Exercises: Week 2

Computation in Algebra and Arithmetic

David Loeffler \& Tim Gehrunger

11.3.2022

Sage provides standard constructions for polynomials. A brief introduction on how they are implemented can be found here: https://doc.sagemath.org/html/en/tutorial/tour_ polynomial.html.

1 Polynomials over finite fields I

Find out, without directly using the method is_irreducible(), which of the following Polynomials are irreducible in \mathbf{F}_{2}.
Hint: You might want to consider using the polynomial $t^{2^{N}}-t$ for some N.
(1) $t^{5}+t^{4}+t^{2}+1$;
(2) $t^{8}+t^{7}+t^{5}+t^{3}+t^{2}+1$;
(3) $t^{5}+t^{4}+t^{3}+t^{2}+1$.
(4) $t^{20}+t^{19}+t^{17}+t^{9}+t^{8}+t^{7}+t^{6}+t^{3}+t^{2}+t+1$

If you are not convinced that computer algebra programs are useful, try one of these computations by hand.

2 Polynomials over finite fields II

Consider the polynomials from the first exercise, now over \mathbf{F}_{4}. Compute, for each polynomial given polynomial f, a distinct degree factorization, that is find polynomials $g_{j} \in \mathbf{F}_{4}[t]$ which are products of irreducible polynomials of degree exactly j such that

$$
f=\prod_{j=1}^{m} g_{j} .
$$

Note that $2^{2}=4$ and that you can recycle some computations from the first exercise.

3 Irreducibility over different fields

Consider the polynomial $t^{4}+1$. Verify in sage that it is irreducible over \mathbf{Q} but reducible over $\mathbf{F}_{2}, \mathbf{F}_{3}, \mathbf{F}_{4}, \mathbf{F}_{5}, \mathbf{F}_{7}, \mathbf{F}_{11}$. Also compute and have a look at the factors. Can you prove that $t^{4}+1$ is reducible over every finite field?

4 Being square-free over different fields

Consider the polynomial $t^{2}+1$.

1. Show that it is square-free over \mathbf{Q}.
2. Can you find a prime p such that the polynomial is not square-free over \mathbf{F}_{p} ?
3. Show that the polynomial is square-free over all but finitely many primes.
4. In this spirit, show that any polynomial which is square-free over \mathbf{Q} is square-free over all but finitely many primes by explicitly constructing an integer in the ideal $\left(f, f^{\prime}\right)$.
