Exercises: Week 2

Computation in Algebra and Arithmetic

David Loeffler \& Tim Gehrunger

4.3.2022

Sage provides standard constructions from linear algebra. A brief introduction on how matrices and vectors are implemented can be found here: https://doc.sagemath.org/html/en/ tutorial/tour_linalg.html.

1 Working with matrices

Perform the following tasks to become more familiar with the implementation of linear algebra in Sage.
(1) Consider the matrix $A:=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$ over \mathbf{Q}. Compute its determinant, RREF and the related transformation matrix. What is the kernel of A ?
Note: When we talk about the kernel of a matrix M, we refer to the kernel of the linear map $v \mapsto v M$. Sometimes this is also called the "left-kernel" of M, whereas the "right-kernel" of M is the kernel of $v \mapsto M v$. In sage calling "M.left_kernel()" or just "M.kernel()" return the left-kernel and "M.right_kernel()" returns the right-kernel.
(2) Let B the image of A in $M_{4 \times 4}\left(\mathbf{F}_{2}\right)$. Compute the left-kernel of B, the right-kernel of B and give their respective RREF bases.
Note: If p is a prime, the expression " $\mathrm{GF}(\mathrm{p})$ " references the field of size p in sage. Moreover, the method "change_ring()" might prevent you from having to type down the matrix again.
(3) Now consider the matrix A from (1) as a matrix over \mathbf{Z}. Compute both the Smith form of A as well as the Hermite form of A.
(4) Compute the Jordan form of A over $\overline{\mathbf{Q}}$.

2 Subspaces in sage

Note: You won't have to do a lot by hand. For the sage implementation of vectorspaces, see https://doc.sagemath.org/html/en/constructions/linear_algebra.html.
(1) Let W_{1} be the subspace of \mathbf{Q}^{4} generated by $\left[5,7, \frac{3}{4}, 0\right]$ and $[1,2,3,4]$. Similarly, let W_{2} be the subspace of \mathbf{Q}^{4} generated by $[0,1,0,0]$. Compute a basis of $W_{3}:=W_{1}+W_{2}$. Which of the following vectors are contained in W_{3} ?

- $\left[1,0,1, \frac{68}{57}\right]$
- $[1,0,0,0]$
- [0,0,1,0]
(2) Let $v_{1}=[1,0,0,0], v_{2}=[0,0,1,0], v_{3}=[0,0,0,1], w_{1}=[0,1,0,0]$ and $w_{2}=\left[0,0,1, \frac{1}{2}\right]$. Moreover, let $V \subset \mathbf{Q}^{4}$ be the subspace spanned by the v_{i} and $W \subset \mathbf{Q}^{4}$ the subspace spanned by the w_{i}.
- Compute $W \cap V$.

Hint: The method "intersection()" exists.

- What is the echelon basis of $W \cap V$?

