Serie 2

- 1. Sei V ein Vektorraum über \mathbb{R} oder \mathbb{C} .
 - (a) Zeigen Sie, dass zwei äquivalente Normen auf V die gleiche Topologie und den gleichen Konvergenzbegriff induzieren.
 - (b) Zeigen Sie, dass die Normäquivalenz (wie der Name sagt) eine Äquivalenzrelation auf der Menge der Normen auf V definiert.
- 2. Sei X ein metrischer Raum und sei $Y \subseteq X$ eine Teilmenge.
 - (a) Zeigen Sie, dass Y° eine offene Teilmenge von X ist und jede offene Teilmenge $U \subset Y$ enthält.
 - (b) Zeigen Sie, dass \overline{Y} eine abgeschlossene Teilmenge von X ist und in jeder abgeschlossenen Teilmenge $A \supseteq Y$ enthalten ist.
- 3. Sei X ein metrischer Raum und $Y \subseteq X$ eine Teilmenge.
 - (a) Zeigen Sie, dass eine endliche Teilmenge von X keinen einzigen Häufungspunkt besitzt. Insbesondere sind die Häufungspunkte einer Folge $(x_n)_n$ in X im Allgemeinen nicht dieselben wie jene der Teilmenge $\{x_n \mid n \in \mathbb{N}\}.$
 - (b) Sei $x \in X \setminus Y$. Zeigen Sie, dass x genau dann ein Häufungspunkt von Y ist, wenn $x \in \overline{Y}$.
 - (c) Zeigen Sie, dass Y genau dann dicht in X ist, wenn $\overline{Y} = X$ gilt.
- 4. (Stetige Funktionen durch Fallunterscheidung). Seien X, Y zwei metrische Räume und seien $A_1, A_2 \subseteq X$ zwei abgeschlossene Teilmengen von X mit $X = A_1 \cup A_2$. Angenommen $f_1 : A_1 \to Y$ und $f_2 : A_2 \to Y$ sind zwei stetige Funktionen mit $f_1(x) = f_2(x)$ für alle $x \in A_1 \cap A_2$. Zeigen Sie, dass die damit wohldefinierte Funktion

$$f: X \to Y, \ x \mapsto \begin{cases} f_1(x) & \text{falls } x \in A_1, \\ f_2(x) & \text{falls } x \in A_2 \end{cases}$$

stetig ist.

5. (Zusammenhang vs. Wegzusammenhang). Zeigen Sie, dass der Teilraum

$$X = (\{0\} \times [-1, 1]) \sqcup \{(t, \sin(\frac{1}{t})) \in \mathbb{R}^2 \mid t > 0\} \subseteq \mathbb{R}^2$$

zusammenhängend, aber nicht wegzusammenhängend ist.

- 6. (a) Auf einem metrischen Raum X sei eine Relation so erklärt, dass $x \sim y$ genau dann gilt, wenn ein Weg $\gamma \colon [0,1] \to X$ von x nach y existiert. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.
 - (b) Zeigen Sie: Ist $X \subset \mathbb{R}^d$ $(d \ge 1)$ eine offene Teilmenge, so sind die Äquivalenzklassen von \sim offen und abgeschlossen in X.
 - (c) Schliessen Sie aus (b), dass eine nicht-leere offene Teilmenge $O \subset \mathbb{R}^d$ genau dann wegzusammenhängend ist, wenn O zusammenhängend ist.