Serie 10

1. Seien $n \in \mathbb{N}$ und $A \in \operatorname{Mat}_{n,n}(\mathbb{R})$ eine symmetrische positiv definite Matrix. Zeigen Sie, dass

$$\int_{\mathbb{R}^n} e^{-\langle Ax, x \rangle} \operatorname{dvol}(x) = \frac{\pi^{n/2}}{\sqrt{\det(A)}}.$$

- 2. (Das Doppelintegral zum Basler Problem) Wir möchten in dieser Übung zeigen, dass die Funktion $f:(x,y)\mapsto \frac{1}{1-xy}$ auf $[0,1)^2$ uneigentlich Riemann-integrierbar ist und dass $\int_{[0,1)^2} \frac{1}{1-xy} \mathrm{d}\mathrm{vol}(x,y) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \zeta(2)$.
 - (a) Sei $s \in (0,1)$ und $B_s = [0,1) \times [0,s)$. Zeigen Sie, dass $f|_{B_s}$ Riemann-integrierbar ist und dass

$$\int_{B_s} f dvol = \int_0^s \int_0^1 \frac{1}{1 - xy} dx dy = \sum_{k=0}^\infty \frac{s^{k+1}}{(k+1)^2}$$

gilt.

- (b) Zeigen Sie, dass der Grenzwert $\lim_{s\to 1}\int_{B_s} f dvol$ existiert und gleich $\zeta(2)$ ist.
- (c) Schliessen Sie, dass f uneigentlich Riemann-integrierbar ist und dass $\int_{[0,1)^2} \frac{1}{1-xy} d\text{vol} = \zeta(2) \text{ ist.}$
- 3. (Dreiecksungleichung für uneigentliche Integrale) Sei $(B_m)_m$ eine Ausschöpfung einer Teilmenge B. Seien $f,g:B\to\mathbb{R}$, so dass $|f|\leqslant g$ gilt und die Funktionen $f|_{B_m}$ und $g|_{B_m}$ für alle $m\in\mathbb{N}$ Riemann-integrierbar sind. Angenommen g ist uneigentlich Riemann-integrierbar. Zeigen Sie, dass dann auch f und |f| auf B uneigentlich Riemann-integrierbar sind und dass

$$\left| \int_{B} f \, dvol \right| \leqslant \int_{B} |f| \, dvol \leqslant \int_{B} g \, dvol$$

gilt.

- 4. Es sei $B = \{(x,y) \in \mathbb{R}^2 \mid 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant \cosh(x)\}$ und $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ das Vektorfeld mit $f_1(x,y) = 1$ und $f_2(x,y) = y \sinh(x)$. Berechnen Sie den Fluss $\int_{\partial B} f \cdot d\mathbf{n}$ von f durch den Rand ∂B von B auf zwei Arten:
 - (a) direkt anhand der Definition von Flussintegralen;
 - (b) unter Verwendung des Divergenzsatzes.

- 5. Zeigen Sie, dass die Definition von $\int_{\partial B} f \cdot d\mathbf{n}$ für Rechtecke B am Anfang von Abschnitt 14.1 und für Bereiche B unter Graphen in Proposition 14.2 Spezialfälle von Definition 14.11 darstellen.
- 6. Seien $n \in \mathbb{N}$, $A \in GL_n(\mathbb{R})$ eine invertierbare $n \times n$ -Matrix und $f : \mathbb{R}^n \to \mathbb{R}^n$ ein differenzierbares Vektorfeld. Beweisen Sie für $x \in \mathbb{R}^n$ die Formel

$$\operatorname{div}(A \circ f \circ A^{-1})(x) = \operatorname{div}(f)(A^{-1}x).$$

Bemerkung: Die Divergenz eines differenzierbaren n-dimensionalen Vektorfelds $g = (g_1, \dots, g_n)^t$ ist definiert als $\operatorname{div}(g) = \partial_1 g_1 + \dots + \partial_n g_n$.