Solutions to problem set 2

1. Let H, H^{\prime} be Abelian groups with free resolutions $F \rightarrow H, F^{\prime} \rightarrow H^{\prime}$. By the free resolution lemma, we can extend any given group homomorphism $f: H \rightarrow H^{\prime}$ to a chain map $\widetilde{f}: F \rightarrow$ F^{\prime}. Recall that by definition we have $\operatorname{Tor}(H, G)=H_{1}(F \otimes G)$ and $\operatorname{Tor}\left(H^{\prime}, G\right)=H_{1}\left(F^{\prime} \otimes G\right)$, and so we define the action of $\operatorname{Tor}(-, G)$ on f by

$$
f_{\text {Tor }}:=(\tilde{f} \otimes \mathrm{id})_{*}: H_{1}\left(F^{\prime} \otimes G\right) \rightarrow H_{1}(F \otimes G)
$$

This is independent of the choice of lift \tilde{f} as that is unique up to chain homotopy. To see that this makes $\operatorname{Tor}(-, G)$ a functor, note that $\mathrm{id}_{\text {Tor }}=\mathrm{id}$ because we can take as a lift of id : $H \rightarrow H$ simply id of any free resolution of H. Moreover, $(f g)_{\text {Tor }}=g_{\text {Tor }} f_{\text {Tor }}$, because if \widetilde{f} lifts f and \widetilde{g} lifts g, then $\widetilde{g} \tilde{f}$ lifts $g f$.
The case of $\operatorname{Ext}(-, G)$ is analogous. (Of course, these are are just special cases of how in general one constructs the action of derived functors on morphisms.)
2. We discuss the sequence $0 \rightarrow H_{n}(C) \rightarrow H_{n}(C \otimes G) \rightarrow \operatorname{Tor}\left(H_{n-1}(C), G\right) \rightarrow 0$ appearing in the universal coefficient theorem for homology. Recall that we constructed this as

$$
\begin{equation*}
0 \rightarrow \operatorname{coker}\left(i_{n} \otimes \mathrm{id}\right) \rightarrow H_{n}(C ; G) \rightarrow \operatorname{ker}\left(i_{n-1} \otimes \mathrm{id}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

with $i_{n}: B_{n} \rightarrow Z_{n}$ the inclusion map, and then noted that

$$
\begin{equation*}
\operatorname{coker}\left(i_{n} \otimes \mathrm{id}\right) \cong H_{n}(C) \otimes G \quad \text { and } \quad \operatorname{ker}\left(i_{n-1} \otimes \mathrm{id}\right) \cong \operatorname{Tor}\left(H_{n-1}(C), G\right) \tag{2}
\end{equation*}
$$

It is clear that a chain map $\phi: C \rightarrow C^{\prime}$ induces a morphism of short exact sequences between (1) and its counterpart for C^{\prime} (just think about how we arrived at (1)). Moreover, one checks easily that under the identifications (2) and the corresponding ones for C^{\prime}, the outer maps in this morphism of SES are $\phi_{*}: H_{n}(C) \rightarrow H_{n}\left(C^{\prime}\right)$ and $\left(\phi_{*}\right)_{\text {Tor }}$.
3. (a) Naturality of the short exact sequence in the universal coefficient theorem for homology says that the diagram

commutes. The outer two maps are isomorphisms because $f_{*}: H_{*}(C) \rightarrow H_{*}(D)$ is an isomorphism by assumption and by functoriality of $\operatorname{Tor}(-, G)$. Hence $f_{*}: H_{*}(C ; G) \rightarrow$ $H_{*}(D ; G)$ is an isomorphism by the 5 -lemma.
(b) Same argument as in (a) using the universal coefficient theorem for cohomology.
4. Consider the diagram

$$
\begin{gathered}
H^{2}\left(S^{2} ; G\right) \longrightarrow \operatorname{Ext}\left(H_{1}\left(S^{2}\right), G\right) \oplus \operatorname{Hom}\left(H_{2}\left(S^{2}\right), G\right) \\
\phi^{*} \downarrow \\
\psi^{2}\left(\phi_{*}\right)^{\mathrm{Ext}} \oplus\left(\phi_{*}\right)^{*} \\
H^{2}\left(\mathbb{R} P^{2} ; G\right) \longrightarrow \operatorname{Ext}\left(H_{1}\left(\mathbb{R} P^{2}\right), G\right) \oplus \operatorname{Hom}\left(H_{2}\left(\mathbb{R} P^{2}\right), G\right)
\end{gathered}
$$

Note that we have $\operatorname{Ext}\left(H_{1}\left(S^{2}\right), G\right)=0$ and $\operatorname{Hom}\left(H_{2}\left(\mathbb{R} P^{2}\right), G\right)=0$ because $H_{1}\left(S^{2}\right)=0$, $H_{2}\left(\mathbb{R} P^{2}\right)=0$, and hence the map on the right vanishes for every Abelian group G. If the splitting were natural, the map $\phi^{*}: H^{2}\left(S^{2} ; G\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; G\right)$ would consequently also have to vanish for every G.
We will show, in contrast, that $\phi^{*}: H^{2}\left(S^{2} ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)$ is an isomorphism. To see this, note that $\phi: \mathbb{R} P^{2} \rightarrow S^{2}$ is a cellular map with respect to the usual CW complex structures of $\mathbb{R} P^{2}$ (with one cell in each degree $0,1,2$) and S^{2} (with one cell in degree 0 and one in degree 2). The map induced by ϕ on cellular chains takes the generator corresponding to the unique 2 -cell of $\mathbb{R} P^{2}$ to the generator corresponding to the unique 2-cell of S^{2} (recall the description of this map!). Dualizing, this implies that the map induced by ϕ on the cellular cochain complexes with coefficients in \mathbb{Z}_{2} looks as follows:

In particular, the induced map $H^{2}\left(S^{2} ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)$ is an isomorphism.
5. The universal coefficient theorem for homology tells us that there is a splitting

$$
H_{n}(K ; G) \cong\left(H_{n}(K) \otimes G\right) \oplus \operatorname{Tor}\left(H_{n-1}(K), G\right)
$$

for every Abelian group G. We have $H_{0}(K) \otimes \mathbb{Z}_{p}=\mathbb{Z}_{p}$ and $H_{1}(K) \otimes \mathbb{Z}_{p}=\mathbb{Z}_{p} \oplus\left(\mathbb{Z}_{2} \otimes \mathbb{Z}_{p}\right)$; note that $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}=\mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \otimes \mathbb{Z}_{p}=0$ for odd p (which doesn't have to be prime for that; in general, $\mathbb{Z}_{q} \otimes \mathbb{Z}_{q^{\prime}}=0$ if q, q^{\prime} are coprime, as $1=q m+q^{\prime} m^{\prime}$ for certain $m, m^{\prime} \in \mathbb{Z}$, from which it follows that $1 \otimes 1=0$ in $\left.\mathbb{Z}_{q} \otimes \mathbb{Z}_{q^{\prime}}\right)$. Moreover, $\operatorname{Tor}\left(H_{0}(K), \mathbb{Z}_{p}\right)=0$ as $H_{0}(K)$ is free and $\operatorname{Tor}\left(H_{1}(K), \mathbb{Z}_{p}\right)=\operatorname{Tor}\left(\mathbb{Z}_{2}, \mathbb{Z}_{p}\right)=\operatorname{ker}\left(\mathbb{Z}_{p} \xrightarrow{2} \mathbb{Z}_{p}\right)$, which is \mathbb{Z}_{2} for $p=2$ and 0 if p is odd. Combining all that, we obtain

$$
H_{0}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, \quad H_{1}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \quad H_{2}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

and

$$
H_{0}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H_{1}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H_{2}\left(K ; \mathbb{Z}_{p}\right)=0
$$

for p odd. All other groups vanish.
From the universal coefficients theorem for cohomology, we obtain a splitting

$$
H^{n}(K ; G) \cong \operatorname{Ext}\left(H_{n-1}(K), G\right) \oplus \operatorname{Hom}\left(H_{n}(K) ; G\right)
$$

for every Abelian group G. We have $\operatorname{Ext}\left(H_{0}(K), G\right)=0$ as $H_{0}(K)$ is free and $\operatorname{Ext}\left(H_{1}(K) ; G\right)=$ $\operatorname{Ext}\left(\mathbb{Z}_{2}, G\right) \cong G / 2 G$, which is \mathbb{Z}_{2} for $G=\mathbb{Z}$ or $G=\mathbb{Z}_{2}$ and 0 for $G=\mathbb{Z}_{p}$ with p odd. Moreover, $\operatorname{Hom}\left(H_{0}(K) ; G\right)=G$, and $H_{1}(K)=\mathbb{Z} \oplus \mathbb{Z}_{2}$ implies that

$$
\operatorname{Hom}\left(H_{1}(K) ; G\right)= \begin{cases}\mathbb{Z}, & G=\mathbb{Z} \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & G=\mathbb{Z}_{2} \\ \mathbb{Z}_{p}, & G=\mathbb{Z}_{p} \text { with } p \text { odd }\end{cases}
$$

It follows that

$$
\begin{gathered}
H^{0}(K ; \mathbb{Z})=\mathbb{Z}, \quad H^{1}(K ; \mathbb{Z})=\mathbb{Z}, \quad H^{2}(K ; \mathbb{Z})=\mathbb{Z}_{2} \\
H^{0}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, \quad H^{1}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \quad H^{2}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
\end{gathered}
$$

and

$$
H^{0}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H^{1}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H^{2}\left(K ; \mathbb{Z}_{p}\right)=0
$$

for p odd. Again all other groups vanish.
6. $S_{k}(X)$ splits as $S_{k}(X)=S_{k}(A+B) \oplus S_{k}^{\perp}(A+B)$, where the second summand is generated by all simplices neither contained in A nor in B. Hence the quotient $S_{k}(X) / S_{k}(A+B)$ is isomorphic to $S_{k}^{\perp}(A+B)$, which is free.
7. Let A be an abelian group. We first show that $\operatorname{Tor}(A, \mathbb{Q})=0$. Choose a free resolution $0 \rightarrow F_{1} \xrightarrow{i} F_{0} \rightarrow A \rightarrow 0$ and consider the sequence

$$
0 \rightarrow F_{1} \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{i \otimes \mathrm{id}} F_{0} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow A \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow 0
$$

If $i \otimes \mathrm{id}$ is injective, we can deduce that $\operatorname{Tor}(A, \mathbb{Q})=0$.
In fact, for any injective map $i: B \rightarrow C$ between abelian groups B and C, the map

$$
B \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{i \otimes \mathrm{id}} C \otimes_{\mathbb{Z}} \mathbb{Q}
$$

is injective. Indeed, an element x of $B \otimes \mathbb{Q}$ is of the form $x=\sum b_{j} \otimes q_{j}$ with $b_{j} \in B, q_{j}=\frac{m_{j}}{n_{j}}$, $n_{j} \neq 0$, and the sum is finite. So we can assume that $n_{j}=n$ for all j and we can write $x=\left(\sum m_{j} b_{j}\right) \otimes \frac{1}{n}$. If we now assume $i \otimes \operatorname{id}(x)=0$, we get

$$
i\left(\sum m_{j} b_{j}\right) \otimes \frac{1}{n}=0
$$

and hence $i\left(\sum m_{j} b_{j}\right)=0$. Injectivity of i now yields $\sum m_{j} b_{j}=0$, and so $x=\sum m_{j} b_{j} \otimes \frac{1}{n}=$ 0 . This shows injectivity of $i \otimes \mathrm{id}$.
Remark: Together with Problem 1 from the sheet on tensor products, this shows that $-\otimes_{\mathbb{Z}} \mathbb{Q}$ preserves short exact sequences!
In particular, $\operatorname{Tor}\left(H_{n-1}(X ; \mathbb{Z}), \mathbb{Q}\right)=0$ and so the homological universal coefficients theorem implies

$$
H_{n}(X ; \mathbb{Q}) \cong H_{n}(X ; \mathbb{Z}) \otimes \mathbb{Q}
$$

For the cohomology the proof is similar. This time, one has to investigate exactness properties of $\operatorname{hom}(-, \mathbb{Q})$. Namely, the following statement will imply $\operatorname{Ext}(A, \mathbb{Q})=0$: Let $i: B \rightarrow C$ be an injective map of abelian groups. Then

$$
i^{*}: \operatorname{hom}(C, \mathbb{Q}) \rightarrow \operatorname{hom}(B, \mathbb{Q})
$$

is surjective.
To prove this, let us view B as a subset of C via i. Let $\varphi \in \operatorname{hom}(B, \mathbb{Q})$. We need to show that φ extends to $\hat{\varphi}: C \rightarrow \mathbb{Q}$. Let $B \subset C^{\prime} \subset C$ be the maximal subgroup such that there exists an extension $\varphi^{\prime}: C^{\prime} \rightarrow \mathbb{Q}$. (Use Zorn's lemma to prove existence.) Suppose by contradiction that $C^{\prime} \neq C$. Then there exists $x \in C \backslash C^{\prime}$. Moreover, the subgroup $\langle x\rangle \subset C$ generated by x satisfies $\langle x\rangle \cap C^{\prime}=\{0\}$ because \mathbb{Q} is divisible. Hence we can put $\tilde{\varphi}(x):=q$ for some $q \in \mathbb{Q}$ and extend it linearly to a map $\tilde{\varphi}: C^{\prime} \oplus\langle x\rangle \rightarrow \mathbb{Q}$ that extends φ^{\prime}. This is a contradiction to maximality of C^{\prime}. We conclude $C^{\prime}=C$. Surjectivity of i^{*} now follows.
8. (a) Note that multiplication in R induces a \mathbb{Z}-linear map $m: R \otimes_{\mathbb{Z}} R \rightarrow R$. For $\alpha \in$ $\operatorname{hom}(A, R)$ put $\varphi(\alpha)=m \circ(\alpha \otimes \mathrm{id}) \in \operatorname{hom}_{\mathbb{Z}}\left(A \otimes_{\mathbb{Z}} R, R\right)$. Concretely, it is given by

$$
\varphi(\alpha)\left(\sum a_{j} \otimes r_{j}\right)=\sum \alpha\left(a_{j}\right) r_{j}
$$

for finitely many $a_{j} \in A$ and $r_{j} \in R$. In fact, $\varphi(\alpha)$ is R-linear: for $r \in R$

$$
\begin{aligned}
\varphi(\alpha)\left(r \sum a_{j} \otimes r_{j}\right) & =\varphi(\alpha)\left(\sum a_{j} \otimes r r_{j}\right) \\
& =\sum \alpha\left(a_{j}\right) r r_{j}=r \sum \alpha\left(a_{j}\right) r_{j} \\
& =r \varphi(\alpha)\left(\sum a_{j} \otimes r_{j}\right)
\end{aligned}
$$

This shows that φ is a well-defined \mathbb{Z}-linear map

$$
\operatorname{hom}_{\mathbb{Z}}(A, R) \longrightarrow \operatorname{hom}_{R}\left(A \otimes_{\mathbb{Z}} R, R\right)
$$

It is straightforward to check that it is R-linear and inverse to

$$
\psi: \operatorname{hom}_{R}\left(A \otimes_{\mathbb{Z}} R, R\right) \rightarrow \operatorname{hom}_{\mathbb{Z}}(A, R), \psi(\beta)(a)=\beta\left(a \otimes 1_{R}\right)
$$

for $\beta \in \operatorname{hom}_{R}\left(A \otimes_{\mathbb{Z}} R, R\right)$ and $a \in A$.
(b) Consider the coboundary operator δ on $\operatorname{hom}_{\mathbb{Z}}\left(C_{\bullet}, R\right)$

$$
\begin{aligned}
\delta: \operatorname{hom}_{\mathbb{Z}}\left(C_{j}, R\right) & \rightarrow \operatorname{hom}_{\mathbb{Z}}\left(C_{j+1}, R\right) \\
\alpha & \mapsto \alpha \circ \partial,
\end{aligned}
$$

where ∂ denotes the boundary operator of $C \bullet$. This is R-linear:

$$
\delta(r \alpha)=(r \alpha) \circ \partial=r(\alpha \circ \partial)=r \delta(\alpha)
$$

Similarly, the coboundary operator δ_{R} on $\operatorname{hom}_{R}\left(C \bullet \otimes_{\mathbb{Z}} R, R\right)$,

$$
\begin{aligned}
\delta_{R}: \operatorname{hom}_{R}\left(C_{j} \otimes_{\mathbb{Z}} R, R\right) & \rightarrow \operatorname{hom}_{R}\left(C_{j+1} \otimes_{\mathbb{Z}} R, R\right) \\
\beta & \mapsto \beta \circ(\partial \otimes \mathrm{id}),
\end{aligned}
$$

is R-linear. φ is a cochain isomorphism because the following diagram commutes:

Let's check that it commutes: For $\alpha \in \operatorname{hom}_{\mathbb{Z}}\left(C_{j}, R\right)$ we have

$$
\varphi \circ \delta(\alpha)=\varphi(\alpha \circ \delta)=m \circ(\alpha \circ \delta \otimes \mathrm{id})
$$

and

$$
\begin{aligned}
\delta_{R} \circ \varphi(\alpha)=\delta_{R}(m \circ(\alpha \otimes \mathrm{id})) & =m \circ(\alpha \otimes \mathrm{id}) \circ(\partial \otimes \mathrm{id}) \\
& =m \circ(\alpha \circ \partial \otimes \mathrm{id}) .
\end{aligned}
$$

