Prof. Richard Pink

Single Choice Aufgaben 20

Orthogonalität und Adjungierte Abbildungen

Sie haben 15 Minuten Zeit, um die 5 untenstehenden Aufgaben zu lösen. Es ist jeweils genau eine Antwort richtig.

- 1. Betrachte \mathbb{R}^2 mit dem Standardskalarprodukt und den Vektor $v := \frac{1}{\sqrt{5}} \binom{1}{2}$. Welcher Vektor w ergänzt v zu einer Orthonormalbasis von \mathbb{R}^2 ?
 - (a) $w := \binom{1}{0}$
 - (b) $w := \frac{1}{\sqrt{2}} \binom{1}{1}$
 - (c) $w := \frac{1}{\sqrt{5}} {\binom{-2}{1}}$
 - (d) $w := \frac{1}{2} \binom{2}{-1}$
- 2. Sei V ein euklidischer Vektorraum der Dimension $n < \infty$. Welche Aussage ist im Allgemeinen falsch?
 - (a) Jedes Orthonormalsystem in V hat Länge $\leq n$.
 - (b) Jedes Orthonormalsystem in V lässt sich zu einer Orthonormalbasis ergänzen.
 - (c) Jedes Orthonormalsystem (v_1, \ldots, v_n) in V ist eine Basis von V.
 - (d) Jede Basis von V ist ein Orthonormalsystem.

- 3. Welche Aussage ist im Allgemeinen falsch?
 - (a) Das Produkt zweier orthogonaler Matrizen ist orthogonal.
 - (b) Die Summe zweier orthogonaler Matrizen ist orthogonal.
 - (c) Die Transponierte einer orthogonalen Matrix ist orthogonal.
 - (d) Die Inverse einer orthogonalen Matrix ist orthogonal.
- 4. Sei V ein euklidischer Vektorraum. Welche Aussage ist im Allgemeinen falsch?
 - (a) Der Identitäts-Endomorphismus von V ist selbstadjungiert.
 - (b) Der Null-Endomorphismus von V ist selbstadjungiert.
 - (c) Die Verknüpfung selbstadjungierter Endomorphismen ist selbstadjungiert.
 - (d) Die Summe zweier selbstadjungierter Endomorphismen ist selbstadjungiert.
- 5. Sei $f: V \to W$ ein Isomorphismus zwischen zwei euklidischen Vektorräumen mit der Adjungierten $f^*: W \to V$. Welche Aussage ist im Allgemeinen falsch?
 - (a) Falls $f^* \circ f = 0$ ist, gilt f = 0.
 - (b) Es ist f orthogonal genau dann, wenn $f^* \circ f = \mathrm{id}_V$ ist.
 - (c) Der Homomorphismus $f^* \circ f$ ist selbstadjungiert.
 - (d) Die zu $f^* \circ f$ Adjungierte ist $f \circ f^*$.