Problem set 4

1. Show that every covering space of an orientable manifold is an orientable manifold.
2. Show that for a connected non-orientable manifold M there is a unique orientable double cover of M.
3. Show that for any connected closed orientable n-manifold M there is a degree 1 map f : $M \rightarrow S^{n}$.
4. Let $f: M \rightarrow N$ be a map between connected closed orientable manifolds and suppose there is a ball $B \subset N$ such that $f^{-1}(B)$ is a disjoint union of open balls $B_{1}, \ldots, B_{k} \subset M$ which each get mapped homeomorphically onto B. Show that the degree of f is $\sum \varepsilon_{i}$, where ε_{i} is ± 1 according to whether $\left.f\right|_{B_{i}}: B_{i} \rightarrow B$ preserves or reverses local orientations induced from given fundamental classes $[M]$ and $[N]$.
5. Let M, N be closed connected orientable manifolds and let $f: M \rightarrow N$ a p-sheeted covering map. Show that f has degree $\pm p$.
6. Consider a pair of spaces $(X, Y)=(Q \cup R, S \cup T)$ such that $S \subset Q, T \subset R$ and such that the interiors of Q, R cover X and the interiors of S, T cover Y. Show that there is a relative Mayer-Vietoris LES
$\cdots \rightarrow H_{n}(Q \cap R, S \cap T) \rightarrow H_{n}(Q, S) \oplus H_{n}(R, T) \rightarrow H_{n}(X, Y) \rightarrow H_{n-1}(Q \cap R, S \cap T) \rightarrow \cdots$

Hint: Consider the commutative diagram

in which the horizontal maps are of the form $x \mapsto(x,-x)$ resp. $(x, y) \mapsto x+y ; S_{n}(Q+R)$ is the subgroup of $S_{n}(X)$ consisting of sums of chains in Q and R (and similarly for $S_{n}(S+T)$), and $S_{n}(Q+R, S+T)$ denotes the quotient of $S_{n}(Q+R)$ by $S_{n}(S+T)$. Show first that the third row is a chain complex. Then show it is exact by considering the diagram as a short exact sequence of chain complexes. Finally deduce the existence of the LES.
7. The goal of this exercise is to prove the following theorem:

Theorem. Let M be a connected non-compact manifold of dimension n. Then $H_{i}(M ; R)=0$ for all $i \geq n$.

Let $i \geq n$ and $a=[z] \in H_{i}(M ; R)$. We will omit R from the notation. Let $U \subset M$ be an open neighbourhood of image (z) such that \bar{U} is compact. Set $V=M \backslash \bar{U}$.
(a) Recall the LES for triples and apply it to $(M, U \cup V, V)$.
(b) Use (a) to show $H_{i}(U) \cong H_{i}(U \cup V, V)=0$ for $i>n$. Deduce that $a=0$ in case $i>n$. Hint: Use the second part of the first lemma from lecture 12B, to see that some groups in the LES vanish.
(c) To prove the theorem for $i=n$, consider the section $x \mapsto s(x)=L_{M, x}(a)$ of $\widetilde{M}_{R} \rightarrow M$. Show that $s=0$. Hint: Note that it's enough to show $s\left(x_{0}\right)=0$ for some $x_{0} \in M$.
(d) Deduce that $[z]=0$ in $H_{n}(M \mid \bar{U})=H_{n}(M, V)$. Hint: Apply the first part of the first lemma from lecture 12B.
(e) Apply the LES in (a) to see that $[z]=0 \in H_{n}(U)$ and deduce that $a=0$.
8. Given two disjoint connected n-manifolds M_{1} and M_{2}, their connected sum $M_{1} \# M_{2}$ can be constructed by deleting the interiors of closed n-balls $B_{1} \subset M_{1}$ and $B_{2} \subset M_{2}$ and identifying the resulting boundary spheres ∂B_{1} and ∂B_{2} via some homeomorphism between them. Show that for closed connected orientable n-manifolds M_{1}, M_{2} there are isomorphisms

$$
H_{i}\left(M_{1}\right) \oplus H_{i}\left(M_{2}\right) \cong H_{i}\left(M_{1} \# M_{2}\right)
$$

for $0<i<n$.
9. Show that if a closed orientable manifold of dimension $2 n$ has $H_{n-1}(M)$ torsion-free then $H_{n}(M)$ is also torsion-free.
10. Compute the cup product structure of $H^{*}\left(\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right)\right)$, and in particular show that the only non-trivial cup products are those forced by Poincare duality.
11. Show that if M is a compact connected non-orientable 3-manifold, $H_{1}(M)$ is infinite.
12. Prove that every map $f: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}$ has $\operatorname{deg} f=k^{n}$ for some $k \in \mathbb{Z}$.
13. Let $\alpha \in H^{n}\left(S^{n}\right)$ be a generator, and define $u=\alpha \times 1, v=1 \times \alpha \in H^{n}\left(S^{n} \times S^{n}\right)$. Let now $f: S^{n} \times S^{n} \rightarrow S^{n} \times S^{n}$ be a map with $\operatorname{deg} f= \pm 1$. Writing $f^{*}(u)=a u+b v, f^{*} v=c u+d v$ and assuming that n is even, prove that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right)
$$

14. Let M be a closed connected orientable n-manifold and suppose that there exists a map $f: S^{n} \rightarrow M$ with $\operatorname{deg} f \neq 0$. Prove that $H_{*}(M ; \mathbb{Q}) \cong H_{*}\left(S^{n} ; \mathbb{Q}\right)$. If $\operatorname{deg} f= \pm 1$, prove that $H_{*}(M ; \mathbb{Z}) \cong H_{*}\left(S^{n} ; \mathbb{Z}\right)$.
15. Prove that if a closed connected orientable manifold M can be written as the union $M=$ $U \cup V$ of two acyclic subsets, then $H_{*}(M) \cong H_{*}\left(S^{n}\right)$.
