Exercises: Week 11

Computation in Algebra and Arithmetic

David Loeffler \& Tim Gehrunger

12.5.2022

1 Number of Rational Points

Let q be the power of a prime and let E / \mathbf{F}_{q} be an elliptic curve. At the end of the last lecture it has been hinted that $\# E(\mathbf{F})_{\mathbf{q}}$ will be close to $q+1$. The goal of this exercise is to verify this statement in a special case.

Write a script that goes trough all elliptic curves defined over \mathbf{F}_{5} and tabulate the number of their rational points. Note that it suffices to go through all short Weierstrass equations, for which the smoothness condition can be checked by a polynomial equation.

2 Legendre Form and j-invariant

There is another form of Weierstrass equation that is sometimes convenient.
A Weierstrass equation over K is said to be in Legendre Form if it can be written as

$$
y^{2}=x(x-1)(x-\lambda) .
$$

For this exercise, assume that $\operatorname{char}(K) \neq 2$ and that K is algebraically closed.
(a) Show that every elliptic curve over K is isomorphic to an elliptic curve in Legendre form

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

```
for some }\lambda\inK\{0,1}
```

(b) Write down the group law for the points of E_{λ}.

Let E be an elliptic curve over K, given by a Weierstrass equation

$$
E: y^{2}=x^{3}+A x+B .
$$

The j-invariant of this equation is defined by

$$
j=1728 \frac{(4 A)^{3}}{16\left(4 A^{3}+27 B^{2}\right)}
$$

One can show that j completely classifies elliptic curves up to isomorphism, i.e. two elliptic curves over K are isomorphic if they both have the same j-invariant (For this one really needs that K is algebraically closed). The proof of this statement exceeds the scope of this exercise.
(c) Show that for two isomorphic elliptic curves C_{1}, C_{2} over K, we have $j\left(C_{1}\right)=j\left(C_{2}\right)$.
(d) Show that the j-invariant of E_{λ} is given by

$$
2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\left.\lambda^{2}(\lambda-1)\right)}
$$

(e) Show that the association

$$
K \backslash\{0,1\} \backslash K, \quad \lambda \longmapsto j\left(E_{\lambda}\right),
$$

is surjective and exactly six-to-one except above $j=0$ and $j=1728$, where it is two-to-one and three-to-one, respectively (unless $\operatorname{char}(K)=3$, in which case it is one-to-one above $j=0=1728$).

