Exercises: Week 2

Computation in Algebra and Arithmetic

David Loeffler & Tim Gehrunger

4.3.2022

Sage provides standard constructions from linear algebra. A brief introduction on how matrices and vectors are implemented can be found here: https://doc.sagemath.org/html/en/tutorial/tour_linalg.html.

1 Working with matrices

Perform the following tasks to become more familiar with the implementation of linear algebra in Sage.

(1) Consider the matrix $A := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ over **Q**. Compute its determinant, RREF and the

related transformation matrix. What is the kernel of *A*? **Note:** When we talk about the kernel of a matrix *M*, we refer to the kernel of the linear map $v \mapsto vM$. Sometimes this is also called the "left-kernel" of *M*, whereas the "right-kernel" of *M* is the kernel of $v \mapsto Mv$. In sage calling "M.left_kernel()" or just "M.kernel()" return the left-kernel and "M.right_kernel()" returns the right-kernel.

- (2) Let *B* the image of *A* in *M*_{4×4}(**F**₂). Compute the left-kernel of *B*, the right-kernel of *B* and give their respective RREF bases.
 Note: If *p* is a prime, the expression "GF(p)" references the field of size *p* in sage. Moreover, the method "change_ring()" might prevent you from having to type down the matrix again.
- (3) Now consider the matrix *A* from (1) as a matrix over **Z**. Compute both the Smith form of *A* as well as the Hermite form of *A*.
- (4) Compute the Jordan form of *A* over $\bar{\mathbf{Q}}$.

2 Subspaces in sage

Note: You won't have to do a lot by hand. For the sage implementation of vectorspaces, see https://doc.sagemath.org/html/en/constructions/linear_algebra.html.

- (1) Let W_1 be the subspace of \mathbf{Q}^4 generated by $[5, 7, \frac{3}{4}, 0]$ and [1, 2, 3, 4]. Similarly, let W_2 be the subspace of \mathbf{Q}^4 generated by [0, 1, 0, 0]. Compute a basis of $W_3 := W_1 + W_2$. Which of the following vectors are contained in W_3 ?
 - $[1, 0, 1, \frac{68}{57}]$
 - [1,0,0,0]
 - [0,0,1,0]
- (2) Let $v_1 = [1, 0, 0, 0]$, $v_2 = [0, 0, 1, 0]$, $v_3 = [0, 0, 0, 1]$, $w_1 = [0, 1, 0, 0]$ and $w_2 = [0, 0, 1, \frac{1}{2}]$. Moreover, let $V \subset \mathbf{Q}^4$ be the subspace spanned by the v_i and $W \subset \mathbf{Q}^4$ the subspace spanned by the w_i .
 - Compute W ∩ V.
 Hint: The method "intersection()" exists.
 - What is the echelon basis of $W \cap V$?