Problem set 4

- 1. Show that every covering space of an orientable manifold is an orientable manifold.
- 2. Show that for a connected non-orientable manifold M there is a unique orientable double cover of M.
- 3. Show that for any connected closed orientable *n*-manifold *M* there is a degree 1 map $f : M \to S^n$.
- 4. Let $f: M \to N$ be a map between connected closed orientable manifolds and suppose there is a ball $B \subset N$ such that $f^{-1}(B)$ is a disjoint union of open balls $B_1, \ldots, B_k \subset M$ which each get mapped homeomorphically onto B. Show that the degree of f is $\sum \varepsilon_i$, where ε_i is ± 1 according to whether $f|_{B_i}: B_i \to B$ preserves or reverses local orientations induced from given fundamental classes [M] and [N].
- 5. Let M, N be closed connected orientable manifolds and let $f: M \to N$ a *p*-sheeted covering map. Show that f has degree $\pm p$.
- 6. Consider a pair of spaces $(X, Y) = (Q \cup R, S \cup T)$ such that $S \subset Q, T \subset R$ and such that the interiors of Q, R cover X and the interiors of S, T cover Y. Show that there is a relative Mayer-Vietoris LES

$$\cdots \to H_n(Q \cap R, S \cap T) \to H_n(Q, S) \oplus H_n(R, T) \to H_n(X, Y) \to H_{n-1}(Q \cap R, S \cap T) \to \cdots$$

Hint: Consider the commutative diagram

in which the horizontal maps are of the form $x \mapsto (x, -x)$ resp. $(x, y) \mapsto x + y$; $S_n(Q+R)$ is the subgroup of $S_n(X)$ consisting of sums of chains in Q and R (and similarly for $S_n(S+T)$), and $S_n(Q+R, S+T)$ denotes the quotient of $S_n(Q+R)$ by $S_n(S+T)$. Show first that the third row is a chain complex. Then show it is exact by considering the diagram as a short exact sequence of chain complexes. Finally deduce the existence of the LES.

7. The goal of this exercise is to prove the following theorem:

Theorem. Let M be a connected non-compact manifold of dimension n. Then $H_i(M; R) = 0$ for all $i \ge n$.

Let $i \ge n$ and $a = [z] \in H_i(M; R)$. We will omit R from the notation. Let $U \subset M$ be an open neighbourhood of image(z) such that \overline{U} is compact. Set $V = M \setminus \overline{U}$.

- (a) Recall the LES for triples and apply it to $(M, U \cup V, V)$.
- (b) Use (a) to show $H_i(U) \cong H_i(U \cup V, V) = 0$ for i > n. Deduce that a = 0 in case i > n. *Hint:* Use the second part of the first lemma from lecture 12B, to see that some groups in the LES vanish.
- (c) To prove the theorem for i = n, consider the section $x \mapsto s(x) = L_{M,x}(a)$ of $\widetilde{M}_R \to M$. Show that s = 0. *Hint:* Note that it's enough to show $s(x_0) = 0$ for some $x_0 \in M$.
- (d) Deduce that [z] = 0 in $H_n(M|\overline{U}) = H_n(M, V)$. *Hint:* Apply the first part of the first lemma from lecture 12B.
- (e) Apply the LES in (a) to see that $[z] = 0 \in H_n(U)$ and deduce that a = 0.
- 8. Given two disjoint connected *n*-manifolds M_1 and M_2 , their connected sum $M_1 \# M_2$ can be constructed by deleting the interiors of closed *n*-balls $B_1 \subset M_1$ and $B_2 \subset M_2$ and identifying the resulting boundary spheres ∂B_1 and ∂B_2 via some homeomorphism between them. Show that for closed connected orientable *n*-manifolds M_1, M_2 there are isomorphisms

$$H_i(M_1) \oplus H_i(M_2) \cong H_i(M_1 \# M_2)$$

for 0 < i < n.

- 9. Show that if a closed orientable manifold of dimension 2n has $H_{n-1}(M)$ torsion-free then $H_n(M)$ is also torsion-free.
- 10. Compute the cup product structure of $H^*((S^2 \times S^8) \# (S^4 \times S^6))$, and in particular show that the only non-trivial cup products are those forced by Poincaré duality.
- 11. Show that if M is a compact connected non-orientable 3-manifold, $H_1(M)$ is infinite.
- 12. Prove that every map $f : \mathbb{C}P^n \to \mathbb{C}P^n$ has deg $f = k^n$ for some $k \in \mathbb{Z}$.
- 13. Let $\alpha \in H^n(S^n)$ be a generator, and define $u = \alpha \times 1, v = 1 \times \alpha \in H^n(S^n \times S^n)$. Let now $f: S^n \times S^n \to S^n \times S^n$ be a map with deg $f = \pm 1$. Writing $f^*(u) = au + bv$, $f^*v = cu + dv$ and assuming that n is even, prove that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix}.$$

- 14. Let M be a closed connected orientable *n*-manifold and suppose that there exists a map $f: S^n \to M$ with deg $f \neq 0$. Prove that $H_*(M; \mathbb{Q}) \cong H_*(S^n; \mathbb{Q})$. If deg $f = \pm 1$, prove that $H_*(M; \mathbb{Z}) \cong H_*(S^n; \mathbb{Z})$.
- 15. Prove that if a closed connected orientable manifold M can be written as the union $M = U \cup V$ of two acyclic subsets, then $H_*(M) \cong H_*(S^n)$.