Exercises: Week 6
 Computation in Algebra and Arithmetic

 David Loeffler \& Tim Gehrunger

 David Loeffler \& Tim Gehrunger}
1.4.2022

Sage provides standard constructions for polynomials. A brief introduction on how they are implemented can be found here: https://doc.sagemath.org/html/en/tutorial/tour_ polynomial.html.

1 Gröbner Bases correspond to RREF

Let $A=\left(a_{i j}\right)$ be an $n \times m$ matrix with entries in k and let $f_{i}=a_{i 1} x_{1}+\cdots+a_{i m} x_{m}$ be the linear polynomials in $k\left[x_{1}, \ldots, x_{m}\right]$ determined by the rows of A. Then we get the ideal $I=$ $\left\langle f_{1}, \ldots, f_{n}\right\rangle$. We will use lex order with $x_{1}>\cdots>x_{m}$. Now let $B=\left(b_{i j}\right)$ be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{t} be the linear polynomials coming from the nonzero rows of B (so that $t \leq n$). We want to prove that g_{1}, \ldots, g_{t} form the reduced Gröbner basis of I.
(a) Show that $I=\left\langle g_{1}, \ldots, g_{i}\right\rangle$. Hint: Show that the result of applying a row operation to A gives a matrix whose rows generate the same ideal.
(b) Use Buchberger's Criterion to show that g_{1}, \ldots, g_{t} form a Gröbner basis of I. Hint: If the leading 1 in the i th row of B is in the s th column, we can write $g_{i}=x_{s}+C$, where C is a linear polynomial involving none of the variables corresponding to leading l's. If $g_{j}=$ $x_{\ell}+D$ is written similarly, then you need to divide $S\left(g_{i}, g_{j}\right)=x_{\ell} D-x_{3} D$ by g_{1}, \ldots, g_{i}. Note that you will use only g_{i} and g_{j} in the division.
(c) Explain why g_{1}, \ldots, g_{t} form the reduced Gröbner basis of I.

This exercise is an adaption of Exercises 10 in Chapter 2, §7 of Cox, Little + O'Shea "Ideals, varieties and algorithms"

2 Elimination theory

2.1 Warm-up

Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.
(a) Prove that $I_{l}=I \cap k\left[x_{l+1}, \ldots, x_{n}\right]$ is an ideal of $k\left[x_{l+1}, \ldots, x_{n}\right]$.
(b) Prove that the ideal $I_{l+1} \subseteq k\left[x_{l+2}, \ldots, x_{n}\right]$ is the first elimination ideal of $I_{l} \subseteq k\left[x_{l+1}, \ldots, x_{n}\right]$. This exercise is an adaption of Exercises 1 in Chapter 3, §1 of Cox, Little + O'Shea "Ideals, varieties and algorithms"

2.2 Images of algebraic sets

Consider the map $\bar{F}^{2} \rightarrow \bar{F}^{3}$ given by $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right)$. Compute the Zariski closure of the image of $\mathbf{V}\left(\left(x_{1}-x_{2}\right)\right)$ and of $\mathbf{V}\left(\left(x_{1}^{3}-x_{2}+1\right)\right)$.

3 Solving polynomial Equations

Find the points in \mathbb{C}^{3} on the variety $\mathbf{V}\left(x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}+z^{2}-2 x, 2 x-3 y-z\right)$.
This exercise is an adaption of Exercises 3 in Chapter 2, §8 of Cox, Little + O'Shea "Ideals, varieties and algorithms"

