Solutions to problem set on tensor products

1. Every element of $M \otimes W$ of the form $m \otimes w$ is in the image of id $\otimes g$ because g is surjective; since every element of $M \otimes W$ is a sum of elements of this form, it follows that id $\otimes g$ is surjective. By a similar argument one sees that $\operatorname{im}(\mathrm{id} \otimes f) \subseteq \operatorname{ker}(\mathrm{id} \otimes \mathrm{g})$.
To prove $\operatorname{ker}(\mathrm{id} \otimes \mathrm{g}) \subseteq \operatorname{im}(\mathrm{id} \otimes f)=: I$, consider the map $\phi: M \otimes V / I \rightarrow M \otimes W$ induced by id $\otimes g$, which is well-defined because $I \subseteq \operatorname{ker}(\mathrm{id} \otimes \mathrm{g})$. We now define a map $\psi: M \otimes W \rightarrow$ $M \otimes V / I$ which is a left inverse for ϕ, i.e. such that $\psi \circ \phi=\mathrm{id}$; this implies injectivity of ϕ and hence that $\operatorname{ker}(\mathrm{id} \otimes g) \subseteq I$. To define ψ, consider first the map $M \times W \rightarrow M \otimes V / I$ defined as follows: It takes (m, w) to $[m \otimes v]$, where $v \in V$ is any element such that $g(v)=w$. This is well-defined and bilinear and hence descends to a map $\psi: M \otimes W \rightarrow M \otimes V / I$. We clearly have $\psi \circ \phi=\mathrm{id}$: That's obvious on elements of the form $[m \otimes v]$, and these generate.
2. In view of problem 1 , it is enough to prove injectivity of $f \otimes$ id. Let $j: V \rightarrow U$ be a left-inverse to $f: j \circ f=\mathrm{id}$. Then

$$
(j \otimes \mathrm{id}) \circ(f \otimes \mathrm{id})=(j \circ f) \otimes \mathrm{id}=\mathrm{id}
$$

and hence $j \otimes \mathrm{id}$ is a left-invere to $f \otimes \mathrm{id}$. In particular, $f \otimes \mathrm{id}$ is injective.
3. In view of problem 1 , what is left to prove is the injectivity of id $\otimes f$. Freeness of M means that it has a linearly independent generating set $\left\{m_{i}\right\}_{i \in I}$. Note that every element of $M \otimes U$ can be written as a sum $\sum_{i \in I} m_{i} \otimes u_{i}$ and that there is a well-defined map $M \otimes U \rightarrow \bigoplus_{i \in I} U$ taking such an element to $\left(u_{i}\right)_{i \in I}$. It follows that $(\mathrm{id} \otimes f)\left(\sum m_{i} \otimes u_{i}\right)=\sum m_{i} \otimes f\left(u_{i}\right)=0$ implies $f\left(u_{i}\right)=0$ for all i, hence $u_{i}=0$ for all i by injectivity of f, and hence $\sum m_{i} \otimes u_{i}=0$.
4. Consider the short exact sequence of \mathbb{Z}-modules

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

Tensoring with the \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$ yields the sequence

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

This is not exact at the left copy of $\mathbb{Z} / 2 \mathbb{Z}$ and so this is a counter-example to both 2 and 3 . Note that the intial sequence does not split and $\mathbb{Z} / 2 \mathbb{Z}$ is not a free \mathbb{Z}-module.
5. See Lang, Algebra., Chapter XVI, §2, Proposition 2.7.
6. Apply problem 5 to $R=\mathbb{Z}, J=n \mathbb{Z}$ and $M=\mathbb{Z}_{m}$. We get

$$
\begin{aligned}
\mathbb{Z}_{n} \otimes \mathbb{Z}_{m} & \cong \mathbb{Z}_{m} /\left(n \mathbb{Z} \cdot \mathbb{Z}_{m}\right) \cong(\mathbb{Z} / m \mathbb{Z}) /((n \mathbb{Z}+m \mathbb{Z}) / m \mathbb{Z}) \\
& \cong \mathbb{Z} /(n \mathbb{Z}+m \mathbb{Z}) \cong \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z} \cong \mathbb{Z}_{d}
\end{aligned}
$$

Alternatively, one can use the universal property of the tensor product.
7. We show that $m \otimes t \in M \otimes T$ vanishes for any $m \in M$ and $t \in T$. Since t is torision, there exists $r \in R$, which is not a zero-divisor and such that $r t=0$. Since m is divisible by r, there exists $n \in M$ such that $m=r n$. We compute

$$
m \otimes t=(r n) \otimes t=r(n \otimes t)=n \otimes(r t)=n \otimes 0=0
$$

Hence $M \otimes T=0$.
8. See Lang, Algebra., Chapter XVI, Beginning of $\S 2$.
9. See Lang, Algebra., Chapter XVI, §5, Corollary 5.5.

