Musterlösung Serie 18

ENDLICHE KÖRPER II

- **99**. Sei p eine Primzahl und sei $q = p^n$ für eine positive ganze Zahl n.
 - (a) Zeige: Ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ teilt $X^q X$ in $\mathbb{F}_p[X]$ genau dann, wenn sein Grad ein Teiler von n ist.
 - (b) Sei I_d die Menge der normierten, irreduziblen Polynome vom Grad d in $\mathbb{F}_p[X]$. Beweise die Gleichung

$$X^q - X = \prod_{d|n} \prod_{f \in I_d} f.$$

- (c) Sei $r_d:=|I_d|.$ Folgere aus (b), dass $\sum_{d|n} \left(d\cdot r_d\right)=q$ gilt.
- (d) Zeige: Das Polynom $X^q X$ ist über \mathbb{F}_p das Produkt aller normierten irreduziblen Polynome vom Grad m mit $m \mid n$.
- (e) Zeige: Die Summe der Grade der irreduziblen Polynome aus (d) ist gleich q.

Lösung: (a) Mit Satz 16.5 besitzt ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ im Zerfällungskörper keine mehrfachen Nullstellen. Also ist f genau dann ein Teiler von $X^q - X$, wenn f und $X^q - X$ eine gemeinsame Nullstelle α in einem Zerfällungskörper von $X^q - X$ haben. Aber die Nullstellen von $X^q - X$ sind genau die Elemente des Körpers \mathbb{F}_q der Ordnung q. F"ur diese ist $[\mathbb{F}_p(\alpha):\mathbb{F}_p]$ ein Teiler von $[\mathbb{F}_q:\mathbb{F}_p]=n$. Damit ist gezeigt, dass aus $f|X^q-X$ tatsächlich $\deg(f)|n$ folgt.

Nimm umgekehrt $\deg(f)|n$ an. Sei α eine Nullstelle von f in einem Zerfällungskörper von f. Dann ist $[\mathbb{F}_p(\alpha):\mathbb{F}_p]=\deg(f)$ und somit ist $\mathbb{F}_p(\alpha)$ der Zerfällungskörper von $X^{p^{\deg(f)}}-X$. Dies impliziert $\alpha^{p^{\deg(f)}}=\alpha$ und mit $\deg(f)|n$ folgt $\alpha^q=\alpha$.

- (b) Wegen (a) teilt die rechte Seite die linke, denn die f sind alle zueinander teilerfremd. Sei umgekehrt $a \in \mathbb{F}_q$ eine Nullstelle von $X^q X$. Sei m_{a,\mathbb{F}_p} das normierte Minimalpolynom von a über F_p . Dann gilt $m_{a,\mathbb{F}_p}|X^q X$ und $\deg(m_{a,\mathbb{F}_p}) \leq [\mathbb{F}_q : \mathbb{F}_p] = n$, also ist das Polynom auf der rechten Seite ein annullierendes Polynom für a und m_{a,\mathbb{F}_p} muss einer der Faktoren sein. Da $X^q X$ nur einfache Nullstellen hat, folgt die Aussage.
- (c) Vergleiche den Grad auf der rechten und linken Seite in (b).
- (d) und (e) folgen direkt aus (b) bzw. (c).
- 100. Sei p eine Primzahl, sei K ein Körper der Charakteristik p und sei $K \to K, x \mapsto x^p$ der Frobeniushomomorphismus.
 - (a) Zeige: Der Frobeniushomomorphismus ist injektiv.
 - (b) Zeige: Ist K ein endlicher Körper, so ist der Frobeniushomomorphismus ein Automorphismus des Körpers K.

Lösung: (a) Aus Satz 16.5.(a) folgt, dass der Frobeniushomomorphismus eine Körperhomomorphismus ist. Somit ist der Frobeniushomomorphismus injektiv.

- (b) Mit Satz 16.5 wissen wir, dass der Frobeniushomomorphismus die Nullstellen der Minimalpolynome der Elemente $a \in K$ zyklisch vertauscht. Somit ist der Frobeniushomomorphismus surjektiv und mit (a) also bijektiv, d.h. ein Automorphismus.
- **101**. Finde für q = 8, 9, 16 das Minimalpolynom über \mathbb{F}_2 bzw. \mathbb{F}_3 eines Erzeugers von \mathbb{F}_q^* .

Lösung: Sei $p^r=8$. Dann ist \mathbb{F}_8 isomorph zu $\mathbb{F}_2[X]/(X^3+X+1)$, da X^3+X+1 ein irreduzibles Polynom vom Grad 3 über \mathbb{F}_2 ist. Ausserdem ist \mathbb{F}_8^* zyklisch der Ordnung 7, also ist jedes von 1 verschiedene Element ein Erzeugendes. Zum Beispiel können wir das Bild von X in $\mathbb{F}_2[X]/(X^3+X+1)$ als erzeugendes Element wählen. Sein Minimalpolynom ist natürlich X^3+X+1 .

Sei $p^r=9$. Dann ist \mathbb{F}_9 isomorph zu $\mathbb{F}_3[X]/(X^2+1)$, da X^2+1 ein irreduzibles Polynom vom Grad 2 über \mathbb{F}_3 ist. Eine \mathbb{F}_3 -Basis von \mathbb{F}_9 ist also $\{1,a\}$ mit $a^2=-1$. Da \mathbb{F}_9^* zyklisch der Ordnung 8 ist, suchen wir ein Element der Ordnung 8. Die Elemente der Ordnungen 1, 2 und 4 sind respektive 1, -1 und $\pm a$. Somit kann zum Beispiel a+1 nur noch die Ordnung 8 haben. (Wir k"onnen dies auch direkt nachrechnen vermittels $(a+1)^2=2a$ und $(a+1)^4=(2a)^2=-4=-1\neq 1$.) Wegen $(a+1)^2+(a+1)-1=0$ und $a+1\notin\mathbb{F}_3$ ist X^2+X-1 das Minimalpolynom von a+1 über \mathbb{F}_3 .

Sei $p^r=16$. Das Polynom X^4+X+1 ist irreduzibel vom Grad 4 über \mathbb{F}_2 , folglich ist $\mathbb{F}_{16}=\mathbb{F}_2(a)$ f"ur ein Element a mit Minimalpolynom X^4+X+1 "uber \mathbb{F}_2 . Da \mathbb{F}_{16}^* zyklisch der Ordnung $16-1=3\cdot 5$ ist, ist schon a selbst ein Erzeuger, sofern nicht $a^3=1$ oder $a^5=1$ ist. In diesem Fall w"are a eine Nullstelle des Polynoms X^3-1 oder des Polynoms $X^5-1=(X-1)(X^4+X^3+X^2+X+1)$. Allerdings ist aus Gradgr"unden jedes dieser Polynome teilerfremd zum irreduziblen Polynom X^4+X+1 . Dies kann also nicht sein, und a ist ein Erzeuger von \mathbb{F}_{16}^* mit dem Minimalpolynom X^4+X+1 .

- **102**. Sei $q=3^3$ und sei $\mathbb{F}_q:=\mathbb{F}_3[X]/(X^3+X^2+X+2)$ ein Körper der Ordnung q.
 - (a) Bestimme die Nullstellen des Polynoms $(Y^3 + Y^2 + Y + 2) \in \mathbb{F}_q[Y]$.
 - (b) $Y=(2\,X+1)$ ist eine Nullstelle des Polynoms $g=(Y^3+2\,Y^2+1)\in\mathbb{F}_q[Y]$. Bestimme die anderen Nullstellen von g.
 - (c) Zeige, dass das Polynom $(Y^2 + Y + 2) \in \mathbb{F}_q[Y]$ keine Nullstellen in \mathbb{F}_q hat.

Lösung: (a) Offensichtlich ist X eine Nullstelle von Y^3+Y^2+Y+2 . Mit Satz 16.8 sind dann X^3 und $X^{3^2}=X^9$ die anderen beiden Nullstellen. In \mathbb{F}_q gilt $X^3\equiv 2\,X^2+2\,X+1$ und $X^9\equiv X^2+1$, d.h.

$$X$$
, $2X^2 + 2X + 1$, $X^2 + 1$

sind die drei Nullstellen von $Y^3 + Y^2 + Y + 2$.

(b) Mit Satz 16.8 sind die anderen beiden Nullstellen von g

$$(2X+1)^3 \equiv X^2 + X$$
 und $(2X+1)^9 \equiv 2X^2$.

(c) Das Polynom $h=(Y^2+Y+2)$ ist irreduzibel über \mathbb{F}_q , weil $\deg(h)=2$ und $2\nmid 3$.

103. Zeige, dass ein endlicher Körper nie algebraisch abgeschlossen ist.

 $L\ddot{o}sung$: Wir orientieren uns an Euklids Beweis für die Existenz unendlich vieler Primzahlen. Sei $\mathbb F$ ein endlicher Körper. Dann ist

$$f(X) := 1 + \prod_{a \in \mathbb{F}} (X - a) \in \mathbb{F}[X]$$

ein wohldefiniertes normiertes Polynom über K. Nach Konstruktion gilt f(a)=1 für alle $a\in \mathbb{F}$, also hat f keine Nullstelle in \mathbb{F} . Dies zeigt, dass \mathbb{F} nicht algebraisch abgeschlossen ist.