Serie 18

BILINEARFORMEN UND SKALARPRODUKTE

*1. Sei $\|\cdot\|$ eine Norm auf dem \mathbb{R} -Vektorraum V. Zeige, dass die Norm genau dann von einem Skalarprodukt $\langle\cdot,\cdot\rangle$ auf V induziert wird, wenn sie für alle $x,y\in V$ die Parallelogrammidentit

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

erfüllt.

2. Für welche Werte $a \in \mathbb{R}$ ist für $x = \binom{x_1}{x_2}$ und $y = \binom{y_1}{y_2}$ durch

$$\langle x, y \rangle := x_1 y_1 + a x_1 y_2 + a x_2 y_1 + 7 x_2 y_2$$

ein Skalarprodukt auf \mathbb{R}^2 definiert?

- 3. Sei V der Vektorraum der reellen Polynome vom Grad $\leq n$.
 - (a) Zeige, dass durch

$$\langle p, q \rangle := \int_0^\infty p(t)q(t)e^{-t} dt$$

ein Skalarprodukt auf V definiert wird.

- (b) Bestimme die Matrix des Skalarprodukts bezüglich der Basis $1, x, \ldots, x^n$.
- 4. Sei $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Zeige:
 - (a) Die Matrix $A^T A$ ist symmetrisch.
 - (b) Die Matrix A^TA ist positiv definit genau dann, wenn A invertierbar ist.
 - (c) Es gilt $Rang(A^T A) = Rang(A)$.
- 5. Zeige, dass durch $\langle A, B \rangle := \operatorname{Spur}(A^T B)$ ein Skalarprodukt auf $\operatorname{Mat}_{n \times n}(\mathbb{R})$ definiert ist, und finde eine Orthonormalbasis dazu.
- **6. Zeige, dass es einen euklidischen Vektorraum gibt, der keine Orthonormalbasis besitzt.

Hinweis: Untersuche einen Hilbertraum, und beachte, dass wir hier nicht von einer Hilbertraumbasis sprechen, sondern von einer Basis im Sinn der linearen Algebra.

- 7. Sei V ein Vektorraum über einem Körper K. Eine Bilinearform β auf V heisst . . .
 - symmetrisch wenn gilt $\forall v, w \in V : \beta(v, w) = \beta(w, v)$,
 - antisymmetrisch wenn gilt $\forall v, w \in V : \beta(v, w) = -\beta(w, v),$
 - alternierend wenn gilt $\forall v \in V : \beta(v, v) = 0$.

Zeige:

- (a) Jede alternierende Bilinearform ist antisymmetrisch.
- (b) Ist $2 \neq 0$ in K, so ist jede antisymmetrische Bilinearform alternierend.
- (c) Ist $2 \neq 0$ in K, so ist jede Bilinearform auf eindeutige Weise die Summe einer symmetrischen und einer alternierenden Bilinearform.
- (d) Gib ein Beispiel einer antisymmetrischen, nicht alternierenden Bilinearform.
- *8. Sei β eine alternierende Bilinearform auf einem endlich-dimensionalen K-Vektorraum V. Wir nehmen an, dass β nicht-ausgeartet ist, das heisst, dass gilt:

$$\forall v \in V \setminus \{0\} \ \exists v' \in V : \beta(v, v') \neq 0.$$

Wie im euklidischen Fall ist das orthogonale Komplement eines Unterraums $U \subset V$ definiert als

$$U^{\perp} := \{ v \in V \mid \forall u \in U \colon \beta(v, u) = 0 \}.$$

Ein Unterraum U mit $U \subset U^{\perp}$ heisst isotrop (bezüglich β). Zeige:

- (a) Für jeden Unterraum U ist U^{\perp} ein Unterraum.
- (b) Für jeden Unterraum U gilt $\dim_K V = \dim_K U + \dim_K U^{\perp}$.
- (c) Für jeden maximalen isotropen Unterraum U gilt $U = U^{\perp}$.
- (d) Jeder isotrope Unterraum ist in einem maximalen isotropen Unterraum enthalten.
- (e) Es existiert eine geordnete Basis B von V, bezüglich welcher β die Darstellungsmatrix

$$M_B(\beta) = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

besitzt. Insbesondere ist $\dim(V) = 2n$ gerade.