Solutions to problem set 1

1. (a) Consider the diagram

The horizontal map is the boundary map from the (reduced) LES for the pair ($\Delta^{n}, \partial \Delta^{n}$), which is an isomorphism by looking at the neighbouring terms in the LES. The vertical map is induced by the quotient map $\left(\Delta^{n}, \partial \Delta^{n}\right) \rightarrow\left(\Delta^{n} / \partial \Delta^{n}, *\right)$ and is an isomorphism since $\left(\Delta^{n}, \partial \Delta^{n}\right)$ is a good pair.
Consider now the tautological n-simplex $\alpha_{n}: \Delta^{n} \rightarrow \Delta^{n}$, which defines a class $\left[\alpha_{n}\right] \in$ $H_{n}\left(\Delta^{n}, \partial \Delta^{n}\right)$. The image of $\left[\alpha_{n}\right]$ under the vertical map is $\left[\sigma_{n}\right] \in H_{n}\left(\Delta^{n} / \partial \Delta^{n}, *\right)$, while its image under the horizontal map is the class $\left[\beta_{n-1}\right] \in \widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ with

$$
\beta_{n-1}=\partial_{n} \alpha_{n}=\sum_{i=0}^{n}(-1)^{i} F_{i}^{n} \in C_{n-1}\left(\partial \Delta^{n}\right)
$$

where $F_{i}^{n}: \Delta^{n-1} \rightarrow \partial \Delta^{n}$ is the i-th face map of the simplex Δ^{n}. So once we know that $\left[\beta_{n-1}\right]$ generates $\widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$, we can conclude from (1) that [σ_{n}] generates $H_{n}\left(\Delta^{n} / \partial \Delta^{n}, *\right)$.
It is clear that $\left[\beta_{0}\right]$ generates $\widetilde{H}_{0}\left(\partial \Delta^{1}\right)$, so we know that $\left[\sigma_{1}\right]$ generates $H_{1}\left(\Delta^{1} / \partial \Delta^{1}, *\right)$, which is what the problem asks us to prove for $n=1$. We now proceed by induction; for the inductive step, consider the map $\phi: \partial \Delta^{n} \rightarrow \Delta^{n-1} / \partial \Delta^{n-1}$ which collapses all except the zero-th face to a point, and the induced map $\phi_{*}: H_{n-1}\left(\partial \Delta^{n}\right) \rightarrow$ $H_{n-1}\left(\Delta^{n-1} / \partial \Delta^{n-1}, *\right)$. Observe that $\phi_{*}\left[\beta_{n-1}\right]=\left[\sigma_{n-1}\right]$; since $\left[\sigma_{n-1}\right]$ generates by inductive assumption, we conclude that $\left[\beta_{n-1}\right]$ generates.
(b) Analogous to (a). In summary, there are isomorphisms

$$
\begin{gathered}
H_{n}\left(\Delta^{n} / \partial \Delta^{n}, * ; G\right) \underset{q_{*}}{\cong} H_{n}\left(\Delta^{n}, \partial \Delta^{n} ; G\right) \stackrel{\partial_{*}}{\cong} \tilde{H}_{n-1}\left(\partial \Delta^{n} ; G\right) \stackrel{\phi_{*}}{\cong} H_{n-1}\left(\Delta^{n-1} / \partial \Delta^{n-1}, * ; G\right) \\
\left.\left[g \sigma_{n}\right] \longleftrightarrow\left[g \alpha_{n}\right] \longrightarrow\left[g \beta_{n-1}\right] \longrightarrow \longrightarrow \sigma_{n-1}\right]
\end{gathered}
$$

and

$$
\begin{aligned}
G & \longrightarrow \tilde{H}_{0}\left(\partial \Delta^{0} ; G\right) \\
g & \longmapsto\left[g \beta_{0}\right] .
\end{aligned}
$$

2. Consider the cover of Y given by the subsets $A=\Delta_{+}^{n}$ and $B=\Delta_{-}^{n}$. Both are contractible and we have $A \cap B=\partial \Delta^{n}$, so that the relevant piece of the corresponding reduced MV sequence reads

$$
0 \rightarrow \widetilde{H}_{n}(Y) \xrightarrow{\partial_{*}} \widetilde{H}_{n-1}\left(\partial \Delta^{n}\right) \rightarrow 0
$$

Note that $\partial_{*}\left[\tau_{+}-\tau_{-}\right]=\left[\partial \tau_{+}\right]=\left[\beta_{n-1}\right] \in \widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ with $\beta_{n-1} \in C_{n-1}\left(\partial \Delta^{n}\right)$ defined as in the solution to the previous problem. Since $\left[\beta_{n-1}\right]$ generates (see the previous problem) we deduce that $\left[\tau_{+}-\tau_{-}\right]$generates.

We give an alternative inductive proof that $\left[\beta_{n}\right]$ generates $\widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ using the MayerVietoris sequence. For $n=0$ the statement is clear. For the inductive step, consider the cover of $\partial \Delta^{n+1}$ given by $A:=\operatorname{im} F_{0}^{n+1}$ and $B:=\partial \Delta^{n+1} \backslash \operatorname{int} A$ (the interiors don't cover all of $\partial \Delta^{n+1}$, but that can be repaired by taking small thickenings of A and B). Since both A and B are contractible, the corresponding reduced MV sequence splits into pieces of the form

$$
0 \rightarrow \widetilde{H}_{n}\left(\partial \Delta^{n+1}\right) \stackrel{\cong}{\rightarrow} \widetilde{H}_{n-1}(A \cap B) \rightarrow 0
$$

Note that we can identify $A \cap B=\partial A$ with $\partial \Delta^{n}$ via $\left.F_{0}^{n+1}\right|_{\partial \Delta^{n}}$. By definition of the MV boundary map $\partial_{*}: \widetilde{H}_{n}\left(\partial \Delta^{n+1}\right) \rightarrow \widetilde{H}_{n-1}(A \cap B)$, we have $\partial_{*}\left[\beta_{n}\right]=\left[\partial F_{0}^{n+1}\right]$, which in our identification $A \cap B \cong \partial \Delta^{n}$ is $\left[\beta_{n-1}\right]$. Since ∂_{*} is an isomorphism and [β_{n-1}] generates $\widetilde{H}_{n-1}\left(\partial \Delta^{n}\right)$ by inductive assumption, it follows that $\left[\beta_{n}\right]$ generates $\widetilde{H}_{n}\left(\partial \Delta^{n+1}\right)$.
3. (a) Let $\tilde{\sigma}: \Delta^{k} \rightarrow X$ be a singular simplex. Then

$$
T \circ \pi_{c}(\tilde{\sigma})=\tilde{\sigma}+\Theta \circ \tilde{\sigma}
$$

because $\tilde{\sigma}$ and $\Theta \circ \tilde{\sigma}$ are the two liftings of $\pi \circ \tilde{\sigma}$. Passing to homology, it follows that $T_{*} \circ \pi_{*}=i d+\Theta_{*}$.
(b) If $H_{i}\left(X ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, then $\Theta_{*}: H_{i}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{i}\left(X ; \mathbb{Z}_{2}\right)$ is the identity. (Θ_{*} is an isomorphism and $i d$ is the only isomorphism on \mathbb{Z}_{2}.) So $T_{*} \circ \pi_{*}=i d+i d=0$ in degree i.
4. In the following, all homology groups have \mathbb{Z}_{2} coefficients. Given that $H_{k}\left(\mathbb{R} P^{n}\right)=0$ for $k>n$ by assumption, the leftmost piece of the Smith sequence for the cover $p: S^{n} \rightarrow \mathbb{R} P^{n}$ looks like

$$
0 \rightarrow H_{n}\left(\mathbb{R} P^{n}\right) \xrightarrow{t_{*}} H_{n}\left(S^{n}\right) \xrightarrow{p_{*}} H_{n}\left(\mathbb{R} P^{n}\right) \xrightarrow{\partial_{*}} H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n-1}\left(S^{n}\right)=0 \rightarrow \ldots
$$

Here t_{*} is induced by the map $C_{*}\left(\mathbb{R} P^{n}\right) \rightarrow C_{*}\left(S^{n}\right)$ taking a simplex $\sigma: \Delta^{k} \rightarrow \mathbb{R} P^{k}$ to $\tilde{\sigma}+\alpha \circ \tilde{\sigma}$, where $\tilde{\sigma}: \Delta^{n} \rightarrow S^{n}$ is one of the two possible lifts of σ to S^{n} and where $\alpha: S^{n} \rightarrow S^{n}$ denotes the antipodal map. Note that we have $t_{*} \circ p_{*}=\left(\mathrm{id}+\alpha_{*}\right): H_{*}\left(S^{n}\right) \rightarrow$ $H_{*}\left(S^{n}\right)$, which implies $t_{*} \circ p_{*}=0$ because $\alpha_{*}=\mathrm{id}: H_{*}\left(S^{n}\right) \rightarrow H_{*}\left(S^{n}\right)$ (because α_{*} is an involution and $H_{k}\left(S^{n}\right)$ either vanishes or is $\left.\mathbb{Z}_{2}\right)$. This together with the fact that $t_{*}: H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is injective implies that $p_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}\right)$ vanishes, and hence $t_{*}: H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n}\left(S^{n}\right) \cong \mathbb{Z}_{2}$ is an isomorphism. Moreover, $p_{*}=0$ implies that $\partial_{*}: H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n-1}\left(\mathbb{R} P^{n}\right)$ is an isomorphism, and the same is true for $\partial: H_{k}\left(\mathbb{R} P^{n}\right) \rightarrow$ $H_{k-1}\left(\mathbb{R} P^{n}\right)$ for $k>0$ since $H_{*}\left(S^{n}\right)=0$ except in degrees 0 and n. Inductively we obtain $H_{k}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z}_{2}$ for all $0 \leq k \leq n$.
5. Recall that $\pi_{1}\left(\mathbb{R} P^{1}\right) \cong \pi_{1}\left(S^{1}\right) \cong \mathbb{Z}, \pi_{1}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z}_{2}$ and $\pi_{1}\left(S^{n}\right)=0$ for $n>1$. Hence, if $m=1$ the only homomorphism $\pi_{1}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z}_{2} \rightarrow \pi_{1}\left(\mathbb{R} P^{1}\right) \cong \mathbb{Z}$ is the trivial homomorphism. So from now on we may assume that we have $n>m>1$.

For any $n>m>1$ we have

$$
f_{\#} \circ p_{\#}^{n}\left(\pi_{1}\left(S^{n}\right)\right)=\{1\}=p_{\#}^{m}\left(\pi_{1}\left(S^{m}\right)\right)
$$

and $f \circ p^{n}: S^{k} \rightarrow \mathbb{R} P^{m}$ always lifts to a map $\tilde{f}: S^{n} \rightarrow S^{m}$.
A generator of $\pi_{1}\left(\mathbb{R} P^{n}\right)$ is represented by a loop that lifts to a path in S^{n} connecting two antipodal points (see also Hatcher example 1.43). The homomorphism $f_{\#}: \pi_{1}\left(\mathbb{R} P^{n}\right) \cong$ $\mathbb{Z}_{2} \rightarrow \pi_{1}\left(\mathbb{R} P^{m}\right) \cong \mathbb{Z}_{2}$ can either be an isomorphism or trivial.
f induces an isomorphism $f_{\#}$
$\Longleftrightarrow \forall$ path $\gamma:[0,1] \rightarrow S^{n}$ connecting antipodal points:

$$
f_{\#}\left(\left[p^{n} \circ \gamma\right]\right)=\left[f \circ p^{n} \circ \gamma\right]=p_{\#}^{m}[\tilde{f} \circ \gamma] \in \pi_{1}\left(\mathbb{R} P^{m}\right) \backslash\{0\} \cong \mathbb{Z}_{2} \backslash\{0\}
$$

$\Longleftrightarrow \forall$ path $\gamma:[0,1] \rightarrow S^{n}$ connecting antipodal points:
$\tilde{f} \circ \gamma:[0,1] \rightarrow S^{m}$ connects antipodal points
\Longleftrightarrow the lift $\tilde{f}: S^{n} \rightarrow S^{m}$ is equivariant.
But, since $n>m$, by Bredon Theorem 20.1 the map \tilde{f} cannot be equivariant. Therefore, the induced map $f_{\#}$ must be trivial.
6. Assume that $r: \mathbb{R} P^{3} \rightarrow \mathbb{R} P^{2}$ is a retraction and denote by $i: \mathbb{R} P^{2} \hookrightarrow \mathbb{R} P^{3}$ the inclusion. Then we have $r \circ i=\operatorname{id}_{\mathbb{R} P^{2}}$ and hence $(r \circ i)_{\#}=\mathrm{id}: \pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow \pi_{1}\left(\mathbb{R} P^{2}\right)$, which is non-zero because $\pi_{1}\left(\mathbb{R} P^{2}\right)=H_{1}\left(\mathbb{R} P^{2} ; \mathbb{Z}\right)=\mathbb{Z}_{2}$. On the other hand, we have $(r \circ i)_{\#}=r_{\#} \circ i_{\#}=0$ since $r_{\#}=0$ by the previous exercise. That is a contradiction.
7. Cf. the proof of Borsuk-Ulam in [Hatcher, pp. 174-176]!
8. Let $n>m$ and supposed that there exists an equivariant map $\phi: S^{n} \rightarrow S^{m}$, i.e., such that $\phi(-x)=-\phi(x)$ for all x. Consider the map $f: S^{m+1} \rightarrow \mathbb{R}^{m+1}$ obtained by composing the restriction of ϕ to $S^{m+1} \subseteq S^{n}$ with the inclusion $S^{m} \hookrightarrow \mathbb{R}^{m+1}$. This map satisfies $f(-x)=-f(x)$ for all $x \in S^{m+1}$. Since $f(x) \in S^{m}$ and hence $f(x) \neq-f(x)$, we conclude $f(-x) \neq f(x)$ for all $x \in S^{m+1}$, which contradicts the Borsuk-Ulam theorem.
9. Cf. [Bredon, Corollary IV.20.4]!
10. (a) For $z \in \mathbb{R} P^{k}$ choose $x \in B_{+}^{k}$ such that $z=[x]$. We define $\phi(z)$ to be the point in S^{k} obtained from moving x down towards the South Pole S doubling the distance to the North Pole. (Explicitely for e.g. S^{2}, write x in spherical coordinates (φ, θ) and define $\left.\phi(z)=(\varphi, 2 \theta) \in S^{k}.\right) \phi: \mathbb{R} P^{k} \rightarrow S^{k}$ descends to a homeomorphism $\mathbb{R} P^{k} / \mathbb{R} P^{k-1} \rightarrow S^{n}$.

f maps $\operatorname{Int}\left(B_{ \pm}^{k}\right)$ homeomorphically onto $S^{k} \backslash\{S\}$.
(b) The North Pole N has two preimages under $f: N$ and S. Near N, f is an orientationpreserving homeomorphism and hence the local degree at N is 1 . Near S, f is the composition of the antipodal map with f near N. Hence the local degree at S is $(-1)^{k+1}$. We conclude $\operatorname{deg}(f)=1+(-1)^{k+1}$.
Remark. There are many choices for ϕ. One could for example also define ϕ^{\prime} using $\phi^{\prime}(z)=(-\varphi, 2 \theta)$. Then f has local degree -1 near N and local degree $-(-1)^{k+1}$ near S. So for that choice, $\operatorname{deg}(f)=-\left(1+(-1)^{k+1}\right)$.
However, for any choice of ϕ as in (a), one has $\operatorname{deg}(f)= \pm\left(1+(-1)^{k+1}\right)$. The reason is, that f is a homeomorphism near N and a homeomorphism near S. Moreover, these
two homeomorphisms are related by the antipodal map because f factors through $\mathbb{R} P^{k}$. So if one of the local degrees is 1 , then the other local degree will be $(-1)^{k+1}$ and if one of the local degrees is -1 , then the other local degree will be $-(-1)^{k+1}$.
(c) We define a homeomorphism $g: \mathbb{R} P^{k} \cup_{h_{\partial}} B^{k+1} \rightarrow \mathbb{R} P^{k} . g$ is the identity on $\mathbb{R} P^{k}$. To define what g does on B^{k+1}, let $j: B^{k+1} \rightarrow S^{k+1}$ be the inclusion of $B^{k+1} \approx B_{+}^{k+1}$ into S^{k+1}. Then g is defined to be $q \circ j$ on B^{k+1}. One can check, that this gives a well-defined continuous bijective map $g: \mathbb{R} P^{k} \cup_{h_{\partial}} B^{k+1} \rightarrow \mathbb{R} P^{k+1}$. Hence h is a homeomorphism.
(e) We compute

$$
d\left(e^{(k+1)}\right)=\operatorname{deg}(f) e^{(k)}=\left(1+(-1)^{k+1}\right) e^{(k)}= \begin{cases}2 e^{(k)} & \text { if } k \text { is odd } \\ 0 & \text { if } k \text { is even }\end{cases}
$$

