid v \in B\}$; Die Vektoren v, iv für alle $v \in B$ erzeugen also V.

Aus $\langle b, b' \rangle = \delta_{bb'}$ für alle $b, b' \in B$ folgt

$$\operatorname{Re}\langle b, b' \rangle = \delta_{bb'},$$

$$\operatorname{Re}\langle b, ib' \rangle = \operatorname{Re}(i \cdot \delta_{bb'}) = 0,$$

$$\operatorname{Re}\langle ib, ib' \rangle = \operatorname{Re}(i \cdot (-i) \cdot \delta_{bb'}) = \delta_{bb'}.$$

Also ist $\{b, ib \mid b \in B\}$ eine Orthonormalbasis von $(V_{\mathbb{R}}, \operatorname{Re}\langle , \rangle)$.

(c) Für jeden unitären Endomorphismus f von V gilt $\langle f(v), f(w) \rangle = \langle v, w \rangle$, also $\operatorname{Re} \langle f(v), f(w) \rangle = \operatorname{Re} \langle v, w \rangle$ für alle $v, w \in V$, also f orthogonal bezüglich $\operatorname{Re} \langle , \rangle$.