# Exercises: Week 4 <br> Computation in Algebra and Arithmetic <br> <br> David Loeffler \& Tim Gehrunger 

 <br> <br> David Loeffler \& Tim Gehrunger}
18.3.2022

Sage provides standard constructions for polynomials. A brief introduction on how they are implemented can be found here: https://doc.sagemath.org/html/en/tutorial/tour_ polynomial.html.

## 1 Mignotte's factor bound

Consider the polynomial $x^{4}+x+1 \in \mathbf{Z}[x]$.
(1) Use Mignotte's factor bound to find out whether $f$ has factors over Z.

Hint: First show by hand that $f$ has no rational roots and then search for quadratic factors.
(2) Compute the Mahler measure $M(f)$ of $f$.
(3) Verify that

$$
\|f\|_{\infty} \leq\binom{ d}{\left\lfloor\frac{d}{2}\right\rfloor} M(f)
$$

and

$$
M(f) \leq\|f\|_{2} .
$$

(4) Can you find a polynomial for which the last two bounds are equalities?
(5) In the lecture we defined the Mahler measure of monic polynomials. For a general $f \in \mathbf{C}[X]$, we define the Mahler measure by

$$
M(f):=|c| \prod_{i} \max \left(1,\left|\alpha_{i}\right|\right),
$$

where $f=c \prod_{i}\left(X-\alpha_{i}\right)$. Prove that the Mahler measure is multiplicative, i.e. that for $f, g \in \mathbf{C}[X]$, we have $M(f) M(g)=M(f g)$.

## 2 Hensel's Lemma

(1) Maybe some of you have seen the following, slightly less general version of Hensel's Lemma.

Theorem. Let $f \in \mathbf{Z}$ and let $p$ be any prime number. If $\alpha \in \mathbf{Z}$ is such that $f(a) \equiv 0 \bmod p$ and $f^{\prime}(a) \not \equiv 0 \bmod p$, then $\alpha$ can be uniquely lifted to a root $\alpha_{n}$ of $f \bmod p^{n}$ for all $n \geq 1$.

Show how this can be deduced from the theorem presented in the lecture.
(2) Use Hensel's Lemma to find all solutions of $x^{4}+x^{3}+2 x^{2}+x=13 \bmod 7{ }^{3}$.

Hint: In the less general setting of Hensel's Lemma presented in (1), we can give an explicit formula for the lift of a root. More precicely, in the notation of the theorem, we have for $k \geq 1$

$$
\left.\alpha_{k+1} \equiv \alpha_{k}-f\left(\alpha_{k}\right)\left[f^{\prime}(a)\right)\right]^{-1} \bmod p^{k+1},
$$

where $\left.\left[f^{\prime}(a)\right)\right]^{-1}$ is the inverse of $f^{\prime}(a)$ in $\mathbf{F}_{p^{k+1}}$.

## Challenge: Intersecting curves in the plane

Let $F$ be a field. Consider the plane curve $\mathcal{C}$ over $K$ defined by

$$
X(X+Y)(X+1)+Y(X+Y)(Y+1)+(X+1)(Y+1)=4(X+Y)(X+1)(Y+1)
$$

Find coordinates of intersection of $\mathcal{C}$ and the unit circle given by $X^{2}+Y^{2}+1$.
Note: We will learn how to efficiently compute such intersections later.

