Exercises: Week 8
 Computation in Algebra and Arithmetic

 David Loeffler \& Tim Gehrunger

 David Loeffler \& Tim Gehrunger}
29.4.2022

1 Data observation - prove your own formula!

The goal of this exercise is to guide you into discovering the structure of the 2-torsion parts of class groups for imaginary quadratic fields. If you manage to complete it, you will prove a formula you came up with yourself!
(a) Tabulate the sizes of the 2-torsion parts of class groups for imaginary quadratic fields of discriminant up to 100 with the help of Sage or PARI/GP.
(b) Try to guess a formula for the size of the 2-torsion parts of class groups for imaginary quadratic fields.
(c) Try out your formula for a few imaginary quadratic fields with higher discriminant.
(d) Prove the conjectured formula.

2 Computing class groups

Using the Minkowski bound, compute the class groups of the following imaginary quadratic fields. You can check your result using Sage or the LMFDB.
(a) $\mathbf{Q}(\sqrt{-5})$;
(b) $\mathbf{Q}(\sqrt{-21})$;
(c) $\mathbf{Q}(\sqrt{-41})$.

3 A fun application of the class number

Show that $x^{3}-y^{2}=13$ has no integral solutions but $(17, \pm 70)$.
Hint: Look at the class number of $\mathbf{Q}(\sqrt{-13})$.

