Exercises: Week 7

Computation in Algebra and Arithmetic

David Loeffler \& Tim Gehrunger

8.4.2022

Sage provides standard constructions for polynomials. A brief introduction on how they are implemented can be found here: https://doc.sagemath.org/html/en/tutorial/tour_ polynomial.html.

1 Hilbert Polynomials

1. Let k be a field. Show that a nonzero ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ has infinite dimension as a vector space over k.
2. In this exercise, we will show that if $I_{1} \subseteq I_{2}$ are ideals in $R=k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\operatorname{deg}\left(H P_{I_{1}}\right) \geq \operatorname{deg}\left(H P_{I_{2}}\right) .
$$

For each monomial ideal I, we let

$$
C(I)=\left\{\alpha \in \mathbb{Z}_{\geq 0}^{n} \mid x^{\alpha} \notin I\right\} .
$$

(a) Show that $I_{1} \subseteq I_{2}$ implies $C\left(\left\langle\operatorname{LT}\left(I_{1}\right)\right\rangle\right) \supseteq C\left(\left\langle\operatorname{LT}\left(I_{2}\right)\right\rangle\right)$ in $\mathbb{Z}_{\geq 0}^{n}$.
(b) Show that for $s \geq 0$, the Hilbert functions satisfy the inequality

$$
H F_{l_{1}}(s) \geq H F_{I_{2}}(s)
$$

(c) From part (b), deduce the desired statement about the degrees of the Hilbert polynomials. Hint: Argue by contradiction and consider the values of the polynomials as $s \rightarrow \infty$.
3. Compute the (affine) Hilbert polynomials for each of the following ideals.
a) $I_{1}=\left\langle x^{3} y, x y^{2}\right\rangle \subseteq k[x, y]$.
b) $I_{2}=\left\langle x^{3} y z^{5}, x y^{3} z^{2}\right\rangle \subseteq k[x, y, z]$.

Note: There are some technical subtleties to be regarded when using sage to compute Hilbert polynomials as sage only knows how to compute projective Hilbert polynomials. See also section $6.4 \frac{1}{2}$ in the script. In particular, the Hilbert Polynomial of I_{1} is not given by 2 , but by $2 t+3$.
4. Find the index of regularity [that is, the smallest s_{0} such that $H F_{I}(s)=H P_{I}(s)$ for all $s \geq s_{0}$] for each of the ideals in the last exercise.
5. Consider the following system of equations over $\overline{\mathbb{Q}}$

$$
\begin{aligned}
3 x^{2}+2 y z-2 x \lambda & =0 \\
2 x z-2 y \lambda & =0 \\
2 x y-2 z-2 z \lambda & =0 \\
x^{2}+y^{2}+z^{2}-1 & =0 .
\end{aligned}
$$

First verify that it has only finitely many showing by proving that the corresponding Hilbert polynomial is constant. Then solve the system of equations using a Gröbner basis with respect to a suitable order.

Some of these exercises are fully or partly taken copied from Cox, Little + O'Shea "Ideals, varieties and algorithms"

