Algebraic Topology II

Problem set 2

- 1. Let H, H', H'' and G be Abelian groups and $f : H \to H', g : H' \to H''$ group homomorphisms. Show that f induces a well defined homomorphism $f_{\text{Tor}} : \text{Tor}(H, G) \to \text{Tor}(H', G)$. Moreover show that $id_{\text{Tor}} = id, (g \circ f)_{\text{Tor}} = g_{\text{Tor}} \circ f_{\text{Tor}}$ and if f is an isomorphism then $(f^{-1})_{\text{Tor}} = (f_{\text{Tor}})^{-1}$.
- 2. Prove that the sequence in the universal coefficient theorem for homology is natural with respect to chain maps. That is, given a chain map $f: C_* \to D_*$ show that the diagram

$$\begin{array}{cccc} 0 \longrightarrow H_n(C) \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}(H_{n-1}(C),G) \longrightarrow 0 \\ & & & & \downarrow & & \downarrow \\ 0 \longrightarrow H_n(D) \otimes G \longrightarrow H_n(D;G) \longrightarrow \operatorname{Tor}(H_{n-1}(D),G) \longrightarrow 0 \end{array}$$

commutes.

Remark: The statement also holds for the universal coefficient theorem for cohomology.

- 3. Let C_*, D_* be chain complexes of free Abelian groups and assume that $f : C_* \to D_*$ is a quasi-isomorphism, i.e. a chain map such that $f_* : H_*(C) \to H_*(D)$ is an isomorphism. Let G be an Abelian group. Prove the following statements using naturality of the sequences in the universal coefficient theorems.
 - (a) $f \otimes id : C_* \otimes G \to D_* \otimes G$ is a quasi-isomorphism.
 - (b) $f^* : \operatorname{Hom}(D_*, G) \to \operatorname{Hom}(C_*, G)$ is a quasi-isomorphism.
- 4. Show that the splitting $H^n(X;G) \cong \operatorname{Ext}(H_{n-1}(X);G) \oplus \operatorname{Hom}(H_n(X);G)$ whose existence is asserted by the universal coefficient theorem for cohomology *cannot* be natural in X. *Hint:* Consider the map $\phi : \mathbb{R}P^2 \to S^2$ given by collapsing $\mathbb{R}P^1 \subset \mathbb{R}P^2$ to a point.
- 5. The Klein bottle K has $H_0(K; \mathbb{Z}) \cong \mathbb{Z}$, $H_1(K; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ and all other homology groups vanish. Use this to compute the cohomology of K with coefficients in \mathbb{Z} and the cohomology and homology with coefficients in \mathbb{Z}_p for p prime.
- 6. Let X be a topological space and let $A, B \subset X$ be subsets. Denote by $S_k(A+B) \subset S_k(X)$ the subspace of chains which are sums of simplices entirely contained in A or B. Show that the quotient $S_k(X)/S_k(A+B)$ is free.
- 7. Let X be a topological space. Show that

$$H_n(X;\mathbb{Q}) \cong H_n(X;\mathbb{Z}) \otimes \mathbb{Q}.$$

and

$$H^n(X;\mathbb{Z}) \cong \operatorname{Hom}(H_n(X;\mathbb{Z}),\mathbb{Q}).$$

Hint: Show that $\text{Tor}(A, \mathbb{Q}) = 0$ and $\text{Ext}(A, \mathbb{Q}) = 0$ for any abelian group A and use the universal coefficients theorems.

8. Let A be an abelian group and R a commutative ring. View $A \otimes_{\mathbb{Z}} R$ as an R-module in the obvious way. Consider also $\hom_{\mathbb{Z}}(A, R)$ and $\hom_{R}(A \otimes_{\mathbb{Z}} R, R)$ and view them as R-modules in the obvious way.

(a) Show that there exists an isomorphism

$$\varphi \colon \hom_{\mathbb{Z}}(A, R) \xrightarrow{\cong} \hom_{R}(A \otimes_{\mathbb{Z}} R, R)$$

of R-modules, which is natural wrt homomorphisms of abelian groups $A \to A'$.

(b) Let C_{\bullet} be a chain complex of abelian groups and consider the cochain complexes $\hom_{\mathbb{Z}}(C_{\bullet}, R)$ and $\hom_{R}(C_{\bullet} \otimes_{\mathbb{Z}} R, R)$. Show that the (co-)boundary operators of these cochain complexes are *R*-linear (so these are cochain complexes of *R*-modules). Show that the isomorphism φ from (a) can be chosen in this case to be a cochain isomorphism

$$\varphi \colon \hom_{\mathbb{Z}}(C_{\bullet}, R) \xrightarrow{\cong} \hom_{R}(C_{\bullet} \otimes_{\mathbb{Z}} R, R)$$