
Computation in Algebra and Arithmetic
ETH Zürich, Spring Semester 2022

David Loeffler

June 2, 2022

Contents

1 Introduction 5
1.1 What this course is (and isn’t) about . 5
1.2 Our toolkit . 5
1.3 Computing mathematical objects . 6

1.3.1 Exact data-types . 6
1.3.2 New structures from old . 6
1.3.3 Integers . 7
1.3.4 Approximating the reals . 7

1.4 A subtle example: the algebraic real numbers . 8
1.4.1 Theory . 8
1.4.2 Implementations . 9

2 Linear Algebra 11
2.1 Linear algebra over fields . 11

2.1.1 Echelon form . 11
2.1.2 Subspaces . 12
2.1.3 Kernels and images . 13
2.1.4 Eigenspaces . 13

2.2 Linear algebra over Z . 14
2.2.1 Hermite form . 14
2.2.2 Smith normal form . 16

3 Polynomials in one variable, I 18
3.1 Generalities . 18
3.2 Finite fields . 19

3.2.1 Setup . 19
3.2.2 Factorisation in Fq[X] . 20
3.2.3 Irreducibility . 21
3.2.4 Conway polynomials . 21

3.3 Polynomials over Q and Z . 22
3.3.1 Preliminaries . 22
3.3.2 A bad factorization algorithm . 23

4 Polynomials in one variable, II 24
4.1 Mignotte’s bound . 24
4.2 Hensel lifting . 26

4.2.1 Hensel’s lemma . 26
4.2.2 Factorization by Hensel lifting . 26
4.2.3 Galois groups . 27

2

5 Commutative algebra 30
5.1 Ideals . 30
5.2 The language of algebraic geometry . 30
5.3 Dividing polynomials . 32
5.4 Gröbner bases . 34
5.5 Buchberger’s algorithm . 36
5.6 Reduced Gröbner bases . 37

6 More computations with ideals 39
6.1 Elimination theory . 39
6.2 Images of sets, preimages of ideals . 40
6.3 Dimensions and Hilbert polynomials . 41
6.4 Solving equations . 44

7 Algebraic number theory 46
7.1 Number fields . 46
7.2 Rings of integers . 47
7.3 Ideals and factorization . 49

7.3.1 History . 49
7.3.2 Computing with ideals . 50
7.3.3 Norms of ideals . 51
7.3.4 Prime ideals and Dedekind–Kummer . 52
7.3.5 Two-element generating sets . 53

7.4 The unit group . 53
7.4.1 Computing WK . 54
7.4.2 Computing the free part . 54

7.5 The class group . 55
7.5.1 Two pretty applications . 56

7.6 The key computational problems . 57
7.6.1 Real quadratic fields . 57
7.6.2 The general case . 58

8 Some hints at class field theory 61
8.1 Capitulating ideals . 61
8.2 The Hilbert class field . 61
8.3 Ray class groups . 62
8.4 Computing class fields . 63

8.4.1 The 2-part . 63
8.4.2 Generalisation: Kummer theory . 64

9 Interlude: public-key cryptography 67
9.1 Cryptographic algorithms . 67

9.1.1 Symmetric versus private-key . 67
9.1.2 The RSA algorithm . 68
9.1.3 Diffie–Hellmann key exchange . 68

9.2 Choosing the group . 69
9.3 Elliptic curves . 70

3

10 Elliptic curves 71
10.1 Definitions . 71
10.2 The group law . 71
10.3 Elliptic curves over finite fields . 73

10.3.1 The Frobenius and Hasse’s inequality . 73
10.3.2 Computing #E(Fq) . 74
10.3.3 Group structure . 75

10.4 Elliptic curves over Q . 75
10.4.1 The Mordell–Weil theorem . 76
10.4.2 Torsion and reduction . 76
10.4.3 Computing non-torsion points . 77

11 Group theory I: finitely-presented groups 79
11.1 Presentations of groups . 79
11.2 Black box subgroups . 82
11.3 Implementations . 83

12 Group theory II: Representations of groups 84
12.1 The setting . 84
12.2 Burnside’s algorithm . 84

4

1 Introduction

1.1 What this course is (and isn’t) about

In this course, we’ll learn how to do interesting mathematical calculations on a computer,
focussing on examples coming up in algebra, algebraic geometry, and number theory.

This isn’t a computer programming course; we won’t be writing complicated software of our
own. Rather, we’ll be learning about some of the software other people have already written,
which problems it can solve, how to use it, and a slight hint about how it does these computa-
tions.

Exact computation In this course we’re going to focus on questions which have exact answers,
as questions in algebra generally do. We’ll stick to algorithms which are provably correct, so if
the computer says the answer is 3

4 , then it’s a theorem that the answer is really 3
4 (unless our

program has a bug!).

This is a very different world from questions that come up in analysis (e.g. “compute the
value at x = 1 of the function defined by this differential equation”) where often there’s no
tidy formula for the answer, so the best we can do is to find an approximation (and the main
challenge is how to avoid the error caused by inexact approximations from accumulating too
fast).

Efficiency We also (usually) won’t worry about doing things in the speediest, most efficient
manner. There is a huge amount of research which goes into doing basic operations – like
multiplying two integers, or solving a system of linear equations – in the most asymptotically
efficient way, but that won’t be our concern here; we’re more interested in finding any way of
doing computations with complicated abstract objects (like algebraic varieties, for instance).

1.2 Our toolkit

We’ll mostly use the following software:

• Sage: open-source mathematics software with a focus on algebra and number theory.

• Maple: commercial, mostly oriented towards symbolic and real-number computations
but with some algebra functionality.

5

Sage and Maple are available on the euler.ethz.ch computational server, which all ETH staff
and students can log into.

You can also download and install them on your own computer – Sage is free anyway, while
you can get Maple licenses through ETH – or Sage can be accessed through a free cloud service
called CoCalc (https://cocalc.com/).

There are other more specialised packages such as Magma and GAP which we’ll use for par-
ticular bits of the course, but those two will cover most things.

1.3 Computing mathematical objects

Let A be some interesting set (e.g. A could be the integers Z, or something more exotic, like the
ideal-class group of your favourite number field). What does it mean to represent elements of
A on a computer?

1.3.1 Exact data-types

Things like integers, rational numbers, integers mod N, etc are exact: there is a way to describe
them by a finite amount of data (ultimately, finite strings of ones and zeroes). Of course, this is
only possible if A is countable! Then we can ask:

• Are there algorithms which will compute the operations we care about?

• Are there algorithms which will check, given some string of data, whether it represents
a valid element of A?

• Are there algorithms which will check, given two data strings, whether they represent
the same element of A?

The last one is quite important – often there’s no unique “best” representative, so two different
data strings might be the same element of A, and it’s important that we should be able to test
equality. If we have a way of representing A on a computer satisfying these conditions, we say
A is an exact datatype.

Remark. Not all countable mathematical structures can be represented exactly on a computer,
because of problems with equality checking. For instance, the set of all algorithmically com-
putable functions Z→ Z is countable, but there’s no algorithm which will check whether two
given algorithms compute the same function (it’s an undecidable problem).

1.3.2 New structures from old

Generally our data-types will be built up from pre-existing ones. E.g. if our computer already
knows how to work in Z, we can represent a rational x ∈ Q as a pair (a, b) with b 6= 0,
representing the rational a

b .

Similarly, if we can exactly represent some ring A and compute its ring operations, then we
can do exactly represent polynomial rings A[X1, . . . , Xn], matrices over A, etc., and do basic
arithmetic with these too.

6

https://cocalc.com/

1.3.3 Integers

Even the very first example turns out to be quite subtle! Computers have very fast routines
built into their processor hardware for computing with “integers” – but they usually only
allocate a fixed block of memory for each number, so they can only handle integers up to a
limited size (often the limit is 231 or 263, for a block of 32 or 64 bits with one bit for sign). If you
ask it to do some arithmetic operation where the answer is too big to fit, then the computer
might raise an error, or silently return nonsense, or crash. This is called an integer overflow.

For doing arithmetic in Z without overflow errors, there are tricks involving dividing up the
bits of an integer into a variable number of smaller blocks. This is referred to as arbitrary-
precision arithmetic or just bignum arithmetic. All of the mathematics software we’ll be using will
handle bignum arithmetic for you, so you don’t have to think about it; but if you’re writing
your own programs in a general-purpose language like Java or C, it’s something to watch out
for – you might have to import some special library such as GMP.

Remark. Conversely, using bignum routines for small integers is much slower than hardware
arithmetic; so if you know that some particular variable in your computation will fit in a ma-
chine integer datatype, then you can speed things up by using one. But can you prove that x
will never be bigger than 231 − 1?

The basic operations on integers are addition, subtraction, multiplication, and two less obvious
ones:

• Division with remainder: given a, b ∈ Z with b 6= 0, compute q, r such that a = qb + r with
0 6 r < |b|.

• Extended greatest common divisor: given a, b ∈ Z, compute the greatest common divisor
c = gcd(a, b), together with λ, µ such that λa + µb = c.

The λ, µ of the extended GCD problem “come for free” if we compute gcd(a, b) via Euclid’s
algorithm, and provide useful extra information.

Much more sophisticated are questions about prime factorisation: testing if some n ∈ Z is prime,
and if not, decomposing it into its prime factors. It’s obvious that algorithms for these prob-
lems exist, but how to solve them efficiently is a much deeper question, and one that many
brilliant researchers have spent whole careers thinking about. We’ll come back to this later in
the course.

Remark. Maple has a function isprime(), but it doesn’t actually test if n is prime! If the func-
tion returns False, then n is (provably) composite; but it could possibly be making errors the
other way, mis-identifying some large composite numbers as primes. Sage’s is_prime(), on
the other hand, returns provably correct output (unless you explicitly tell it to cut corners); but
it’s much slower.

1.3.4 Approximating the reals

The real numbers R clearly can’t be exactly represented, because they’re uncountable.

One can consider the ring of computable real numbers – real numbers α for which there exists
an algorithm which, given N, computes the first N decimal digits of α. This is a countable set

7

(there are only countably many algorithms), and we can represent its elements on a computer
(just store the algorithm). The problem is that equality of computable real functions is an unde-
cidable problem – there is no algorithm which inspects two algorithms and determines whether
they give the same output.

There are various ways around this. For R, most computers offer something called floating-
point arithmetic, where you fix a precision P > 1, and represent reals via binary expansions with
P significant bits; then arithmetic operations are “rounded off”, discarding anything beyond
the P’th significant bit. However, even if all your arithmetic is done to precision P, it doesn’t
mean your final answer is correct up to the P’th bit. The rounding errors accumulate with each
arithmetic operation: if x rounds to x′, and y rounds to y′, then x + y doesn’t necessarily round
to x′ + y′. So this kind of arithmetic does not give provable answers.

There is something called interval arithmetic which works around this by storing, alongside
each real-number variable, a count of how many bits of precision it is accurate to, so the vari-
able is something like “3.142 to 4 significant figures” (or its binary equivalent), meaning “some
real number in the interval 3.1415 6 x 6 3.14125”.

At each arithmetic operation, interval-arithmetic programs will find a box which (provably!)
encloses the answer. E.g. if “x = 3.142 to 4 significant figures”, then x2 is in the interval

3.14152 6 x 6 3.14252 i.e. 9.86902225 6 x2 6 9.87530625,

so we can (provably) represent x2 as “9.9 to 2 significant figures”. Notice we lost quite a lot of
accuracy in just one step – we can’t be sure whether x is 9.87 or 9.88 to 3 sf. However, at least
we have a provable bound for how much accuracy is lost.

The problem is that interval arithmetic can never prove that two things are exactly equal. If
you are calculating some quantity x and you suspect that x > 0, then you have a fighting
chance of proving it with interval arithmetic. However, if you suspect that x = 0, then interval
arithmetic can’t ever prove that; you might show −1/100 < x < 1/100, or with more work
−1/1000 < x < 1/1000, but you’ll never show it’s zero!

1.4 A subtle example: the algebraic real numbers

1.4.1 Theory

Definition. A real number α ∈ R is algebraic if there exists a nonzero f ∈ Q[x] with f (α) = 0.

As most of you will have seen, the algebraic numbers are a countable subfield of R. In par-
ticular, if α and β are algebraic (and we know squarefree polynomials P, Q having x, y as
roots), then we can compute polynomials having α± β, αβ, or α/β as roots, using the theory
of symmetric functions.

It turns out we can compute effectively with algebraic reals, using the following key result:

Theorem (Sturm, 1829). There exists an algorithm which, given P ∈ Q[X] and a < b ∈ Q∪ {±∞},
will determine the number of roots of P in [a, b].

8

(We won’t prove this here – it might be a nice project topic.)

So we can represent an algebraic α by a pair consisting of

• a rational polynomial such that f (α) = 0,

• an interval [a, b] containing α and no other root of f (an “isolating interval”).

If we want to add two algebraics α1 = (f1, a1, b1) and α2 = (f2, a2, b2), then we compute a
polynomial which kills α1 + α2, and we check if it has a unique root in [a1 + a2, b1 + b2]. If so,
we’re good. If not, then we subdivide the intervals [a1, b1] and [a2, b2] into smaller intervals,
check which of them contain α1 and α2 (using the Theorem), and try again. Eventually our
interval will be small enough to isolate α1 + α2.

Exercise. Given two algebraic numbers αi = (fi, ai, bi), how might one check if α1 = α2?

Once we have the field Ralg of algebraic reals, we can get the field Calg of algebraic complex
numbers, since x ∈ C is algebraic iff its real and imaginary components are (that is, Calg =
Ralg + iRalg).

Remark. Note the similarity to interval arithmetic, but also the differences: because we also
store the polynomial that α satisfies, an algebraic number represented in this form is an exact
object.

1.4.2 Implementations

All this is implemented in Sage (it uses the names AA and QQbar for Ralg and Calg).

sage: R.<x> = QQ[] # set up polynomial ring over Q

sage: f = x^5 - 17*x - 1

sage: a,b,c = f.roots(AA, multiplicities=False) # f has exactly 3 real roots

sage: a

-2.015563046951700?

Note the question-mark -2.015563046951700?. That is how Sage outputs interval-arithmetic
variables – the idea is that the decimal places before the question-mark are completely known,
while the last one might be off by ±1, so Sage is telling us that

−2.015563046951701 6 a 6 −2.015563046951699

which is more than enough accuracy to isolate the root. However, Sage also stores the polyno-
mial, so it can refine the interval further if we ask it to:

sage: a._descr # internal representation of a

a where a^5 - 17*a - 1 = 0 and a in -2.015563046951700?

sage: a.n(prec=100) # numeric evaluation to higher precision

-2.0155630469517000366964260152

sage: d = a + b

sage: d.n(100)

9

-2.0743866177928034427084350091

sage: g = x^10 + 51*x^6 + 11*x^5 - 1156*x^2 + 68*x - 1

sage: g(d) == 0 # test equality (with proof)

True

Maple doesn’t have a full implementation of arithmetic in Ralg, but it does have a command
RootFinding[Isolate] which will compute isolating intervals for each real root of a polyno-
mial:

> with(RootFinding):

> Isolate(x^5 - 17*x - 1, output=’interval’);

-9518227377035325282905 -4759113688517662641439

[x = [-----------------------, -----------------------],

4722366482869645213696 2361183241434822606848

-542551678403779127 -135637919600944775

x = [-------------------, -------------------],

9223372036854775808 2305843009213693952

143903396403431 71951698201729

x = [---------------, --------------]]

70368744177664 35184372088832

(Note that the denominators are large powers of 2.)

10

2 Linear Algebra

2.1 Linear algebra over fields

2.1.1 Echelon form

Let F be some field. We suppose elements of F are exactly representable on a computer, and we
have algorithms for the field operations (addition, multiplication, inversion) – think F = Q, or
F = Fp for some prime p if you prefer. Then, as we’ve seen, we can do basic arithmetic with
matrices (adding and multiplying).

Remark. If you learn one thing from this course, learn this: computers can do matrix arithmetic
over exact fields, and they are very good at it. I can’t remember the last time I did a matrix
multiplication larger than 3× 3 by hand.

In practice, we care about matrices as a way of representing linear maps, so we want to con-
sider the effect of changing bases.

Definition. A matrix (over any commutative ring A) is in row echelon form if:

• any zero rows come below all the non-zero rows;

• for each i > 1, the first non-zero entry in the i-th row (if any) is strictly to the right of the first
non-zero entry in the (i− 1)-st row.

We call these first non-zero entries pivots. It is in reduced row echelon form (RREF) if:

• the pivot entries are all 1;

• the other entries in the same column as a pivot are all 0.

Theorem (Gaussian elimination). For any m× n matrix1 M over a field F, there is a unique matrix
E such that:

• E is in RREF,

• there exists a non-singular U (not necessarily unique) such that E = UM.

Moreover, given M, we can compute E.

1m rows, n columns; and mij is the entry in the i-th row and j-th column, for 0 6 i 6 m and 0 6 j 6 n.

11

I’m sure you’ve seen this before many times, I just want to emphasise that it’s all completely
algorithmic. Note that if you want to know the transformation matrix U, then we can get it for
free by padding A: if we form the augmented matrix A′ = (A | Im) with m rows and n + m
columns, then the RREF of A′ is (E | U), where E is the RREF of A, and U is a nonsingular
matrix such that UA = E.

Remark. A square matrix M over F is nonsingular iff its RREF is the identity matrix; so by
computing the transformation putting M in RREF, we’ve found the inverse of M.

Remark. Computing echelon form of an n× n square matrix can be done in O(n3) field oper-
ations. As a by-product we can compute det(A) at the same time; this is vastly quicker than
computing it using the definition of the determinant as a sum over permutations, which needs
roughly n! steps.

2.1.2 Subspaces

Definition. Let V = Fn, and let W 6 V be a subspace. A reduced echelon basis of W is an ordered
set of non-zero vectors b1, . . . , bm forming a basis of W, such that the m× n matrix with i-th row bi is
in RREF.

Proposition. Each subspace W 6 Fn has a unique reduced echelon basis. Moreover, given any set of
vectors w1, . . . , wr, we can compute the reduced echelon basis b1, . . . , bm of the subspace W spanned by
the wi, and express each wi as a linear combination of the bi or vice versa.

Proof. This is a reformulation of Gaussian elimination, because two matrices A, B satisfy A =
UB for some invertible U iff the rows of A and the rows of B span the same subspace.

MORAL: Subspaces of Fn are a datatype, and the echelon basis gives a unique “best” descrip-
tion – a normal form – for a subspace.

We get, essentially for free, algorithms to do the following:

• Compute the sum W1 + W2 of two subspaces of Fn. (Just stack their basis matrices, one
on top of the other, and compute the RREF of the result.)

• Compute whether one subspace is contained in another. (Special case of the above, since
W1 ⊆W2 ⇔W1 + W2 = W2.)

• Check whether some given v ∈ Fn lies in W, and if so, express it in terms of the basis.
(Compute the echelon form of the enlarged matrix given by putting a copy of v along the
bottom of the basis matrix of W.)

12

2.1.3 Kernels and images

If we think of a matrix M as representing a linear map, we might want to compute its kernel
and image. It’s easiest to do this if we think of our linear maps acting “from the right”, i.e. M
represents the map

A : Fm → Fn, A(v) = vM.

Then we might want to compute its kernel and image.

Proposition. Consider the m× (n + m) matrix (M | Im). Then the RREF echelon form of this matrix
has the form (

REB of im A junk
0 REB of ker A

)

Proof. If the echelon form is (E | C), then by construction E is the echelon form of M, so its
nonzero rows are the REB of the image of M, and the number of zero rows at the end is m−
dim im A = dim ker A.

Since CM = E, A sends each row of C to the corresponding row of E, so the last p rows of C are
in ker A. These rows are already in RREF, and none of them are zero because C is invertible.
By the rank-nullity theorem they must be the REB of ker A.

Remark. The junk isn’t really junk: it’s telling us a preimage in Fm of each vector in the echelon
basis of im(A) ⊂ Fn.

So the RREF basis is really the “Swiss army knife” of matrix algebra (over fields): once we have
this one tool, we can solve essentially all the problems we want by making straightforward
transformations to our input data before feeding it into the algorithm.

Exercise.

(a) Given echelon-form bases for two subspaces W1, W2, how would you compute the echelon
basis for the intersection W1 ∩W2?

(b) Given a subspace W ⊆ Fm, and an m× n matrix defining a linear map A : Fm → Fn, how
would you compute the subspace A−1(W)?

2.1.4 Eigenspaces

If we’re thinking of an n× n matrix M as an endomorphism – a map from Fn to itself – then
we might want to know about its eigenvalues and eigenvectors, and hence compute its Jordan
normal form.

We can compute the characteristic polynomial det(XIn − M), since we can apply determi-
nant algorithms over the field F(X). Assuming we can find the roots of this polynomial
(and that they lie in F), then we can use our kernel-finding algorithms to compute, for each
root, the eigenspace ker(λIn − M), and more generally the rank m generalised eigenspace
ker [(λIn −M)m] for each m > 1. From here, it is an easy step to computing Jordan form.

13

2.2 Linear algebra over Z

2.2.1 Hermite form

Definition. A matrix over Z is in row Hermite form if it is in row echelon form, and:

• the pivots are positive integers;

• the entries above each pivot are in the range [0, P) where P is the corresponding pivot.

This is a little bit less tidy than RREF over fields, but it’s not too far off.

Theorem (Hermite). Let M be an integer matrix. Then there exists a unique matrix H such that

• H is in row Hermite form,

• we have H = UM for some invertible2 integer matrix U.

Moreover, given M, we can compute H.

We’ll need a lemma first:

Lemma. Let x1, . . . , xn ∈ Z, and let z = gcd(x1, . . . , xn). Then we can compute an n× n invertible

integer matrix U such that U ·

x1
...

xn

 =

z
0
...
0

.

Proof. We give the proof for n = 2 (the general case follows easily from this by induction).

If x1 = x2 = 0 then we can take
(

a b
c d

)
to be the identity, so assume this isn’t the case.

Do an extended GCD to find λ, µ such that λx1 + µx2 = z. This implies λ, µ must be coprime3,

so we can find λ′, µ′ such that λλ′ + µµ′ = 1. Thus
(

λ µ
−µ′ λ′

)
is invertible; and it maps

(
x1
x2

)
to
(

z
w

)
for some w. But w is a linear combination of x1 and x2, so it must be divisible by z, say

w = hz for some h. Thus
(

λ µ
−µ′ − hλ λ′ − hµ

)(
x
y

)
=

(
z
0

)
.

Proof of Theorem: existence. The proof is rather similar to Gaussian elimination. We’ll prove by
induction the following statement:

Claim. For any 0 6 k 6 n, there exists an invertible m × m matrix Uk such that the first k
columns of Uk M are in Hermite form.

2This means it has an inverse in the ring of integer matrices, so its determinant has to be ±1, not just nonzero.
3Note this step would fail if x = y = 0!

14

Clearly k = 0 is vacuously true. So assume k > 1 and the statement holds for k− 1. WLOG we
can assume M itself has the first k− 1 columns in Hermite form, and write M in the form

(
E B

)
or

(
E B
0 C

)
where E is in Hermite form with all its rows nonzero; let’s say E has h rows.

If C isn’t there (i.e. h = m), or the first column of C is zero, then M is already in Hermite form
up to column k; so we are done.

Otherwise, let =

 c1
...

cm−h

 be the first column of C. Let U′ be an (m− h)× (m− h) invertible

matrix such that U · =

P
0
...
0

, where P = gcd() > 1; and let U =

(
Ih 0
0 U

)
. Then we have

U ·M =

E
a1k
...

ahk

?

0

P
0
...
0

?

This is almost in Hermite form up to column k, but the aik’s might not be in [0, P). However, if
we left-multipy by a matrix of the form

1 t1
. . .

...
1 th

1
. . .

 ,

with the t’s in the (h + 1)’st column, this replaces aik with a′ik = aik + Pti; using division-with-
remainder, we can choose ti such that a′ik is reduced modulo the pivot. This gives a new matrix
in which the first k columns are Hermite-form, proving the claim. Setting k = n, the theorem
is proved.

Remark. We won’t prove the uniqueness. It’s a bit tedious, and it’s also very specific to Z, while
existence is more general: it shows that row-echelon form exists, and is computable, over any
ring in which we have an extended GCD algorithm (i.e. anything that is “computably a PID”).
For uniqueness, we need to be able to choose a preferred generator of each ideal of A, and a
preferred generator of each residue class modulo each ideal.

15

Corollary. Let G be a subgroup of the abelian group Zn. Then G has a unique ordered generating set
b1, . . . , bm such that the matrix with bi as rows is in Hermite form; and this Hermite-form generating
set can be computed effectively starting from any finite set of generators of G.

So subgroups of Zn are a datatype; and, as before, we get algorithms for computing sums of
subgroups, checking whether a vector is in a subgroup, etc, all by feeding slightly different
inputs into the Hermite-form algorithm.

Remark. Computing the kernel and image of a map Zm → Zn works as before, but it’s a little
more fiddly to justify why it works: the argument we gave before just shows that the last p
rows of the echelon basis generate a submodule of ker(A) of the correct rank. Why is it the
whole of ker(A)?

2.2.2 Smith normal form

Definition. A matrix over Z is in Smith normal form if it is diagonal, with the entries along the
diagonal non-negative, and dii | di+1,i+1 for each i.

Proposition. For any M there is a unique S such that S is in Smith normal form and S = UMV for
invertible U, V; and we can compute S and (some choice of) U, V effectively given M. The diagonal
entries of S are called the elementary divisors of M.

The proof-construction is rather reminiscent of Hermite form, although more complicated.

Generally, while Hermite form is useful for questions about specific subgroups, Smith form is
useful for asking questions about subgroups up to isomorphism. The classic one is the follow-
ing:

Proposition. Let G be an abelian group with finitely many generators g1, . . . , gn and finitely many
relations

a11g1 + · · ·+ a1ngn = 0, . . . , am1g1 + · · ·+ amngn = 0.

Then G is isomorphic to
(Z/d1)× · · · × (Z/dr)×Zn−r,

where d1, . . . , dr are the non-zero elementary divisors of the matrix A = (aij).

This is, of course, exactly the classification of finitely-generated abelian groups; but the point
is that the classification is effectively computable. Moreover, we can express the generators for
the cyclic factors of G in terms of the original generators, and write the relations in the new
presentation in terms of the old ones, using the transformation matrices U, V relating A to its
Smith form. If S = UAV is the Smith form, and h1, . . . , hn are the elements defined byh1

...
hn

 = V−1

g1
...

gn

then the hi are a generating set in which the only relations are hdi

i = 0 for each i. (The matrix U
tells us how to derive the relations for the new basis for the relations for the old basis.)

16

Remark. This is useful for groups that arise naturally as the quotient of one “big” group by
another; for instance, ideal class groups of number fields, or (co)homology groups of simplicial
complexes. Using Smith form gives you nice generating sets for these groups.

17

3 Polynomials in one variable, I

We’re now going to talk about polynomials (in one variable) over fields, and (a very closely
related topic) extensions of fields. Throughout this chapter F is a field datatype; we want to
avoid non-separable fields, so we’ll assume that either F has characteristic 0, or F has finite
characteristic p and every element of F has a computable p-th root.

3.1 Generalities

We have division with remainder for polynomials over F: given a, b ∈ F[X] with b 6= 0, we can
write a = bq + r where deg(r) < deg(b). So we also have GCD’s, and even XGCD’s, via
Euclid’s algorithm.

Definition. A non-constant monic polynomial f is square-free if there is no non-constant polynomial
g ∈ F[X] such that g2 | f .

Note that f is square-free in F[X] iff its roots in F are distinct. We can test for this very easily:

Lemma. f is square-free if and only if gcd(f , f ′) = 1, where f ′ is the formal derivative of f .

Proof. Let α ∈ F be a root of f . Then f (X) = (X− α)rh(X) for some r > 1 and h with h(α) 6= 0.
Thus f ′(X) = r(X − α)r−1h + (X − α)rh′. Hence ordα(f ′) = r− 1, unless r = 0 in F, in which
case it is r; in either case, we have f ′(α) = 0⇔ r > 1.

Proposition (Squarefree factorisation). For each monic f ∈ F[X], we can compute square-free,
pairwise coprime, monic polynomials f1, . . . , fm ∈ F[X] (for some m 6 deg(d)) such that

f =
m

∏
i=1

(fi)
i.

Proof. An easy argument from Galois theory shows that such a factorisation exists, and is
unique (because any two roots of f in the same Gal(F/F)-orbit have the same multiplicity);
the problem is to find it.

We start by computing the formal derivative f ′, and we set

a1 = f / gcd(f , f ′), b1 = gcd(f , f ′), c1 = a1/ gcd(a1, b1).

If F has characteristic 0, then we have

gcd(f , f ′) = ∏
i>2

f (i−1)
i

18

(up to scaling by F×); thus a1 = ∏i>1 fi and hence c1 = f1. We now iterate by setting

ai+1 = ai/ci, bi+1 = bi/ai+1, ci+1 = ai+1/ gcd(ai+1, bi+1),

and keep going until ai = 1; one sees by induction on i that ai = ∏j>i fi and bi = ∏j>i f (j−i)
i

for all i, so ci = fi.

If F has characteristic p > 0 the situation is a little more subtle: we have

gcd(f , f ′) = ∏
p-i

f (i−1)
i ·∏

p|i
f i
i

and so this method only detects the fi for p - i (we have ci = 1 for p | i). However, we can
keep going until an = 1, in which case bn is purely inseparable, i.e. has the form g(Xp) for some
g ∈ F[X]. Then we can write

g(Xp) = ∑ aiXpi = (h(X))p, h(X) = ∑
i

a1/p
i Xi

and apply the above algorithm to h (which has degree 6 1
p deg(f), so the process must termi-

nate).

3.2 Finite fields

The simplest fields are, of course, finite fields, so we’ll start with those.

3.2.1 Setup

Here are some basic properties of finite fields.

• For every prime power q = pk, there is a unique (up to isomorphism) finite field Fq with
q elements, and every finite field is isomorphic to one of these.

• The characteristic of Fpk is p.

• Every element of Fq satisfies xq = x. In particular, if q = pk, then x = (xpk−1
)p, so p-th

roots exist and are computable.

• Fq′ contains a subfield isomorphic to Fq if and only if q′ = qr for some r, and this subfield
is uniquely determined (it is exactly the elements of Fq′ satisfying xq = x).

• For any r, Fqr is a Galois extension of Fq and its Galois group is the cyclic group of order
r generated by the Frobenius automorphism x 7→ xq.

• The unit group F×q is a cyclic group of order q− 1.

If these properties aren’t familiar to you, then you might want to consult a book on Galois
theory. (I like Ian Stewart’s book, but there are many others.)

19

Proposition. For any prime power q and r > 1, there exist irreducible monic polynomials f ∈ Fq of
degree r; and the quotient ring Fq[X]/(f (X)) is isomorphic to Fqr .

That is, if we know how to represent Fq (e.g. if q is prime), then we can represent Fqr as polyno-
mials in X over Fq of degree < r, with addition defined in the obvious way, and multiplication
defined modulo f (X).

Example. The polynomial x2 + x + 1 is an irreducible quadratic polynomial over F2 – in fact
it’s the only one – so we get a model of F4 as linear polynomials over F2.

3.2.2 Factorisation in Fq[X]

We know that Fq[X] is a unique factorisation domain – any polynomial can be written (uniquely)
as a product of powers of irreducible polynomials. How can we compute these?

It’s clear that this is computable in principle. Given f , if it’s not irreducible then it has a factor
g with deg(g) 6 1

2 deg(f), and there are only finitely many such g so we just try them all.
However, if q or deg(f) is large, this is prohibitively slow – ideally we’d like algorithms which
are polynomial in the size of the input data, i.e. in deg(f) log(q).

Step 1: Square-free factorisation (using the general algorithm above). This reduces us to fac-
torising square-free polynomials.

Step 2: Distinct-degree factorisation. Given a square-free g of degree d, we’re going to write

g =
d

∏
j=1

gj

where each gj is a product of (distinct) irreducible polynomials of degree exactly j. The basic
input is:

Lemma. For any N, the product of all monic irreducible polynomials in Fq[X] of degree dividing N is
XqN − X.

Proof. We have
XqN − X = ∏

α∈FqN

(X− α).

So for an irreducible f , we have the equivalences

(f has degree dividing N)

⇐⇒ (f splits as a product of distinct linear factors in FqN)

⇐⇒ (f divides XqN − X).

But XqN − X has distinct roots in FqN , so it can’t be divisible by the square of any polynomial.

20

Hence we can compute, for each N, the product

gcd(XqN − X, g) = ∏
j|N

gi,

and hence determine the gj’s.

Remark. It’s not totally obvious that this step has polynomial running time, because we need
to take GCD’s of polynomials of very large degree, such as XqN − X. However, it is sufficient
for Euclid’s algorithm to compute XqN

mod g. To do this, we use exponentiation by squaring:
if qN = a0 + 2a1 + · · ·+ 2hah is the binary expansion of qN , then

(XqN
mod g) = (X mod g)a0 · (X2 mod g)a1 · (X4 mod g)a2 . . . ,

and we can compute X2 mod g, X4 mod g, etc by squaring and then reducing mod g at each
step, so we never go above 2 deg g (and similarly for the steps to put together XqN

mod g).

Step 3: Equal-degree factorisation. We’re now left with the problem of factorising a polyno-
mial h under the assumption that h is square-free and all its irreducible factors have the same
degree. This step is rather harder than the first two steps, but good algorithms do exist, such
as Berlekamp’s algorithm. This would be a good project topic.

3.2.3 Irreducibility

If we just care about testing whether f is irreducible, then steps 1 and 2 are enough, or we can
make the following short-cut:

Proposition (Rabin’s irreducibility test). If f has degree N (not necessarily square-free), then f is
irreducible iff f divides XqN − X, but for every prime divisor ` of N, we have gcd(XqN/` − X, f) = 1.

Proof. If h is an irreducible factor of f of degree M, then either M divides N, or it doesn’t. If
M | N (but M 6= N), then M | N

` for some `, and in this case h is a common factor of f and
XqN/` − X. If M - N, then h, and hence f , doesn’t divide XqN − X.

Again, this can be implemented very efficiently using binary exponentiation.

3.2.4 Conway polynomials

(If there had been time, I would have said something at this point about Conway polynomials,
which give us a way of choosing a “simplest” irreducible polynomial of degree r over Fp

for each r, allowing us to work with the algebraic closure Fp. This would be a good project
topic.)

21

3.3 Polynomials over Q and Z

3.3.1 Preliminaries

There’s not a lot of difference between factorization theory over Q and over Z, because:

Lemma (Gauss). Let f , g be monic polynomials in Q[X] with g | f . If f ∈ Z[X], then g ∈ Z[X].

We can make any polynomial integral by scaling: for a monic f ∈ Q[X], we can form the
polynomial

fB(X) = Bdeg f f (X
B)

for some B > 1. If we choose B sufficiently divisible, then fB ∈ Z[X]. Of course, any factor
of f goes to a factor of fB. So if we want to understand factorisation in Q[X], it’s enough to
understand factorisation of monic polynomials in Z[X].

Definition. If f = ∑ anXn ∈ Z[X], the reduction of f modulo p is the polynomial f̄ = ∑ ānXn

where ān is the reduction of an.

Proposition. If f is monic and f̄ is irreducible (or square-free), then f is irreducible (resp. square-
free).

Going the other way doesn’t work: things become “more reducible” mod p. For square-
freeness this doesn’t happen very often:

Proposition. Let f ∈ Z[X] be square-free. Then there is an explicitly computable finite set of primes S
such that if p /∈ S, then f̄ = f mod p is square-free in Fp[X].

Proof. Consider the polynomials f (X) and f ′(X). Since f and f ′ are coprime (in Q[X]), we can
use Euclid’s algorithm to write

a f + b f ′ = 1

for some a, b ∈ Q[X]. Clearing denominators, we can write

A f + B f ′ = N

for some N > 1 and A, B ∈ Z[X].

Now let S be the set of primes dividing N. If p /∈ S, then mod p we can write

Ā f̄ + B̄ f̄ ′ = N̄, N̄ 6= 0.

So f̄ and f̄ ′ are coprime in Fp[X].

Irreducibility is much more subtle: there exist irreducible monic polynomials f ∈ Z[X] such
that f̄ is reducible for every prime p (e.g. X4 + 1 is an example). We’ll see more on this later.

22

3.3.2 A bad factorization algorithm

Recall that we can compute in the field Calg, which is an explicit model for the algebraic closure
of Q. In particular, given any polynomial f ∈ Q[X], we can compute isolating intervals for its
real roots, and isolating boxes for its complex roots. Moreover, given an element α ∈ Calg we
can compute whether it lies in Z or not: just refine the bounding box for α until it contains at
most one integer, and check if α is equal to that integer.

Proposition. Given a monic, squarefree f ∈ Z[X] following algorithm computes the factorization of f
in Z[X]:

• Make a list of the roots of f in Calg.

• For each (nonempty, proper) subset S of the roots, compute ∏α∈S(X − α), and check if its coeffi-
cients are integral.

This shows that factorization in Q is possible, but it is a woefully bad algorithm in practice.
Rather surprisingly, the solution will be to replace approximate real-number information with
approximate p-adic information, for a prime p!

23

4 Polynomials in one variable, II

4.1 Mignotte’s bound

Let f ∈ Z[X] be monic. We want to get some control of the “size” of potential factors – how
big their coefficients can be.

Definition. Let 1 6 p 6 ∞. The Lp norm of f = ∑ aiXi, is

‖ f ‖p =

{
(∑i |ai|p)1/p if p < ∞
maxi |ai| if p = ∞.

Lemma (Landau). For any α ∈ C and any g ∈ C[X] we have have

‖(X− α)g‖2 = ‖(ᾱX− 1)g‖2.

Proof. We can write ‖g‖2 = 〈g, g〉 where 〈 f , g〉 is the usual inner product (linear in f and
conjugate-linear in g).

Thus
‖(X− α)g‖2

2 = 〈Xg, Xg〉 − α〈g, Xg〉 − ᾱ〈Xg, g〉+ αᾱ〈g, g〉.

Similarly
‖(ᾱX− 1)g‖2

2 = αᾱ〈Xg, Xg〉 − ᾱ〈Xg, g〉 − α〈g, Xg〉+ 〈g, g〉.

Since 〈Xg, Xg〉 = 〈g, g〉, these expressions are the same.

We’d like to know an upper bound for the Lp norms of factors of f (for some p, it doesn’t really
matter which!). We’ll do this by relating the Lp norms (which are easy to define, but don’t
respect multiplication) with another quantity which is multipicative.

Definition. For any monic f , the Mahler measure of f is the quantity

M(f) =
n

∏
i=1

max(1, |αi|) ∈ R

where α1, . . . , αn are the roots of f in C.

Clearly M(f) > 1, and M(f g) = M(f)M(g). In particular, if g is a factor of f then M(g) 6
M(f).

24

Proposition (Landau). We have
M(f) 6 ‖ f ‖2.

Proof. We order the roots so |α1|, . . . , |αr| > 1 and the rest are < 1. Then, using the Lemma
repeatedly, we have

‖ f ‖2 = ‖(X− α1) . . . (X− αn)‖2

= ‖(ᾱ1X− 1) . . . (ᾱrX− 1)(X− αr+1) . . . ‖2

If h is this last polynomial, then clearly ‖h‖2 is at least the absolute value of the leading coeffi-
cient of h, which is exactly M(f).

On the other hand:

Proposition. If f has degree d, then

‖ f ‖∞ 6
(

d
[d/2]

)
M(f).

Proof. If f = ∑ aiXi, then (−1)iai is the sum of all possible products of subsets of i of the roots.
Each such product has norm at most M(f), and there are (d

i) of them. So |ai| 6 (d
i)M(f). Since

(d
[d/2]) = maxi (

d
i), we conclude.

Combining these we have the following:

Theorem (Mignotte’s factor bound). If f , g ∈ Z[X] are monic and g | f , then we have

‖g‖∞ 6
(

d
[d/2]

)
‖ f ‖2,

where d = deg(g).

Proof. We have

‖g‖∞ 6
(

d
[d/2]

)
M(g)

6
(

d
[d/2]

)
M(f) (as g | f)

6
(

d
[d/2]

)
‖ f ‖2 (by Landau).

This gives another factorization algorithm – if if f is not irreducible then it has a factor g whose
degree and L∞ norm are bounded, and there are only finitely many of these, so we can just try
them all. Sadly, this is hopelessly inefficient, since the search space has size O(2d2/2). However,
it really comes into its own when combined with information modulo prime powers.

25

4.2 Hensel lifting

4.2.1 Hensel’s lemma

Lemma (Hensel). Let f be a monic polynomial over Z and suppose that we have f̄ = ḡh̄ mod p for
some monic ḡ, h̄ ∈ Fp[X] with gcd(ḡ, h̄) = 1.

Then, for any n, there exist uniquely determined monic polynomials gn, hn ∈ (Z/pn)[X] such that
f = gnhn mod pn and gn = ḡ, hn = h̄ mod p.

Proof. The case where ḡ(X) = X− ᾱ for some ᾱ ∈ Fp is very standard. The proof in the general
case is basically the same as this, but uniqueness requires a little care.

We induct on n. There is nothing to show if n = 1. Assume the statement holds for n. Let
g̃n+1, h̃n+1 be arbitrary lifts of gn, hn to mod pn+1. Then g̃n+1h̃n+1 = f + pnt for some t ∈ Fp[X].

Since f̄ and ḡ are coprime, we can choose ā, b̄ ∈ Fp[X] with āḡ + b̄h̄ = 1. We consider the
polynomials

gn+1 = g̃n+1 + pn(−b̄t + λ), hn+1 = h̃n+1 + pn(−āt + µ),

for some arbitrary λ, µ ∈ Fp[X]. Then we have

gn+1hn+1 = g̃n+1h̃n+1 − pnt(āḡ + b̄h̄) + pn(λh̄ + µḡ) + (stuff divisible by p2n)

= f + pn(λh̄ + µḡ) mod pn+1.

So for any choice of λ, µ with λh̄ + µḡ = 0 gives a factorisation of f modulo pn+1, and con-
versely any factorisation of f lifting (gn, hn) has this form.

Since (h̄, ḡ) are coprime, this is equivalent to λ = σḡ, µ = −σh̄ for some σ. Thus we have

gn+1 = g̃n+1 − pnb̄t + pnσḡ, hn+1 = h̃n+1 − pn āt + pnσh̄.

There is a unique choice of σ which will make gn+1 monic of degree deg ḡ, and comparing
leading terms, with this σ we have hn+1 monic of degree deg h̄ as well.

Note this proof is totally algorithmic; and by induction we can extend it to any number of
factors.

4.2.2 Factorization by Hensel lifting

Given a monic f in Z[X], and p such that the mod p reduction f̄ is square-free, we can factor
it modulo p into irreducibles. Using Hensel, we can lift this to a factorisation of f modulo pn,
and all those factors will be irreducible in (Z/pn)[X].

By considering all possible subsets of those factors, we can write down all polynomials divid-
ing f modulo pn. If f has a factor in Z[X], say g, then g mod pn must be in our list of mod pn

polynomials. If pn > 2B, where B is Mignotte’s factor bound, then each polynomial mod pn

comes from at most one polynomial over Z of L∞-norm 6 B; and we can check each of these
possibilities to see if it’s a genuine factor of f .

26

Example. Consider f (x) = x6 − x5 − 4x2 + 8. This is square-free mod p for p /∈ {2, 3, 71}. If we
take p = 7, then

f mod 7 = (x3 + 3x2 + 2x + 2) · (x3 + 3x2 + 3x + 4).

If f has a nontrivial factor g in Z[X], that factor must reduce to a factor of f mod 7; so it has to
be cubic. By Mignotte’s bound with d = 3 we have ‖g‖∞ 6 B = (3

1)‖ f ‖2 = 3
√

82 6 28. Since
73 > 2B, it suffices to Hensel-lift mod 73.

We find that

f mod 343 =
(

x3 − 39x2 + 115x− 73
)
·
(
x3 + 38x2 − 5x− 33

)
.

Now, −39 mod 343 can’t be the reduction of an integer in the range [−28, 28]. So this factori-
sation can’t come from a factorisation in Z[X] and hence f is irreducible.

(Actually f is irreducible mod 5, so it is obviously irreducible in Z[X], but I wanted to demon-
strate the method.)

Remark. This algorithm is clearly at worst exponential in the number of factors of f̄ (which is
at most deg(f), but is often much smaller). There is an improvement due to van Hoeij, which
uses LLL reduction algorithms to choose good subsets of the factors; this is known to run in
polynomial time, and is the algorithm used by modern computer algebra systems.

4.2.3 Galois groups

If we fix an f (of some degree d), and factorise its mod p reduction for varying p, what
happens? For each p we can list the degrees of the irreducible factors, which are integers
(d1, . . . , dm) (up to re-ordering) with d1 + · · ·+ dm = d.

Theorem.

(a) If (d1, . . . , dm) are the degrees of the factors mod p, for some p such that the reduction is square-free,
then there exists an element in the Galois group Gal(f /Q) (the Frobenius element, well-defined
up to conjugacy) which, as a permutation of the roots of f in Q, has m disjoint cycles of lengths
d1, . . . , dm.

(b) (Chebotarev’s density theorem) If Gal(f /Q) has an element with cycle lengths (d1, . . . , dm), then
there exist infinitely many primes such that the factors of f mod p have degrees d1, . . . , dm; and
the density of such primes is equal to the fraction of elements of G which have that cycle type.

Part (a) is fairly elementary and can be found in most algebraic number theory texts. Part (b)
is a little harder (depending on how you want to define “density”); see e.g. Theorem 7.30 of
Narkiewicz’s Elementary and Analytic Theory of Algebraic Numbers. The important point is that
it gives pretty strong information on what Gal(f /Q) can be.

Remark. From (a) we see that f mod p can only be irreducible if Gal(f /Q) contains a d-cycle.
This explains my example earlier about X4 + 1: the Galois group is the Klein four-group, which
is a transitive subgroup of S4 but doesn’t contain a 4-cycle – the only cycle types are (1, 1, 1, 1)
and (2, 2). So for every p, the reduction of X4 + 1 is reducible.

27

Example. Consider f (x) = x6 − x5 − 4x2 + 8. Here’s a little script which factorises f mod p for
all primes up to 10000, and tells us how often each degree sequence occurs.

sage: R.<x> = ZZ[]

sage: f = x^6 - x^5 - 4*x^2 + 8

sage: partcounts = { }

sage: for p in prime_range(10000):

....: fbar = f.change_ring(GF(p))

....: if not fbar.is_squarefree(): continue

....: degs = tuple(g.degree() for (g, e) in fbar.factor())

....: if degs not in partcounts.keys():

....: partcounts[degs] = 1

....: else:

....: partcounts[degs] += 1

....: for P in sorted(partcounts.keys()):

....: print("%s : %.2f%%" % (P, partcounts[P] * 100 / prime_pi(10000)))

The output looks like this:

(1, 1, 1, 1, 1, 1) : 0.73%

(1, 1, 2, 2) : 11.80%

(1, 1, 4) : 24.25%

(1, 5) : 20.59%

(2, 2, 2) : 8.87%

(3, 3) : 16.60%

(6,) : 16.92%

There are only 16 subgroups of S6 that act transitively on {1, . . . , 6}, and only two of those
contain elements with all the above cycle-types: S6 itself, and another smaller group (which
is actually isomorphic to S5, but acting in a weird way, on 6 points rather than 5). We suspect
Gal(f /Q) can’t be S6, because there are lots of cycle-types we haven’t seen, like (4, 2) for
example.

In fact Sage knows how to compute Galois groups over Q [how? – project!] and the above
method using reduction is one of the tools it uses. So let’s count the number of elements of
each cycle-type:

sage: G = f.change_ring(QQ).galois_group()

....: C = [tuple(reversed(s.cycle_type())) for s in G]

....: for c in sorted(set(C)):

....: print("%s : %s" % (c, C.count(c)/G.order()))

(1, 1, 1, 1, 1, 1) : 1/120

(1, 1, 2, 2) : 1/8

(1, 1, 4) : 1/4

(1, 5) : 1/5

(2, 2, 2) : 1/12

(3, 3) : 1/6

(6,) : 1/6

28

This matches pretty closely with the percentages above. In particular, f is irreducible modulo 1
6

of all primes.

29

5 Commutative algebra

5.1 Ideals

Let F be a field (in which we can compute), and R = F[X1, . . . , Xn] for some n. We’re going to
be interested in ideals J P R. Any such ideal is finitely-generated (Hilbert’s basis theorem), so
can be written as 〈 f1, . . . , fr〉 for some polynomials fi ∈ R.

We’d like to solve the following basic problems:

• IDEAL MEMBERSHIP: given f1, . . . , fr and g, is g ∈ 〈 f1, . . . , fr〉, and if so, can we compute
qi ∈ R such that g = ∑ qi fi?

• EQUALITY OF IDEALS: given f1, . . . , fr and g1, . . . , gs, do they generate the same ideal?
(Reducible to ideal membership: just check if each gi is in the ideal of the f ’s, and vice
versa.)

• PREIMAGE OF AN IDEAL: given a map of F-algebras φ : F[X1, . . . , Xn] → F[Y1, . . . , Ym]
(specified by Xi 7→ gi(Y1, . . . , Ym) for some polynomials gi), and an ideal I of F[Y1, . . . , Ym],
can we compute generators of φ−1(I)?

5.2 The language of algebraic geometry

Why do we care about such problems? Mostly because there’s a deep connection between
commutative algebra and geometry. It’s the geometry which provides the intuition and moti-
vation, while the nitty-gritty computations are on the algebra side.

Definition. Let F be an algebraic closure of F.

• Given an ideal J P R, we define V(J) = {x ∈ Fn : f (x) = 0 ∀ f ∈ J} ⊆ Fn.

• Given a subset S ⊆ Fn, we define I(S) = { f ∈ R : f (x) = 0 ∀ x ∈ S}, which is an ideal of R.

Theorem (Hilbert’s Nullstellensatz). We have I(V(J)) = rad(J), where rad(J) = { f : f r ∈
J for some r > 1}.

It follows that the maps I and V give a bijection between radical ideals (ideals J P R such that
rad J = J) and F-algebraic sets (subsets of Fn of the form V(J) for some J).

Remark. Note {(x, y) ∈ C2 : x = iy} is C-algebraic, but not Q-algebraic. If F = Q and S is this
set, what is V(I(S))?

30

Lemma. If we can solve ideal membership, then we can also solve the following: given f1, . . . , fr and
g, test whether g ∈ rad J, where J = 〈 f1, . . . , fr〉.

Proof. Consider the ring R̃ = F[X1, . . . , Xn, t] where t is an extra variable, and let K be the ideal
of R generated by J and tg− 1.

Then V(K) consists of the points (x, 1
g(x)) for all x ∈ V(J) with f (x) 6= 0. So it is empty if, and

only if, g = 0 on V(J); that is, if g ∈ rad J. So g ∈ rad J ⇔ 1 ∈ rad K ⇔ 1 ∈ K.

With this in hand, we can test whether rad J = rad J′, given generating sets of J and J′: just test
whether each generator of J is in rad J′ and vice versa. So we have a way of testing equality
between algebraic sets.

Remark. Note that this isn’t the same as being able to compute a generating set of rad J, which
is a bit harder.

What geometric problem does “ideal preimage” solve? It corresponds1 to taking the image of
an algebraic set under the map Fm → Fn sending y to x = (g1(y), . . . , gn(y)).

Example. Consider the following cubic polynomial in 3 variables:

F (X, Y) : X(X + Y)(X + 1) + Y(Y + 1)(Y + X) + (X + 1)(Y + 1) = 4(X + Y)(Y + 1)(X + 1).

I want to compute the intersection points of the curve C : {F (X, Y) = 0} with the unit circle
X2 + Y2 = 1.

1Almost. In general the image of an algebraic set isn’t an algebraic set; e.g. mapping {x, y : xy = 1} via (x, y) 7→ x,
we get F− {0}, which isn’t an algebraic set. But ideal preimage computes the smallest algebraic set containing
the image.

31

The intersection points are exactly the algebraic set defined by the ideal I = 〈F ,G〉. To com-
pute their x-coordinates, we want to find φ−1(I) where φ : Q[X] ↪→ Q[X, Y] is the obvious
inclusion.

5.3 Dividing polynomials

We understand divisibility and ideals for one-variable polynomials very well, because we have
division with remainder for polynomials (and hence Euclid’s algorithm, etc).

We’re going to define a sort of long-division algorithm for polynomials in several variables. In
the one-variable case, we deal with the highest-degree terms first, and then work downwards.
For multiple variables, we need to decide which terms to attack first.

Definition. A monomial is an element Xa1
1 . . . Xan

n ∈ R, for integers ai > 0. Its multidegree is
(a1, . . . , an) ∈ Nn.

An monomial order is a total order 4 on the monomials of R (equivalently, on Nn) with the following
properties:

• multiplication is respected, so for all monomials M, N, P we have M 4 N ⇐⇒ MP 4 NP;

• 4 is a well-ordering, so any nonempty set of monomials has a least element.

Remark. One can check that the second condition is equivalent to assuming that 1 4 M for
every M.

Proposition. The standard lexicographic order, in which X(a1,...,an) 4 X(b1,...,bn) if a1 < b1, or if
a1 = b1 and a2 < b2, or (etc), is a monomial order.

(Note that the sequence goes

1 4 Xn 4 X2
n 4 X3

n 4 · · · 4 Xn−1 4 Xn−1Xn 4 Xn−1X2
n 4 . . .

so any polynomial in Xn alone is “smaller” than any polynomial involving X1, . . . , Xn−1.)

Proof. Exercise.

There are other interesting monomial orders, which have their merits for different problems,
but we’re going to stick to lex ordering for simplicity. Once we’ve fixed a monomial ordering,
every polynomial has a uniquely-defined leading term LT(f) (which is a nonzero multiple of a
monomial), and a multidegree mdeg f ∈Nd, which is the vector of exponents in LT(f).

Theorem (Division algorithm in F[X1, . . . , Xn]). Let g1, . . . , gs be non-zero polynomials, and fix a
monomial order 4. Then we can write every f ∈ F[X1, . . . , Xn] in the form

f = q1g1 + · · ·+ qsgs + r,

where no monomial appearing in r is divisible by any of LT(g1), . . . , LT(gs), and for each i we have
mdeg(qigi) 4 mdeg f .

32

Proof. Let f0 ∈ R. If there is no monomial in f divisible by any LT(gj), we are done. If not,
let v0 be the largest degree of any “bad” monomial in f0. We can then consider f1 = f − λqgj,
for some j, and some monomial q and scalar λ, chosen to kill off the degree v0 term. Now any
bad monomials in f1 have to have smaller degree than v0. Continuing, we obtain a sequence
of polynomials f0, f1, . . . , in which the sequence “vr = largest bad exponent in fr” is strictly
decreasing. Since our monomial ordering is a well-ordering, such a sequence must terminate
after finitely many steps.

Note this is a completely computable process.

Remark. It is important to note that the “remainder” r is not uniquely determined by the condi-
tions. If our computation gives r = 0, then f ∈ 〈g1, . . . , gs〉; but it’s not remotely obvious that
if r 6= 0 we have f /∈ 〈g1, . . . , gs〉, and in fact it’s not true in general.

Example. Let us consider f = x2y + xy2 + y2, and g1 = xy− 1, g2 = y2 − 1.

We have LT(f) = x2y. This is divisible by LT(g1), so we can subtract xg1 to get

(x2y + xy2 + y2)− x(xy− 1) = xy2 + x + y2.

The new leading term is divisible by both LT(g1) and LT(g2); we use the first:

(xy2 + x + y2)− y(xy− 1) = x + y2 + y.

Now the leading term isn’t divisible by LT(g1) or LT(g2); so we leave it alone and go on to the
next term y2. We subtract y2 − 1 to get

(x + y2 + y)− (y2 − 1) = x + y + 1.

There are no bad terms left, so (x + y + 1) is the remainder, and we have computed

f = (x + y)(xy− 1) + (1)(y2 − 1) + (x + y + 1).

is the remainder.

However, we made a choice at the second step: whether to use g1 or g1. What if we used g2
instead? Then the computation goes

(x2y + xy2 + y2)− x(xy− 1) = xy2 + x + y2,

(xy2 + x + y2)− x(y2 − 1) = 2x + y2,

(2x + y2)− 1(y2 − 1) = 2x + 1.

So we have f = x(xy − 1) + (x + 1)(y2 − 1) + (2x + 1), with a different remainder; both
x + y + 1 and 2x + 1 are valid possibilities for the remainder.

33

5.3bis: Monomial ideals

Mea culpa: I said some wrong things in the lecture at this point. The following is a careful attempt to
explain away the resulting confusion.

In this course 0 ∈ N. Then, for any n > 1, the set Nn is a commutative monoid (a set with
a commutative, associative binary operation – addition of vectors – and an identity element
(0, . . . , 0)).

Definition. A monoid ideal in Nn is a subset S ⊆ Nn with the property that m + s ∈ S for all
m ∈ Nn and s ∈ S.

This is distinct from the following concept:

Definition. A monomial ideal in R = F[X1, . . . , Xn] is an ideal of R generated by monomials.

These are different things – one is a subset of R, the other of Nn – but they are closely related.
One checks that if I is a monomial ideal, and f ∈ R, then f ∈ I iff every monomial in f is in I.
From this, it is easy to show the following:

Proposition. There is an inclusion-preserving bijection between monomial ideals I P R, and monoid
ideals S ⊆ Nn, given as follows:

• if S is a monoid ideal, then the sub-F-vectorspace of R with basis {Xs : s ∈ S} is a monomial
ideal of R;

• if I is a monomial ideal, then S = {s ∈ Nn : Xs ∈ I} is a monoid ideal of Nn.

(We allow the zero ideal of R, which corresponds to the empty monoid ideal of Nd.)

Moreover, given an arbitrary set of monomials T, the monomial ideal 〈T〉 of R corresponds
to the monoid ideal

⋃
t∈T(t + Nn), which is the monoid ideal of Nn generated by T. So it is

straightforward to test if some f ∈ R lies in 〈T〉: we just check if every monomial in f is
divisible by some monomial in T.

5.4 Gröbner bases

Definition. For I P R an ideal, we define 〈LT(I)〉 to be the ideal of R generated by {LT(f) : f ∈
I − {0}}.

This is a monomial ideal, by definition; it corresponds to the monoid ideal {mdeg f : f ∈
I − {0}} of Nn (you should check that this is indeed a monoid ideal).

However, if I = 〈 f1, . . . , fs〉, it does not follow that LT(I) = 〈LT(f1), . . . , LT(fs)〉. Clearly LT(I)
contains this, but it can be bigger:

34

Example. Let I = 〈 f1, f2〉 where f1 = x3 − 2xy and f2 = x2y− 2y2 + y. Then (for lexicographic
order) we have LT(f1) = x3, LT(f2) = x2y. But we have

x f2 − y f1 = xy

and LT(xy) = xy /∈ 〈x3, x2y〉.

Definition. Let I P R. A Gröbner basis of I is a finite subset G = {g1, . . . , gs} ⊆ I such that we
have

〈LT(g1), . . . , LT(gs)〉 = 〈LT(I)〉.

Proposition. Let I be an ideal. Then Gröbner bases of I exist. Moreover, any Gröbner basis of I is a
generating set of I.

Proof. The infinite set {LT(f) : f ∈ I − {0}} generates 〈LT(I)〉, by definition. Since R is
Noetherian, there must be a finite subset which generates the same ideal2. The corresponding
elements of I form a Gröbner basis of I.

Now, given a Gröbner basis G = g1, . . . , gs, we can write any f ∈ I as ∑ qigi + r, where no
monomial in r is divisible by any of LT(g1), . . . , LT(gs). Since r ∈ I by construction, it follows
that r cannot contain any monomials at all, i.e. we must have r = 0. Thus f = ∑ qigi ∈ 〈G〉.

Corollary. If G is a Gröbner basis of I, then for any f ∈ R, there is a unique r such that f − r ∈ I and
no monomial appearing in r is divisible by any of LT(g1), . . . , LT(gr). Moreover, given G and f , we can
algorithmically compute this remainder r, and some (non-unique) choice of qi such that f = ∑ giqi + r.

Proof. Suppose f had two different remainders r, r′. Then r− r′ ∈ I; but no monomial appear-
ing in either or r and r′ can be in LT(I), so we must have r− r′ = 0. The computability is clear
from the above.

So, Gröbner bases solve the ideal membership problem: given a Gröbner basis for I, we have
f ∈ I iff the remainder of f is zero, and we can test algorithmically if this is the case and if so,
express f in terms of our generators. Of course, this is no use unless we can compute Gröbner
bases to start with!

Remark. The notion of “leading term” and “Gröbner basis” still makes sense in A[X1, . . . , Xd]
for any commutative ring A (not necessarily a field). The theory works well if A is a Euclidean
domain, e.g. Z; the theory of Gröbner bases for Z[X1, . . . , Xn] would be a good project topic.

2We are using Hilbert’s basis theorem here. This is morally the wrong way around: one of the simplest and
cleanest proofs of the Hilbert basis theorem is actually to prove directly that any monoid ideal of Nd is finitely
generated (Dickson’s lemma), which suffices to prove that 〈LT(I)〉 is finitely generated, and then to use the
second half of the proposition to deduce that I itself is finitely generated.

35

5.5 Buchberger’s algorithm

Recall above our “bad” example of a generating set (g1, g2) that isn’t a Gröbner basis; the
problem came from yg1 − xg2 having smaller leading term than g1 or g2.

Definition. Given two nonzero polynomials f , g, we define their S-polynomial by

S(f , g) =
Xγ

LT(f)
f − Xγ

LT(g)
g

where γ is the smallest exponent such that xγ

LT(f) and xγ

LT(g) are monomials.

This is designed to produce cancellation – its multidegree (the multidegree of its leading term
with respect to 4) is smaller than expected, since the leading terms of the two summands
cancel each other out. We’re now going to show that “all cancellations among leading terms
come from S-polynomials”.

Lemma. Let p1, . . . , ps ∈ R all have the same multidegree δ. If ∑i pi has multidegree < δ, then ∑i pi
is a linear combination of the polynomials S(pi, pj).

Proof. Let di ∈ F be the leading coefficient of pi. Since all the pi have the same degree,
S(pi, pj) =

1
di

pi − 1
dj

pj. If ∑ pi has multidegree < δ, we must have ∑ di = 0; thus

∑ pi = d1

(
1
d1

p1 − 1
ds

ps

)
+ · · ·+ ds−1

(
1

ds−1
ps−1 − 1

ds
ps

)
+

(
ps +

s−1

∑
i=1

di
ds

ps

)

= d1S(p1, ps) + · · ·+ ds−1S(ps−1, ps) +
ps
ds

s

∑
i=1

di,

and the last term is 0 as we have seen.

Theorem (Buchberger’s criterion). A finite set G = {g1, . . . , gs} is a Gröbner basis of I = 〈G〉 if
and only if, for all i 6= j ∈ {1, . . . , s}, the remainder of S(gi, gj) on division by G is zero.

Proof. One direction is obvious: S(gi, gj) ∈ I, so if G is a Gröbner basis, then the remainder
must be 0.

Conversely, suppose G satisfies this criterion. Let f ∈ I, so f = ∑ giqi for some qi. We want to
show that LT(f) is divisible by one of the LT(gi). We may suppose that our choice of qi is such
that δ = maxi(mdeg(giqi) : qi 6= 0) is as small as possible (with respect to 4); this is possible,
by the well-ordering property of 4.

If there is no cancellation in the sum, so mdeg f = δ, then LT(f) is divisible by LT(gi) for some
i, as required. We must show that if any cancellation occurs, then it contradicts the minimality
assumption on the qi.

36

Let J = {i ∈ 1, . . . , s : mdeg(giqi) = δ}. Then

f = ∑
i∈J

giqi + ∑
i 6=J

giqi

= ∑
i∈J

gi LT(qi) + ∑
i∈J

gi(qi − LT(qi)) + ∑
i/∈J

giqi

The second and third terms only involve polynomials of multidegree < δ, so if there is cancel-
lation, it occurs in the first sum, which is a sum of polynomials of multidegree exactly δ. By
the last Lemma, we can write

f = ∑
i,j∈J

cijS
(

gi LT(qi), gj LT(qj)
)
+ smaller degree terms,

for some scalars cij ∈ F. However, since LT(qi) and LT(qj) are monomials, we have

S
(

gi LT(qi), gj LT(qj)
)
= xδ−γij S(gi, gj),

where γij = lcm(mdeg gi, mdeg gj).

By assumption, the division algorithm reduces each S(gi, gj) to 0. So we can write

S(gi, gj) = ∑ ukgk

for some uk with mdeg(ukgk) 4 mdeg S(gi, gj) ≺ γij (strictly). Hence

S
(

gi LT(qi), gj LT(qj)
)
= ∑

k
(xδ−γij uk)gk, mdeg

(
xδ−γij uk

)
< δ.

Substituting back, we obtain an expression for f in which all summands have multidegree < δ,
a contradiction.

Buchberger’s criterion gives an algorithmic test for whether G is a Gröbner basis. But it also
gives more than that: if G is not a Gröbner basis, then one of the S-polynomials will not re-
duce to 0, meaning we have computed an explicit element of I whose leading term isn’t in
〈LT(g1), . . . , LT(gs)〉. So if we enlarge G by adding the reduction of S(gi, gj) to it, we get a new
generating set G′ for which the leading-term ideal 〈{LT(g) : g ∈ G′}〉 is strictly larger. Since
R is Noetherian, after finitely many iterations this process must stop, and we’ve computed a
Gröbner basis for I. So we’ve shown the following:

Theorem (Buchberger’s algorithm). Given a finite set of polynomials H generating an ideal I, we
can compute a set G ⊇ H which is a Gröbner basis for I, and express the elements of G as R-linear
combinations of elements of H.

5.6 Reduced Gröbner bases

Note that if G is a Gröbner basis of I, then so is any finite set G′ ⊇ G contained in I. Very often
most of these generators are redundant:

37

Lemma. Let G be a Gröbner basis of I. If p ∈ G and LT(p) is divisible by LT(q) for some q ∈ G−{p},
then G− {p} is a Gröbner basis of I.

Proof. If LT(p) is divisible by some LT(q), then we have 〈LT(g) : g ∈ G〉 = 〈LT(g) : g ∈
G− {p}〉. By assumption the former is equal to 〈LT(I)〉, hence so is the latter.

We say a Gröbner basis is minimal if there is no p ∈ G to which the above lemma applies. This
is equivalent to requiring that no proper subset of G is a Gröbner basis of I. Given a Gröbner
basis G of I, one can clearly find a minimal Gröbner basis of I, simply by throwing away any
redundant basis elements until the result is minimal.

Exercise. Check that if G and G′ are any two minimal Gröbner bases of the same ideal, then G
and G′ are the same size, and there is a bijection σ : G → G′ such that σ(g) and g have the
same multidegree.

These aren’t quite unique, e.g. (X + Y, Y) and (2X, 3Y) are Gröbner bases of the same ideal in
F[X, Y].

Definition. A Gröbner basis G is reduced if, for all p ∈ G, the following holds:

• the leading coefficient of p is 1;

• no monomial of p is divisible by the leading term of any q ∈ G− {p}.

If any p ∈ G contains a (non-leading) monomial divisible by some other element of G, we
can kill this monomial by adding an element of 〈G − {p}〉 to p (without changing LT(p), so
the result is still a Gröbner basis of G); this process terminates after finitely many steps in a
reduced Gröbner basis.

Proposition. Every ideal of R has a unique reduced Gröbner basis.

We won’t prove this (although it isn’t particularly hard, see Cox–Little–O’Shea theorem 2.7.5).

Remark. You should think of minimal Gröbner bases as being a bit like row echelon bases of
vector spaces, and reduced Gröbner bases as being like RREF.

38

6 More computations with ideals

6.1 Elimination theory

Recall my “intersecting curves” puzzle from a couple of weeks back, which was to compute
all the points in the finite set V(〈 f1, f2〉) where

f1 = X(X + Y)(X + 1) + Y(Y + 1)(Y + X) + (X + 1)(Y + 1)− 4(X + Y)(Y + 1)(X + 1),

f2 = X2 + Y2 − 1.

Let’s hit it with the big Gröbner-basis hammer and see what we get.

sage: R.<X, Y> = PolynomialRing(QQ, order=’lex’)

sage: I = R.ideal(X*(X + Y)*(X + 1) + Y*(Y + 1)*(Y + X) + (X+1)*(Y+1) - 4*(X +

....: Y)*(Y + 1)*(X + 1), X^2 + Y^2 - 1)

sage: I.groebner_basis()

[X + 112/23*Y^5 + 172/23*Y^4 - 273/46*Y^3 - 165/23*Y^2 + 109/46*Y + 1,

Y^6 + 5/4*Y^5 - 23/32*Y^4 - 9/8*Y^3 - 1/32*Y^2 + 1/8*Y]

Let’s look at that answer more carefully: the second polynomial involves Y alone – there
are no X terms. So if (x, y) is an intersection point, then y is a root of this 1-variable sextic.
Moreover, the other polynomial has the form X + R(Y) for some one-variable polynomial; so
the solutions are precisely (−R(Y), Y) for Y a root of Y6 + 5

4Y5 +

Definition. For 1 6 ` < n, let R` = R[X`+1, . . . , Xn]. For I an ideal in R[X1, . . . , Xn], the i-th
elimination ideal of I is I` = I ∩ R`, which is an ideal of R`. of R`. (Informally, it’s the polynomials
in I in which the first ` variables don’t appear)

Theorem (Elimination via Gröbner bases). Let G be a Gröbner basis of I with respect to lex ordering
(with x1 � x2 � · · · � xn). Then G ∩ R` is a Gröbner basis of I` = I ∩ R` (and it is reduced if G is).

Proof. Let f ∈ I`. Then LT(f) has to be divisible by LT(g) for some g ∈ G. Thus LT(g) ∈ R`;
but since any monomial not in R` is bigger than any monomial in R`, this forces all monomials
in g to lie in R`. Hence g ∈ G ∩ R`.

Remark. Note that this wouldn’t work with an arbitrary monomial ordering; we need every
monomial in R` to be smaller than every other monomial. That’s why I had to explicitly write
order=’lex’ in the example: Sage’s default monomial ordering is something else (the degree
reverse lexicographic order), which doesn’t have this elimination property.

39

6.2 Images of sets, preimages of ideals

Suppose we have a polynomial map g : Fm → Fn, given in terms of coordinates X1, . . . , Xm and
Y1, . . . , Yn by X = (X1, . . . , Xm) 7→ (g1(X), . . . , gn(X)) for some gi ∈ F[X1, . . . , Xm]. I’m also
going to suppose we have an F-algebraic set S = V(J) ⊆ Fm; and I want to compute g(S).

In general g(S) isn’t an algebraic set, but we can at least compute the smallest algebraic set
containing it (the Zariski closure of g(S)), which is given by the ideal I(g(S)).

Proposition. We have I(g(S)) = (g∗)−1(J), where

g∗ : F[Y1, . . . , Yn] −→ F[X1, . . . , Xm]

is the F-algebra homomorphism sending f (Y) to f (g(X)), i.e. sending Yj to gj(X1, . . . , Xm) for each j.

Remark. The special case when J is the zero ideal, so we want to compute all polynomials in the
Y’s which vanish on the image of g, is called the implicitization problem: taking a subspace of Fn

defined parametrically (as the image of g) and finding a description of it in terms of equations.

If our map g is the “forget the first ` variables” map from Fm → Fm−`, then this is exactly
the problem that elimination theory solves. What about the general case? We consider the
diagram of morphisms

Fm −→ F(m+n) −→ Fn,

where the first map is X 7→ (X, g(X)) (so the image is the graph of g), and the second is
forgetting the first m variables. In terms of rings, the picture is

R[Y1, . . . , Yn] −→ R[X1, . . . , Xm, Y1, . . . , Yn] −→ R[X1, . . . , Xm]

where the first map is the obvious inclusion, and the second is given by sending the X’s to
themselves and sending each Yj to gj(X1, . . . , Xm).

Proposition. If I = 〈 f1, . . . , fm〉 is an ideal in R[X1, . . . , Xm], then the preimage of I in the ring
R[X1, . . . , Xm, Y1, . . . , Yn] is the ideal

〈Y1 − g1, . . . , Yn − gn, f1, . . . , fm〉.

Proof. This is a straightforward check.

Hence we can compute the preimage of I in R[Y1, . . . , Yn] by finding a lex Gröbner basis for
this ideal and hence eliminating the X’s.

Example. Let’s consider the map F2 → F3 given by (t, u) 7→ (t(u2 − t2), u, u2 − t2). What’s a
minimal set of equations describing its image?

Using the above arguments, we want to eliminate (t, u) from the ideal of R[t, u, x, y, z] given
by

I = 〈x− t(u2 − t2), y− u, z− u2 − t2〉.

The Gröbner basis (for lex ordering with t � u � x � y � z) is

40

sage: R.<t, u, x, y, z> = PolynomialRing(QQ, order=’lex’)

sage: I = R.ideal([x - t*(u^2 - t^2), y - u, z - (u^2 - t^2)])

sage: I.groebner_basis()

[t^2 - y^2 + z, t*x - y^2*z + z^2, t*z - x, u - y, x^2 - y^2*z^2 + z^3]

So the ideal of polynomials vanishing on the image of F2 is generated by x2 − y2z2 + z3. We
can also get this in one step using

sage: I.elimination_ideal([t, u])

Ideal (x^2 - y^2*z^2 + z^3) of Multivariate Polynomial Ring in t, u, x, y, z

over Rational Field

(The answer is nonsense, formally, since we’re looking for an ideal of F[x, y, z] not F[t, u, x, y, z]
– a long-standing bug in Sage. But the list of generators is correct.)

6.3 Dimensions and Hilbert polynomials

Here’s a basic fact from algebraic geometry:

Proposition. Let R6d denote the F-subspace of R = F[X1, . . . , Xn] spanned by monomials of total
degree 6 d. Then for any ideal I P R, the function

HFI(d) = dimF

(
R6d

R6d ∩ I

)
is eventually polynomial: there is a polynomial HPI(d) ∈ Q[d] and a d0 ∈ N such that HFI(d) =
HPI(d) for all d > d0.

We call HPI the affine Hilbert polynomial of I. It encodes various geometric properties of the
algebraic set V = V(I); for instance, if HPI has degree r, then r is the dimension of V.

Example. HPI is constant if and only if R/I is finite-dimensional over F, which is equivalent to
V being a finite set (and the constant is equal to the number of points in V(I), counted with an
appropriate multiplicity).

Remark. In the literature one more often encounters projective Hilbert polynomials, which corre-
spond to algebraic subsets of projective space (rather than affine space). We’ll discuss projec-
tive Hilbert polynomials in a moment.

It turns out we can compute Hilbert polynomials using Gröbner bases, but only for a special
kind of monomial order:

Definition. A monomial order is graded if it extends the partial ordering given by total degree, so we
always have M ≺ N if M has lower total degree than N.

41

Lex-order is not a graded order (unless n = 1). The standard example is “degree lexicographic”
order, which you saw on the exercise sheets:

M ≺deglex N ⇔ (tot. deg. M < tot. deg. N) or (tot. deg. M = tot. deg. N and M ≺lex N).

Proposition. Let I be an ideal and let 〈LT(I)〉 be its leading term ideal for a graded monomial order.
Then we have

HFI = HF〈LT(I)〉.

We won’t prove this here; see C-L-O’S §9.3 for the proof.

Computing Hilbert polynomials for monomial ideals is pretty explicit: we’re just counting
the monomials that aren’t divisible by any of the generators, and we can do this using the
inclusion-exclusion principle, using the fact that there are (d+n

n) monomials of degree 6 d in n
variables:

Example. For the ideal 〈X2Y3, XZ〉 of F[X, Y, Z], we have

HPI = #{all monomials of deg 6 d}
− #{monomials of deg 6 d divisible by X2Y3}
− #{monomials of deg 6 d divisible by XZ}

+ #{monomials of deg 6 d divisible by both X2Y3 and XZ}

Now, a monomial is divisible by X2Y3 and XZ iff it’s divisible by X2Y3Z, so we can write this
as

HPI = #{all monomials of deg 6 d}
− #{monomials of deg 6 d divisible by X2Y3}
− #{monomials of deg 6 d divisible by XZ}

+ #{monomials of deg 6 d divisible by X2Y3Z}.

If d is large enough, the monomials of degree 6 d divisible by X2Y3 are precisely the products
X2Y3M where M has degree 6 d− 5, so this is

HPI = #{all monomials of deg 6 d}
− #{monomials of deg 6 d− 5}
− #{monomials of deg 6 d− 2}

+ #{monomials of deg 6 (d− 6)}.

=

(
d + 3

3

)
−
(

d + 3− 5
3

)
−
(

d + 3− 2
3

)
+

(
d + 3− 6

3

)
=

(d2 + 11d− 10)
2

.

The general formula is

Proposition. If M1, . . . , Ms are monomials, then

HP〈M1,...,Ms〉(d) = ∑
T⊆{1,...,s}

(−1)#T
(

d + n− deg MT

n

)
,

where MT = LCM{Mj : j ∈ T}.

42

Combining this with the previous proposition gives an algorithm to compute the dimension
of any algebraic set. In Sage you can get this with the dimension method:

sage: R.<X, Y, Z> = QQ[]

sage: I = R.ideal([X^3 - Y*Z, X^2*Y - Z^2, Y^2 - X*Z])

sage: I.dimension()

1

(This is an example of a 1-dimensional variety in 3-dimensional space that can’t be cut out by
just 2 polynomials.)

6.41
2. Digression: Affine and projective varieties

Definition. For n > 1 and any field K, we define projective n-space over K as

Pn(K) = {(x0, . . . , xn) ∈ Kn+1 : ∃i such that xi 6= 0}/K×.

We embed Kn into Pn(K) as (x1, . . . , xn) 7→ (1, x1, . . . , xn).

There is a notion of F-algebraic sets inPn(F), which correspond to homogenous ideals of F[X0, . . . , Xn].
An ideal is homogenous if it is generated by homogenous polynomials (polynomials in which
all monomials have the same total degree). Note that we don’t require all the generators of an
ideal to be homogenous of the same degree, so

〈x0 + x1, x0x1〉 is homogenous, but 〈x0, x1 + 2〉 is not.

For a homogenous ideal one can define its projective Hilbert polynomial by

pHFI(d) = dim
R=d

I ∩ R=d
.

Note we have =, where before we had 6.

Sage (and its competitors e.g. Magma), have one-line commands for projective Hilbert poly-
nomials, but annoyingly not for affine ones. This can be got around using homogenization.

Definition. Let f ∈ F[X1, . . . , Xn] of total degree d. Then its homogenization f h is

f h = Xd
0 f (X1

X0
, . . . , Xn

X0
) ∈ F[X0, X1, . . . , Xn].

The homogenization of an ideal I is Ih = 〈{ f h : f ∈ I}〉.

Geometrically, this corresponds to passing from an algebraic set V ⊂ Fn to its closure V ⊂
Pn(F).

Proposition. We have pHFIh = HFI , and the same for HP.

43

Proof. One checks that setting X0 = 1 gives an isomorphism

R̃=d/(Ih ∩ R̃=d) ∼= R6d/(I ∩ R6d).

So both spaces have the same dimension.

A slight subtlety is that if G is a generating set of I, it’s not obvious that {gh : g ∈ G} generates
Ih, and in fact it’s false in general. However, it’s true for Gröbner bases:

Proposition. Let G be a GB of I with respect to any graded monomial order. Then {gh : g ∈ G}
generates Ih.

Putting this together, we can compute affine Hilbert polynomials as follows:

sage: R.<X, Y, Z> = QQ[] # use default degrevlex order (which is graded)

sage: I = R.ideal([X^2 * Y^3, X * Z])

sage: Rh.<T, X, Y, Z> = QQ[]

sage: Ih = Rh.ideal([f.homogenize() for f in I.groebner_basis()])

sage: L.hilbert_polynomial()

1/2*t^2 + 11/2*t - 5

6.4 Solving equations

If HPI is a constant, then V(I) is a finite set. Hence, for each 1 6 j 6 n, the intersection I ∩ F[Xj]
is generated by some nonzero polynomial hj.

Proposition. Let ĥj be the square-free part of hj. Then rad I = 〈I, ĥ1, . . . , ĥn〉.

Proof. We have

R/〈ĥ1, . . . , ĥn〉 =
n⊗

i=1

F[Xj]

ĥj(Xj)

is isomorphic to a finite direct product of field extensions of F. Hence any quotient of this ring
is also a finite direct product of fields, and so cannot have any nilpotent elements.

Note that if I is radical and zero-dimensional then HPI is a constant, and this constant is exactly
#V(I). It remains to actually compute V(I) itself. This can be done rather efficiently using lex
Gröbner bases: once we have the Gröbner basis, we can read off all the elimination ideals I`,
and hence find all possibilities for Xn, all possibilities for Xn−1 for a given Xn, etc – just like
solving linear equations using a triangular form of the matrix.

44

Example. Consider the equations

x2 + y + z = 1,

x + y2 + z = 1,

x + y + z2 = 1.

We compute the lex Gröbner basis of J = 〈x2 + y + z− 1, x + . . . 〉 in Sage and get

x + y + z2 − 1 = 0,

y2 − y− z2 + z = 0,

yz2 +
1
2

z4 − 1
2

z2 = 0,

z6 − 4z4 + 4z3 − z2 = 0.

Remark. Note that this is actually larger than the original generating set, so Gröbner bases
aren’t literally the “simplest possible generating sets” in a naive sense.

The last polynomial has roots 0, 1,−1±
√

2, and we can work back for each of them to get the
solutions in Q, which are

(0, 0, 1), (0, 1, 0), (1, 0, 0), and (α, α, α) where α = −1±
√

2.

Note this consists of exactly 5 points, and the affine Hilbert polynomial of rad J is just the
constant 5, which fits. (The Hilbert polynomial of J itself is the constant 8, because the first
three points have “multiplicity 2” – the local ring of R/I at these points is 2-dimensional.)

45

7 Algebraic number theory

7.1 Number fields

A number field, for us, means a field of the form K = Q(α), where α is a root of an irreducible
polynomial f ∈ Q[X].

We can think of α as living in C if we like; but for computations it’s generally better to think
of α as a formal symbol, i.e. we identify our field with the quotient ring Q[X]/〈 f (X)〉 and α is
just the image of X modulo f . In this setup, each root of f in C defines an embedding K ↪→ C,
but we don’t have to fix any one of these embeddings as being “better” than the rest.

Of course, we can have many different polynomials generating the same field; so we’d like
algorithms to check for this. That comes as a corollary of the following:

Lemma. Given a nonzero polynomial g ∈ K[X], we can compute a factorization of g into irreducibles
in K[X].

Proof (Trager’s algorithm). Consider the quotient ring R = K[X]/g(X). This is a Q-algebra of
dimension deg(f) × deg(g), which we can identify with Q[X1, X2]/(f (X1), g(X2)); it is iso-
morphic to a finite product of field extensions of K, one for each irreducible factor of g.

If we pick a random y ∈ R, then we can compute the powers 1, y, . . . , ydeg(f)×deg(g)−1 and check
whether they’re linearly independent over Q. The y for which this fails are contained in a finite
union of proper Q-linear subspaces of R, so we will eventually find a y which works. Hence
we can compute the minimal polynomial of y and thus find an isomorphism R ∼= Q[y]/q(y);
and since X and α are in R, we can write them as polynomials in y, using linear algebra.

If we factor q into irreducibles in Q[y], then we get a decomposition of R as a product of field
extensions of Q, say q1(y), . . . , qr(y). Thus R ∼= ∏j Q[y]/qj(y), which must coincide with the
product decomposition above. Moreover, we can find the images of α and x in each factor, and
hence identify it as K[X]/gj(X) for some gj.

Remark. There’s nothing special about Q here – this shows that if we can factor polynomials
into irreducibles over an infinite field F, we can do it over any finite extension E/F. (Finite
fields are a little troublesome, since we may not be able to find any sufficiently generic y, but
there are other, better algorithms for the finite-field case.)

46

7.2 Rings of integers

The real depth of algebraic number theory comes when we think about how the integers embed
in K.

Definition. An element β ∈ K is an algebraic integer if there exists a monic polynomial g ∈ Z[X]
such that g(β) = 0.

This is equivalent to asking that the minimal polynomial of β is integral, so we can easily test
if a given x is integral.

Definition. The ring of integers OK is {x ∈ K : x is an algebraic integer }.

This is (nonobviously) a subring, as the name suggests. It is isomorphic to Zd as an abelian
group, and spans K over Q, so any x ∈ K can be written (computably) as y/n for y ∈ OK and
n ∈ N>1.

Example. The golden ratio φ = 1+
√

5
2 is an algebraic integer (despite the 2 in the denominator),

since it satisfies x2 = x + 1.

Problem. Given an irreducible polynomial f defining a number field K, can we compute a Z-basis for
OK?

One simple approach to this is as follows. Scaling the variable appropriately, we can assume f
is monic and integral. So the ring A = Z[α] = Z+ Zα + · · ·+ Zαd−1 is contained in OK, and
it must have finite index as a subgroup of OK, since both rings span K over Q. Finite-index
subrings of OK are called orders in K, so Z[α] is an example of an order.

Starting from any order A, we’ll now show how to “grow” A until we fill up the full ring of
integers.

Definition.

(i) The trace map tr : K → Q is the Q-linear map sending x to the trace of the d× d matrix over Q
giving the multiplication-by-x on K. This restricts to a map OK → Z.

(ii) If A is an order in K, with basis m1, . . . , md, then the discriminant ∆(A) is the determinant of
the d× d matrix tr(mimj), which is independent of the choice of basis [why? – exercise].

Proposition. If A is any order in K, then ∆(A) ∈ Z, and we have

∆(A) = [OK : A]2∆(OK).

Since ∆K is also an integer, if we can compute ∆(A) then we can give an upper bound for the
index [OK : A]. In particular, if ∆(A) is square-free we must have A = OK (although the
converse is false.) In any case, this means OK must be one of a finite list of possibilities; and
we can (in principle) enumerate them all, and check which is the largest one whose generators
are all algebraic integers. This must be OK.

47

Remark. For the linear algebra computations, we identify K with Qd via a choice of defining
polynomial, giving a basis 1, α, . . . , αd−1 of K as a Q-vector space. We can then store OK by
computing Hermite-form basis vectors forOK as a Z-module. Note that the image ofOK in Qd

will generally be larger than Zd itself, so we need to be able to work with Z-submodules of Qd

which aren’t contained in Zd.

Definition. We define the discriminant of K to be ∆K = ∆(OK).

Example. Let D be a square-free integer (other than 1). Let’s compute the discriminant of
Q(
√

D).

An obvious choice of α is
√

D itself. Then the trace-pairing matrix for Z[
√

D], in the basis

(1,
√

D), is
(

2 0
0 2D

)
; so ∆(Z[

√
D]) = 4D. Since D is squarefree, we immediately see that

[OK : Z[
√

D]] must be 1 or 2.

If the index is 2, then OK has to contain one of 1
2 ,
√

D
2 , and 1+

√
D

2 . The first two are never
algebraic integers, while the second has minimal polynomial X2−X + 1−D

4 , so it’s an algebraic
integer iff D = 1 mod 4. So

∆Q(
√

D) =

{
D if D = 1 mod 4,
4D otherwise,

and the Hermite-form basis matrix is either(1
2

1
2

0 1

)
or

(
1 0
0 1

)
.

Remark. Note that for quadratic fields we always have OK = Z[α] for some α ∈ K. A number
field with this property is calld monogenic. Most number fields of degree > 2 are not monogenic
(e.g. Q(

√
7,
√

10) is not monogenic).

Implementations

We can compute integer rings of number fields in Sage:

sage: K.<a> = NumberField(x^2 - 5)

sage: K.ring_of_integers()

Maximal Order in Number Field in a with defining polynomial x^2 - 5

sage: OK = _

sage: OK.free_module()

Free module of degree 2 and rank 2 over Integer Ring

User basis matrix:

[1/2 1/2]

[0 1]

sage: L. = NumberField(x^8 - 4*x^6 + 14*x^4 - 8*x^2 + 4)

sage: L.ring_of_integers()

48

Maximal Order in Number Field in b with defining polynomial x^8 - 4*x^6 + 14*x^4 - 8*x^2 + 4

sage: L.ring_of_integers().free_module()

Free module of degree 8 and rank 8 over Integer Ring

User basis matrix:

[1/7 0 0 0 0 0 5/14 0]

[0 1/7 0 0 0 0 0 5/14]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1/2 0 0 0]

[0 0 0 0 0 1/2 0 0]

[0 0 0 0 0 0 1/2 0]

[0 0 0 0 0 0 0 1/2]

In fact Sage is outsourcing the actual computation to another program called PARI/GP, a
special-purpose package for number theory. You can get at this directly by typing sage -gp

instead of sage:

$ sage -gp

GP/PARI CALCULATOR Version 2.13.3 (released)

amd64 running linux (x86-64/GMP-6.2.1 kernel) 64-bit version

compiled: Jan 31 2022, gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.12)

threading engine: pthread

(readline v6.3 enabled, extended help enabled)

Copyright (C) 2000-2020 The PARI Group

PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.

Type ?17 for how to get moral (and possibly technical) support.

parisize = 8000000, primelimit = 500000, nbthreads = 72

? nfbasis(x^2 - 5)

%1 = [1, 1/2*x - 1/2]

? nfbasis(x^8 - 4*x^6 + 14*x^4 - 8*x^2 + 4)

%17 = [1, x, x^2, x^3, 1/2*x^4, 1/2*x^5, 1/14*x^6 + 3/7, 1/14*x^7 + 3/7*x]

I find that for number field computations, Sage is a lot more user-friendly, but its scope is
limited; there are lots of things that PARI can do which Sage doesn’t offer.

7.3 Ideals and factorization

7.3.1 History

The original motivation for studying algebraic number fields was in order to solve equations
in integers – and, in particular, Fermat’s last theorem. If you introduce an n-th root of unity ζ,

49

then Fermat’s equation becomes

Yn = (X− Z)(X− ζZ) . . . (X− ζn−1Z),

and if you have a good theory of prime factorisation in these rings, then you can get some-
where.

Sadly it’s not quite so easy, because the rings OK are typically not unique factorization do-
mains. The great insight of Kummer was that there is a good theory for ideals of integer rings,
and the failure of unique factorization of elements is because of the presence of non-principal
prime ideals. So studying ideals in number fields is important.

Theorem. Any (nonzero) ideal a P OK can be written as a product pn1
1 pn2

2 . . . pnk
k for some k > 0,

where pi are distinct prime ideals and ni > 1; and this expression is unique up to the ordering of the
factors.

For a proof, see any book on algebraic number theory (e.g. Stewart + Tall, Neukirch, or Fröhlich
+ Taylor). We really need OK to be the full ring of integers here – the statement would be false
for a non-maximal order.

Proposition. If K is a number field, then OK is a unique factorization domain iff it is a principal ideal
domain.

Example. We’ll see shortly that in Z[
√
−6], the ideals 〈5〉 and 〈11〉 each factor as a product of

two distinct prime ideals,
〈5〉 = p1p2, 〈11〉 = q1q2.

The ideals pi and qi are all non-principal, but we can group them in two ways to get principal
ideals,

〈55〉 = (p1p2)(q1q2) = (p1q1)(p2q2)

which correspond to two distinct factorizations of 55 into irreducible elements of OK,

55 = 5× 11 = (1− 3
√
−6)× (1 + 3

√
−6),

showing that Z[
√
−6] is not a UFD.

7.3.2 Computing with ideals

For computations, we fix a choice of defining polynomial f and hence identify K with Qd as a
vector space, using (1, α, . . . , αd−1) as a basis. I’ll assume we’ve already computed the Hermite-
form Z-basis for OK.

An ideal is just a special kind of Z-submodule of K, so we can also represent it by a HNF
basis. If we are given x1, . . . , xr ∈ OK, we can compute Z-module generators for the ideal
〈x1, . . . , xr〉 by considering all possible pairs xivj where v1, . . . , vn are Z-module generators of
OK. As a special case, this tells us if a Z-submodule given in HNF is an ideal or not (we test if
it coincides with the ideal generated by its Z-basis).

50

Similarly, we can compute products of ideals: if a1, . . . , an are a Z-basis of a, and b1, . . . , bn of b,
then the products aibj span ab, and we can extract a HNF basis by linear algebra.

Dividing by ideals is more subtle. From the Factorization Theorem we see that if a ⊇ b then
there is an ideal c such that ac = b. Clearly we must have

c = {c ∈ OK : ac ∈ b for all a ∈ a} =
⋂

i

a−1
i b,

where ai are any generators of a as an ideal. This is clearly computable.

(Caution: it is obvious that c is an ideal and ac ⊆ b; it is much less obvious that ac = b, and this
would fail if we worked with ideals of non-maximal orders. Proving that this ideal quotient is
well-behaved is one of the key steps in proving the factorization theorem.)

7.3.3 Norms of ideals

Definition. The norm of a nonzero ideal a, written N(a), is the order of the quotient ring OK/a.

Here are some properties of the norm map:

• It’s multiplicative, N(ab) = N(a)N(b).

• If N(a) = n, then multiplication by n kills the quotient OK/a, so n ∈ a.

• If N(a) = n then a divides 〈n〉, and the factorization theorem shows that there are only
finitely many possibilities for a; so there are only finitely many ideals of a given norm.

• If a = 〈x〉 is principal, then N(a) = |N(x)|, where N(x) is the usual field norm K× → Q×.

• We can compute N(a) easily from a Hermite-form basis matrix of a.

Example. In Q(
√
−6), the ring of integers is Z[

√
−6]. Consider the ideal p1 = 〈5, 2 +

√
−6〉.

This is spanned as a Z-module by{
5, 5
√
−6, 2 +

√
−6, 2

√
−6− 6

}
which we can express as vectors in the integral basis {1,

√
−6} as

5 0
0 5
2 1
−6 2

 , RREF =

1 3
0 5
0 0
0 0

So this is an index 5 submodule of OK, i.e. the norm is 5. Any proper factor of p would have to
have norm a proper factor of 5, contradiction; so in fact p is prime. Similarly, p2 = 〈5, 2−

√
−6〉

is also a prime of norm 5, and its HNF basis is {(1, 2), (0, 5)} so p1 6= p2.

I claim p1 is not principal. Suppose it were; then its generator would have to have norm ±5.
But the norm of a + b

√
−6 is a2 + 6b2, and a2 + 6b2 = ±5 clearly has no solutions in integers.

So p1 (and likewise p2) are non-principal ideals.

51

7.3.4 Prime ideals and Dedekind–Kummer

Let’s focus on prime ideals for a moment. Here are some general algebraic facts about prime
ideals:

Proposition. If p is prime, then p∩Z = pZ for some prime p ∈ N; we say p lies above p.

If p lies above p, then N(p) is a power of p (it is p f where f ∈ Z>1 is the field extension degree
[OK/p : Fp]).

Given p, there are only finitely many prime ideals lying above p, and if p1, . . . , pg are these primes, with
norms p f1 , . . . , p fg , then we have

〈p〉 = ∏
i
pei

i , ei integers > 1, ∑ ei fi = [K : Q].

If p does not divide ∆K, then all the ei are 1.

Now, how do we compute the primes of OK above a given prime p?

Proposition (Dedekind–Kummer theorem). Let p be prime, and let α ∈ OK be such that p doesn’t
divide [OK : Z[α]]. Let f be the minimal polynomial of α.

If ∏i f̄ ei
i is the prime factorization of f̄ = f mod p in Fp[X], then the prime factorisation of the ideal

〈p〉 in OK is given by ∏i〈p, fi(α)〉ei , where fi ∈ Z[X] is any lifting of f̄i.

———

Proof sketch. For simplicity suppose OK = Z[α]. Then the result follows by thinking about the
quotient Z[X]/〈p, f (X)〉 in two ways: either as (Z[X]/ f)/p = OK/p, or as (Z[X]/p)/ f =
Fp[X]/ f̄ (X). So we get a one-to-one, inclusion-preserving correspondence between ideals of
OK containing p, and ideals of Fp[X] containing f̄ .

Example. If K = Q(
√
−6) and α =

√
−6, then OK = Z[α], so any prime p is allowed.

Mod 5 we have X2 + 6 = X2 − 4 = (X− 2)(X + 2) and we get the factorization

〈5〉 = 〈5, 2 +
√
−6〉〈5, 2−

√
−6〉

from before.

For p = 13, X2 + 6 is irreducible in F13[X], so 〈13〉 is prime in Z[
√
−6].

For p = 2, X2 − 6 = X2 so 〈2〉 = 〈2,
√
−6〉2.

52

7.3.5 Two-element generating sets

A by-product of the above proof is that all prime ideals (except possibly those dividing [OK :
Z[α]]) can be generated by at most 2 elements, one of which is in Z. This is no accident:

Proposition. Let a, b P OK be nonzero ideals with b ⊆ a. Then there exists y ∈ a such that 〈b, y〉 = a.

Proof. This is equivalent to showing that all ideals of the quotient ring R = OK/b are principal.
Note that this ring is finite.

If b = ∏ pmi
i , then R ∼= ∏i(OK/pmi

i), so we can assume b = pm is a prime power. In this case,
the ideals of R are just Pi for 1 6 i 6 m, where P is the image of p in R; and since Pi has order
qm−i where q = N(p), for each i we can choose an element in Pi−1 but not in Pi.

In particular, given a Z-module basis of an ideal a, we can easily compute the unique n ∈ N
such that a ∩Z = nZ; then we can just list the elements of the finite quotient a mod nOK until
we find a y such that a = 〈n, y〉. This representation of a isn’t as canonical as a Hermite-form
Z-basis, but it is much shorter if K has large degree, and hence often more convenient to work
with in practice. In PARI/GP this is implemented as idealtwoelt; in Sage it is gens_two().

Remark. Note that we have a lot of different notions of “generating set” here, for a number
field of degree d and a nonzero ideal a P OK:

• bases ofOK, or of a, as a Z-module (minimal size d, canonical choice from Hermite form)

• generating sets of OK as a Z-algebra (minimal size can be anything from 1 up to 1 +
log2(d), no canonical choice)

• generating sets of a as a OK-module (minimal size either 1 or 2, no canonical choice).

7.4 The unit group

Closely bound up with the arithmetic of ideals in OK is understanding the group O×K , the unit
group of K.

Example. The golden ratio φ = 1+
√

5
2 is a unit in Q(

√
5), since φ ∈ OK and 1/φ = φ− 1 ∈ OK.

Since the matrix of multiplication by x in any basis ofOK, is a matrix of integers, it is invertible
iff it has determinant ±1. So O×K is precisely the elements of OK with norm ±1.

There is a link between units and field embeddings into C. The embeddings K ↪→ C come in
two kinds: real embeddings, and non-real complex embeddings, which come in pairs inter-
changed by complex conjugation.

Definition. We say K has signature (r1, r2) if it has r1 real embeddings and r2 conjugate pairs of
complex embeddings (so d = r1 + 2r2).

53

Theorem (Dirichlet). Suppose K has signature (r1, r2). Then

O×K ∼= WK ×Zr1+r2−1

where WK is a finite cyclic group (containing ±1).

In particular O×K is finite if and only if (r1, r2) = (1, 0) or (0, 1), i.e. K is Q or an imaginary
quadratic field.

7.4.1 Computing WK

The group WK is obviously computable. Clearly if K embeds in R then WK = {±1}. If K has no
real embedding, then it can be larger. However, since the degree of the minimal polynomial of
an n-th root of unity is ϕ(n) = |(Z/n)×|, which goes to ∞ with n. If WK has order n, then ϕ(n)
divides d, so there are only finitely many possibilities to check. (This can be hugely speeded
up using information about the discriminant, since a field containing a p-th root of unity must
have discriminant divisible by p).

Example. If [K : Q] = 2 and WK has order n, then ϕ(n) must be 1 or 2; so n = 1, 2, 3, 4 or 6
(exercise). Clearly n must be even since −1 ∈ K. Thus, if K = Q(

√
d) with d squarefree, we

have

WK =

{±1,±i} if d = −1 (order 4)

{±1, ±1±
√
−3

2 } if d = −3 (order 6)
{±1} otherwise (order 2).

7.4.2 Computing the free part

It remains to find a list of units u1, . . . , um, where m = r1 + r2 − 1, that are a Z-basis for
O×K /WK.

Definition. Let σ1, . . . , σr1 be the real embeddings, and τ1, τ̄1, . . . , τr2 , τ̄r2 the complex embeddings (in
conjugate pairs). Then the logarithmic embedding is the map

L : O×K → V = Rr1+r2 ,

u 7→
(

log |σ1(u)|, . . . , log |σr1(u)|, 2 log |τ1(u)|, . . . , 2 log |τr2(u)|
)

.

This is a group homomorphism. Its kernel clearly contains WK. Since we have

∑
i

log |σi(u)|+ 2 ∑
j

log |τj(u)| = log |N(x)| = log 1 = 0,

the image is contained in the subspace V0 = {(x1, . . . , xr1+r2) : ∑ xk = 0}. The proof of Dirich-
let’s theorem relies on showing that:

• the kernel of L is exactly WK, and WK is finite;

54

• the image of WK is a lattice in V0 (i.e. a discrete subgroup which spans V0 over R), and
thus is necessarily isomorphic to Zdim V0 .

Definition. The regulator of K, RegK, is the volume of the quotient V0/L(OK) (a positive real num-
ber).

Concretely, if u1, . . . , um are a basis of O×K /WK, then the matrix with rows L(ui) has size m×
(m + 1) and its columns sum to 0. So if we form an m × m square matrix by deleting one
column, the absolute value of the determinant doesn’t depend on which column we threw
away. This absolute value is the regulator of K.

Example. If K is a real quadratic field (or a cubic field of signature (1, 1)), then there is a unique
u ∈ O×K , the fundamental unit of K, such that σ1(u) > 1 and σ1(u) is as small as possible subject
to this. Then 〈u〉 = O×K /± 1, and RegK = log uK.

(Fundamental units can be surprisingly large; e.g. for K = Q(
√

46), the groupO×K is generated
by −1 and 24335 + 3588

√
46.)

7.5 The class group

We saw a moment ago that sometimes OK can fail to be a PID (or UFD). It turns out we can
quantify how badly unique factorization fails. For this we need an algebraic gadget.

Definition. A fractional ideal of OK is a finitely-generated1 OK-submodule of K; equivalently, it’s a
submodule 1

Na, for a genuine ideal a P OK and N ∈ Z>1.

It turns out that fractional ideals form a group (the existence of inverses is the non-obvious
part); and this group is a free abelian group of countably infinite rank, with basis given by the
set of (non-zero) prime ideals. Moreover, the principal fractional ideals form a subgroup.

Definition. The class group is the quotient

Cl(K) = (fractional ideals)/(principal fractional ideals).

Its elements are called ideal classes. The class number hK is the order of Cl(K).

The ring OK is a PID (or UFD) if and only if Cl(K) = {1}, so hK measures the extent of the
failure of unique factorization.

Theorem (Minkowski). Every ideal class contains an integral ideal of norm at most MK, where

MK =
√
|∆K|

(4
π

)r2 d!
dd .

In particular, hK is finite.

1Either as an OK-module or a Z-module – these are equivalent since OK is itself finitely generated over Z.

55

Example. For K = Q(
√
−6), we have |∆K| = 24, d = 2 and r2 = 1, so MK = 4

√
6

π ∼ 3.1. Thus
every ideal class contains an ideal of norm 1, 2 or 3, i.e. it contains one of 〈1〉, P = 〈2,

√
−6〉,

or Q = 〈3,
√
−6〉.

We have P2 = 〈2〉 and similarly Q2 = 〈3〉 so both P and Q have order 2 in the class group.
Since neither 2 or 3 is of the form x2 + 6y2, no element has norm 2 or 3 and hence these ideals
must be non-principal.

Since the class of PQ cannot be equal to that of P or Q, and no other ideals lie below the
bound, we conclude PQ must be principal (we can check that PQ = 〈

√
−6〉, but we don’t

need to). Hence Cl(K) = C2, generated by P.

Remark. It’s known that the class number of Q(
√
−d) goes to ∞ with d, and there are exactly

nine imaginary quadratic fields of class number 1, namely d = {1, 2, 3, 7, 11, 19, 43, 67, 163}.
Those of you who went to Sarah’s “introduction to number theory” talk will know that this
has something to do with eπ

√
163, eπ

√
67, etc being spookily close to integers.

The situation for real quadratic fields is very different and poorly understood; it’s conjectured
that Q(

√
p) has class number 1 infinitely often, but this is an open problem. (We don’t even

know if there are infinitely many number fields, of whatever degree and signature, having
class number 1.)

7.5.1 Two pretty applications

Theorem. The only integers x, y satisfying x3 − y2 = 13 are (7,±70).

Proof. We write the equation as x3 = (y−
√
−13)(y +

√
−13).

Messing around with congruences, one can check that x must be odd, y must be even, and 13
does not divide x. Hence the ideals 〈y−

√
−13〉 and 〈y +

√
−13〉 have no common factor in

Z[
√
−13].

Since these ideals are coprime and their product is 〈x〉3, we must have

〈y +
√
−5〉 = a3, 〈y−

√
−5〉 = b3

for some ideals a, b. But the class group has order 2, and a3 and b3 are principal; so a and b are
themselves principal, say a = 〈α〉, b = 〈β〉. Thus y +

√
−5 = ±α3, and replacing α by −α, we

can assume y +
√
−13 = α3.

If α = m + n
√
−13, then we get

m3 − 39mn2 = y, 3m2n− 13n3 = 1.

The second equation is n(3m2 − 13n2) = 1, so n = ±1; and hence 3m2 − 13 = ±1, meaning
3m2 = 14 (impossible) or 3m2 = 12, so m = ±2. Since (−2−

√
−13)3 = 70 +

√
13, we get the

above solution.

Remark. The general result is that for any nonzero k, the equation x3 − y2 = k has only finitely
many integral solutions. The above method allows us to find them all whenever k > 0 and
Q(
√
−k) has class number coprime to 3.

56

Theorem (Kummer: Fermat’s Last Theorem for regular primes). Let p > 2 be prime and suppose
that p - hK, where K = Q(e2πi/p). Then xp + yp = zp has no integer solutions.

(I’m not going to prove this here – we have all the conceptual tools needed, but the calculations
are still quite hard. For a nearly-complete proof see Stewart and Tall. The missing details are
in Washington Introduction to cyclotomic fields.)

7.6 The key computational problems

The key problems we have to solve, in order to compute in a number field, are the following.

• COMPUTING THE UNITS: find a generating set forO×K /WK, and an algorithm for express-
ing an arbitrary element of O×K in terms of these generators.

• PRINCIPALITY TESTING FOR IDEALS: given an ideal a (via a Hermite-form Z-basis), de-
termine if it is principal, and if so, find a generator.

For imaginary quadratic fields, both are easy: O×K /WK is trivial; and given an ideal a, we can
list the elements of norm equal to ±N(a) and test each one to see if it fits.

For general fields the second problem is closely linked to the first one. We can’t list all elements
of norm±n inOK, for a given n, because it’s probably an infinite set. But there are finitely many
orbits of norm ±n up to multiplication by O×K (one for each principal ideal of norm n), and if
we can enumerate those, then we’re done. So these problems are closely linked.

7.6.1 Real quadratic fields

Let’s assume K is a real quadratic field. Then O×K = ±1× 〈u〉 for some infinite-order u. Re-
placing u with ±u±1 we can suppose that u > 1 (for the “obvious” embedding σ : K ↪→ R);
then u is uniquely determined – we call it the fundamental unit uK of K. It is characterized as
the unit such that σ(u) is > 1, but as small as possible.

Proposition. We have uK = 1
2 (a + b

√
D) for some integers a, b > 0 satisfying a2 − Db2 = ±4. If

(a′, b′) is any other solution to this equation with a′, b′ > 0, then a′ > a.

Proof. If uK = 1
2 (a + b

√
D), then

a =
1
2
(a + b

√
D) +

1
2
(a− b

√
D) = uK + N(uK)

uK
= uK ± 1

uK
,

and similarly a′ = u′ ± 1
u′ where u′ = a′+b′

√
D

2 .

We must have u′ = uk for some k > 1, so u′ > u. The functions x 7→ x + 1
x and x 7→ x − 1

x
are both increasing on (1, ∞); so if uK and u have the same norm, or if u′ has norm +1 and u
has norm −1, then we are done. However, if u has norm +1 and u′ has norm −1, we have a
contradiction since u′ is a power of u.

57

So we can simply loop through positive integers a and compute whether a2 ± 4 is D times
a square; the first such a we find will give us the fundamental unit. (Of course, if D is not
1 mod 4, it suffices to check even values of a.)

Remark. Sometimes uK has norm +1 and sometimes it has norm −1. When D = 1 mod 4, it
sometimes lies in Z[

√
D] ⊂ OK and sometimes not. There are no simple criteria for which case

will occur.

Corollary. Let n ∈ Z>1. Then every O×K -orbit of elements of OK of norm ±n has a representative
a + b

√
d with

|a| 6 (nuK)
1/2.

Proof. Consider the line in R2 defined by Vn = {(x, y) : x + y = log n}. Then the point
P0 = (1

2 log n, 1
2 log n) is in Vn.

If β ∈ OK has norm n, then L(β) is also in Vn. Hence the elements {L(uβ) : u ∈ O×K } are
equally spaced along Vn with common difference (log uK,− log uK). If we take the closest such
point P to P0, it must be of the form P0 + (λ,−λ) with |λ| < 1

2 log uK. Thus its coordinates
(x, y) satisfy max(|x|, |y|) 6 1

2 log n + 1
2 uK. Exponentiating, we get

max(|a + b
√

d|, |a− b
√

d|) 6 (nuK)
1/2

and the bound follows easily from this.

Example. For K = Q(
√

10), the equation x2 − 10y2 = ±1 has no solutions with x = 1 or x = 2,
and (3, 1) is a solution; so the fundamental unit is 3 +

√
10 of norm −1.

The Minkowski bound is
√

10 < 4, so every ideal class has a representative of norm 1, 2 or 3.
From Dedekind–Kummer, we have

〈2〉 = 〈2,
√

10〉2, 〈3〉 = 〈3, 1 +
√

10〉〈3, 2 +
√

10〉.

There is an element of norm 6, namely 2+
√

10; so either all three ideals above are principal and
the class number is trivial, or the class number is 2 and all three lie in the same non-principal
ideal class.

To determine which, we need to find whether there are elements of norm ±2. The bound
above tells us that it suffices to check a, b with max(|a + b

√
d|, |a− b

√
d|) 6

√
2uK < 4, hence

|a| < 4 (and we can WLOG suppose a > 0). But the equations 0− 10d2 = ±2, 1− 10d2 =
±2, . . . , 3− 10d2 = ±2 have no solutions. Hence 〈2,

√
10〉 is not principal and the class number

is 2.

7.6.2 The general case

With a great deal more care, these ideas generalise to any number field.

58

Units

A rather useful result due to Remak (1932) says that there is a universal lower bound ε such
that RegK > ε for all number fields K (in fact we can take ε = 0.2).2

Why is this useful? If we have some random list of units v1, . . . , vm, we might want to know if
they are linearly independent inO×K /WK. If we could compute with perfect precision we could
just check if the matrix of their images under L is invertible. But we can only approximately
compute the determinant of this matrix, so we might run into trouble if the determinant is
very small.

However, the determinant has to be an integer multiple of RegK, and RegK is bounded below
by Remak’s result. So the determinant is either zero, or at least 0.2, and we can distinguish
these possibilities with a finite amount of precision. Hence we can check if our units generate
a finite-index subgroup, and give an upper bound for this index if so.

Similarly, once we’ve arranged that our v’s generate a finite index subgroup, then given any
u ∈ O×K , we can use interval arithmetic and RREF to compute approximations to the basis
coefficients for L(u) in the basis L(v1), . . . ,L(vk). Since we know these are rational numbers
whose denominators are bounded, this approximate information suffices to determine if u
is in the subgroup generated by the vi, and if not, determine a basis of the larger subgroup
generated by u and the vi.

Computing elements by norm

We’re going to suppose we have the following:

• generators for a subgroup U of finite index in O×K /WK;

• an integer n > 1.

We want to find representatives for the orbits in {x ∈ OK : N(x) = ±n} up to multiplication
by U. If we fix a point w ∈ Vn, then the set

{w + a1L(v1) + · · ·+ amL(vm) : 0 6 ai < 1}

hits every orbit of Vn underL(U) exactly once; and it’s obviously bounded. Hence its preimage
in Rr1 × Cr2 is also bounded, and thus contains finitely many elements of OK, which we can
enumerate explicitly.

If we do this with n = 1, then this allows us to find a finite collection of units which fills up
the quotient O×K /U, so we can compute a basis of O×K /WK. If we do this for some n > 1, then
it will tell us all the principal lideals of norm n. Again, the fiddly thing here is the “precision
management” issues caused by not being able to compute exactly in R or C.

2There are other, much better bounds for specific classes of number fields, depending on the signature etc.

59

The end result

Eventually, we get an algorithm which (starting from a defining polynomial for K) will do the
following, in finitely many steps:

• compute the ring of integers OK,

• find generators for O×K ,

• determine the class number hK and a set of ideals whose ideal classes generate ClK.

There are various computer programs which implement this, including Sage, PARI, and Magma.

60

8 Some hints at class field theory

8.1 Capitulating ideals

If we fix a number field K, then some ideals of OK are principal, and if hK > 1, then some
aren’t. But what if we change K?

Example. Let K = Q(
√
−46) and let p = 〈5, 2+

√
−46〉. Then p is non-principal (and generates

ClK, which is cyclic of order 4).

Let L = K(β), where β is a root of the polynomial

x4 + (2 +
√
−46)x3 + (−23 +

√
−46)x2 + (−10− 5

√
−46)x + (21− 2

√
−46).

Then L is a Galois extension of K of degree 4, and the ideal pOL turns out to be principal,
generated by β. So p capitulates (becomes principal) in L; as p generates the class group, in fact
every ideal of K capitulates in L. On the other hand, the class number of L is 3, so not every
ideal of L is principal.

Kummer proved in 1840 that every ideal of a number field capitulates in some extension. But
which extension? Is there somehow a “best” one? If we keep on going, do we always end up at
a field with class number 1? These questions are addressed by class field theory, a beautiful and
deep area which was developed in the first half of the 20th century, from Hilbert to Artin.

8.2 The Hilbert class field

It turns out we can always make ideals capitulate in a very specific kind of extension.

Definition (Unramified extensions). Let L/K be number fields and p a prime of K. We say L/K is
unramified at p if pOL is a product of distinct primes of L.

We say L/K is unramified at ∞ if every embedding K ↪→ R extends to an embedding L ↪→ R (rather
than a non-real complex embedding). [This is vacuously true if K has no real embeddings.]

If L/K is unramified at ∞ and every finite prime, and is Galois with abelian Galois group, we say it is
an unramified abelian extension.

One of the great milestones of number theory is the following theorem, conjectured by Hilbert
around 1900, and proved thirty years later by Artin and Furtwangler:

Theorem. For any number field K, there is a unique largest unramified abelian extension of K, the
Hilbert class field HK, which contains every unramified abelian extension as a subfield. Moreover:

61

• there is a canonical isomorphism Gal(HK/K) ∼= ClK, so in particular [HK : K] = hK;

• every ideal of OK capitulates in HK.

Remark. If L is any finite extension of K, then HL contains HK. As a corollary if this, if K
embeds into a number field L with class number 1, then L contains the whole sequence of
fields

(
K, HK, HHK , HHHK

, . . .
)

– the class field tower of K. In particular, K embeds into a field
with class number 1 iff the class field tower eventually terminates.

In my example, K has degree 2, HK = K(β) degree 8, HHK degree 24, and we stop there; that
field has class number 1. However, there do exist fields K for which the class field tower is
infinite. The first example (due to Golod and Shafarevich from the 1960’s) is that the class field
tower is infinite if K = Q(

√
−d) for some d > 0 with at least six distinct prime factors. So such

a K cannot be embedded into any field with class number 1.

8.3 Ray class groups

For simplicity we assume henceforth that K has no real embeddings.

Class field theory doesn’t only see unramified extensions; it turns out we can see all abelian
extensions using a generalisation of the class group.

Definition. For any ideal m, the fractional ideals of K coprime to m form a group, and the principal
ideals admitting a generator x with x = 1 mod m are a subgroup. The quotient is called the ray class
group modulo m, denoted ClK(m).

There is a natural map ClK(m) → ClK, and this turns out to be surjective (this is not totally
obvious – it relies on the fact that every ideal class has a representative coprime to m). This fits
into a short exact sequence

1→ (OK/m)×

imageO×K
→ ClK(m)→ ClK → 1,

so in particular ClK(m) is always finite, and computable without too much difficulty once we
know ClK and O×K .

On the field-extension side, we can attach to each abelian extension L/K an ideal fL/K of OK,
the conductor, which measures the bad primes and how bad they are. (The primes dividing
fL/K are exactly the primes that ramify in L/K.) Then we get the following theorem.

Theorem. For any m, there exists a unique abelian extension K(m)/K which has conductor dividing
m and contains every other abelian extension of conductor dividing m as a subfield. This field is called
the ray class field of K modulo m. We have Gal(K(m)/K) ∼= ClK(m); and every ideal a of K coprime
to m will “m-capitulate” in K(m), i.e. aOK(m) has a generator that is 1 modulo mOK(m).

Since every abelian extension has some conductor, it must be contained in K(m) for some m –
hence, if we understand ray class fields, we understand all abelian extensions.

62

8.4 Computing class fields

So, here’s the key question: can we compute the Hilbert class field of a given number field?

More generally, since Gal(HK/K) ∼= ClK, we get an inclusion-reversing bijection between sub-
groups C ⊆ ClK and unramified abelian extensions of K (and similarly for ray class fields).
So we can split up our problem by writing ClK as a product of cyclic factors (of prime power
order), and for each one of those, looking for the associated cyclic unramified extension.

8.4.1 The 2-part

First we consider the following simple case: can we find all unramified quadratic extensions of
K?

Any quadratic extension has the form K(
√

α) for some α ∈ K×. Of course, the extension
K(
√

α) depends only on the class of α ∈ K×/(K×)2. So, for which classes in this quotient does
it happen that K(

√
α) is unramified? We have the following criterion:

Lemma. If the extension K(
√

α)/K is unramified at a prime p, then the power of p dividing the frac-
tional ideal 〈α〉 is even. If p does not lie above 2, the converse is true.

Definition. We define the two-Selmer group Sel2(K) to be the group of classes [α] in K×/K×2 such
that for every prime p, the power of p dividing 〈α〉 is even.

Proposition. The group Sel2(K) is finite.

Proof. Let α represent a class [α] ∈ Sel2(K). Then every prime ideal in the factorization of 〈α〉
appears to an even power, so there is a unique ideal a such that 〈α〉 = a2. If we replace α with
αλ2 for some λ, then we replace a with a〈λ〉, so the ideal class of a depends only on [α]. This
defines a map

Sel2(K)→ ClK,

which is obviously a group homomorphism. Its image is exactly the subgroup ClK[2] of el-
ements of order 2 (since if a2 is principal, any generator of a2 defines a class in the Selmer
group).

If [α] maps to the identity, then 〈α〉 = 〈β〉2 for some β, and hence u = α/β2 is a unit. Thus
[α] = [u] lies in the image ofO×K in Sel2(K), and this image is clearlyO×K /O×2

K , which is a finite
group since O×K is finitely generated. Hence we have a short exact sequence

1→ O×K /O×2
K → Sel2(K)→ ClK[2]→ 1,

and since the first and last terms are finite, so is the middle term.

This proof clearly gives us an algorithm: assuming we know ClK and O×K , we can write down
a list of elements of K× representing the elements of Sel2(K). The extensions K(

√
α) for [α] ∈

Sel2(K) aren’t always unramified (they can be ramified at primes above 2, or at ∞), but every
unramified quadratic extension will be in this list somewhere.

63

Remark. Actually we can easily check which extensions are unramified at ∞: the extension
K(
√

α) is unramified at ∞ iff σ(α) > 0 for every real embedding σ. This condition cuts out a
subgroup Sel+2 (K) of Sel2(K). However, identifying the classes unramified at primes above 2
is more fiddly.

Example. For the field K = Q(
√

15), the fundamental unit of K is u = 4 +
√

15. So we get a
subgroup O×K /(O×K)2 ∼= C2 × C2 of Sel2(K) with representatives ±1,±u. Of these, only 1 and
u lie in Sel+2 (K).

The class group is cyclic of order 2, generated by the prime 〈2, 1+
√

15〉 above 2, whose square
is the principal ideal 〈2〉. So [2] ∈ K×/K×2 is an element of Sel2(K), which clearly lies in
Sel+2 (K). Hence we get

Sel+2 (K) = {[1], [u], [2], [2u]}.

We compute that K(
√

2)/K is ramified at 2, and similarly for K(
√

u)/K. However, K(
√

2u) is
unramified at 2, so it is the Hilbert class field of K.

Remark. Note that the ideal 〈2, 1 +
√

15〉 also capitulates in K(
√

2)/K, even though this is not
the Hilbert class field.

8.4.2 Generalisation: Kummer theory

Much the same argument works for degree n cyclic unramified extensions, as long as K con-
tains an n-th root of unity. If so, any such extension has the form K(n

√
α) for some α ∈ K×/K×n

(a “Kummer extension”).

As before, we can define the n-Selmer group Seln(K), consisting of elements [α] ∈ K×/K×n

such that the fractional ideal 〈α〉 is an n-th power. This sits in a short exact sequence

1→ O×K /O×n
K → Seln(K)→ ClK[n]→ 1,

so it is finite and computable. Any unramified cyclic extension of degree n will be K(n
√

α) for
some [α] ∈ Seln(K) (although we have to be careful that the Selmer group might also contain
some “bad” extensions ramified at ∞ or at primes dividing n).

If we know that K has a cyclic unramified extension of degree n, but K doesn’t have an n-th
root of unity, we have to be a bit craftier:

Lemma. If L/K is an unramified cyclic extension of degree n, then L(ζn) is an unramified cyclic
extension of K(ζn) of degree dividing n.

So we can try listing all unramified cyclic extensions of K(ζn) of degree dividing n. Each of
these contains finitely many degree n cyclic extensions of K, which can be enumerated explic-
itly using Galois theory. For each of those, we can check whether it’s unramified (by comput-
ing something called a “relative discriminant”, which is an ideal of K divisible precisely by the
primes ramifying in the extension).

Example. Consider K = Q(
√
−23). This has class number 3:

64

sage: K.<a> = QuadraticField(-23)

sage: K.class_number()

3

Can we find its Hilbert class field? To use Kummer theory we need to go up to the field
M = K(ζ3) = Q(

√
−23,

√
−3), which also has class number 3:

sage: M.<z3> = K.extension(x^2+x+1)

sage: M.class_number()

3

Since [M : K] is coprime to 3, MHK must be a cubic unramified extension of M; so in fact
MHK = HM.

The 3-Selmer group of K is an F3-vector space of dimension 3:

sage: M.selmer_generators([], 3)

[-z3, (1/2*a + 3/2)*z3 + 3, -3*z3 - 1/2*a - 5/2]

The first two things in this list are units, generatingO×M/O×3
M . The third element is a generator

of a3 where a is a non-principal ideal:

sage: M.ideal(-3*z3 - 1/2*a - 5/2).factor()

(Fractional ideal (3, (-1/2*a - 1/2)*z3 + 1))^3

Each of the 26 nonzero elements in Sel3(M) defines a cyclic extension of M, unramified except
possibly at the primes above 3. Each extension occurs twice, since K(3

√
α) and K(3

√
α2) are the

same field; so we get 13 distinct extensions. Only one of these is an unramified extension, so
this must be HM:

sage: R.<x> = M[]

....: for b in M.selmer_group_iterator([], 3):

....: if b == 1: continue

....: N.<c> = M.extension(x^3 - b)

....: if N.relative_discriminant() == 1 :

....: HM = N

....: print(HM)

....: break

Number Field in c with defining polynomial x^3 - 3*a*z3 - 3/2*a - 25/2 over its base field

So HM = M
(

3
√(

3
√
−23

)
ζ3 +

3
2

√
−23 + 25

2

)
.

It remains to find HK, among the subfields of HM. We can list these using HM.subfields().
There are only four subfields of HM which contain K, namely K, M, HM, and one more which
is a cubic extension of K; so this must be HK.

65

sage: for A,_,_ in HM.subfields():

....: if A.degree() == 6 and K.embeddings(A) != []:

....: HK = A

....: print(HK)

....: break

....:

Number Field in c8 with defining polynomial x^6 - 3*x^5 + 5*x^4 - 5*x^3 + 5*x^2 - 3*x + 1

If we want a defining polynomial for HK over K (not over Q) we can use the relativize

function:

sage: HK = _[0]

sage: HK2.<d> = HK.relativize(K.embeddings(HK)[0])

sage: HK2

Number Field in d with defining polynomial x^3 + (-1/2*a - 3/2)*x^2 + (1/2*a - 3/2)*x + 1 over its base field

Whew! That was quite an effort. Actually we could have done it in one step:

sage: HK.<d> = K.hilbert_class_field()

sage: HK

Number Field in d with defining polynomial x^3 - x^2 + 1 over its base field

This is the same field as before (non-obviously, since Sage’s implementation has chosen a dif-
ferent defining polynomial).

Remark. The algorithm above, via Kummer extensions, is the only one which applies to any
number field and is proved to always work. Unfortunately, it’s very slow for large degrees. So
there is a lot of interest in alternative methods.

If K is an imaginary quadratic field, there is a beautiful theory called “complex multiplication”
which allows us to write down generators of Hilbert class fields using values of a complex-
analytic function (the j-invariant).

The 12th of Hilbert’s list of the 23 most important open problems in mathematics, from 1902,
was to find a generalisation of this to any number field. This problem is still open, although
there has been important progress recently thanks to Dasgupta and Kakde (who are giving a
talk on this at ETH in July).

66

9 Interlude: public-key cryptography

9.1 Cryptographic algorithms

A cryptographic protocol is a technique for exchanging information securely. Typically, we imag-
ine two people – Alice and Bob – who are trying to communicate, while a third participant, Eve,
can see all their messages; and the goal is for Alice to send some information to Bob (or vice
versa), without Eve being able to understand what it means. (We’re assuming here that Eve
is a passive participant; she can read everything, but can’t steal away messages in transit and
replace them with fakes, etc.)

So Alice needs some algorithm to take a message (plaintext) and produce some new message
(cyphertext) which can be transmitted to Bob; and Bob needs an algorithm for the reverse pro-
cess, reconstructing the plaintext from the cyphertext.

Alice and Bob can try to rely on making their entire system, the encryption and decryption
algorithms, completely secret. However, this makes for an unwieldy and risky system; as soon
as there’s any danger that Eve has found out the secret (if Alice leaves her laptop on the bus or
something), then Alice and Bob will need to throw away the whole system and develop a new
set of protocols from scratch! So, typically, cryptographic protocols rely on an extra piece of
data (the “key”) which has to be kept secret. Even if Eve knows the algorithm that Alice and
Bob are using, as long as she doesn’t know the key, then their communication is secure.

9.1.1 Symmetric versus private-key

The most “obvious” form of key-based cryptography is what we call symmetric-key cryptog-
raphy: Alice and Bob both need to know the same key, which has to be agreed on in advance
and kept secret by both participants (a shared secret).

A public-key cryptographic protocol is designed to avoid the requirement for a key to be
arranged in advance and kept secure. In a public-key system, Alice and Bob each have a
“public key” and a “private key”: as long as Bob knows Alice’s public key, he can encrypt a
message for her, but it can’t be decrypted without her private key – as long as Alice keeps the
private key secret, nobody (including Bob himself!) can decrypt the message.

Symmetric-key cryptography is a straighforward idea that has been in use for thousands of
years. In contrast, public-key cryptography seems like it should be obviously impossible, and
the first workable algorithm (the RSA algorithm) only dates back to the 1970’s.

Even the best available public-key algorithms tend to be much slower to encrypt than symmetric-
key systems. So it’s common to use both together – Alice chooses a single-use “session key”
for the symmetric-key algorithm, uses a separate public-key algorithm just to send Bob the

67

session key, and then uses the symmetric-key algorithm (with the session key) to encrypt the
actual message.

Remark. I think it’s fair to say that, while symmetric-key cryptography is a hugely important
problem, it’s one that belongs squarely to computer science rather than mathematics. So I
won’t say any more about it here; I’ll concentrate on public-key cryptography, which has more
mathematical content.

9.1.2 The RSA algorithm

The RSA algorithm (named after the second set of people to discover it!) relies on computations
in the unit group G = (Z/N)× for an integer N.

• Alice’s public key is the pair (N, e), where e is an integer coprime to λ(N) = #G.

• Her private key is d = e−1 mod λ(N).

• If Bob wants to send a message to Alice, he writes his message as an element of G (or
maybe a sequence of chunks which are elements of G).

• For each chunk g = a mod N, Bob computes ae mod N and sends it to Alice.

• Alice can then compute (ae)d = ade = a mod N and hence read the message.

The security of the algorithm relies on choosing N so that λ(N) is hard to compute. If N is
prime, then computing λ(N) = N − 1 is trivial; but if N = pq is a product of 2 primes, then
λ(N) = (p− 1)(q− 1), so computing λ(N) amounts to factoring N.

Thus the security of RSA relies on the fact that factoring large composite numbers is diffi-
cult.

Disadvantages: RSA is still occasionally used, but it has some disadvantages.

• To be secure against currently available computers, N needs to be fairly large (∼ 3000
binary digits); this makes the encryption and decryption slow, and the message sizes
large.

• There are lots of special tricks that can break the security; e.g. if one of p and q is too
small, or p and q are too close together, or if you send the same message to two people
with the same N and different e’s, then Eve can deduce the private key. This means that
implementing the algorithm in a really secure way is difficult to do.

9.1.3 Diffie–Hellmann key exchange

Remember we wanted a public-key protocol just as a way of sending a session key for another,
symmetric-key protocol.

However, we can get away with even less: rather than Alice choosing an arbitrary key and
sending it to Bob, it’s enough for Alice and Bob to be able to settle on a key which they both
know, and which Eve can’t easily determine – even if the process doesn’t allow Alice or Bob to
specify in advance what that key will be. Once they have established this shared secret, they
can use it as the session key for a symmetric-key protocol.

68

The Diffie–Hellmann key exchange protocol is one very effective way of establishing shared
secrets. It relies on finding an abelian group G and an element g ∈ G of finite, but large, order
N; we suppose G, g, and N are public knowledge, and that group operations and equality
testing in G are reasonably cheap to compute.

• Alice and Bob each choose an integer in the range (0, N), say a for Alice and b for Bob;
these are their private keys.

• They each compute the group elements A = ga and B = gb of G which they announce to
the world; these are their public keys.

• Alice takes Bob’s public key B, and her own private key a, and computes Ba.

• Bob likewise computes Ab.

• Since (ga)b = (gb)a, Alice and Bob have computed the same group element, giving them
a shared secret.

Eve, on the other hand, knows the group elements g, ga and gb, and she wants to find out
gab. This is called the Diffie–Hellman problem for G. If she can compute a given ga (solving the
discrete logarithm problem), then she can obviously solve the Diffie–Hellmann problem too. So
we want to choose G in such a way that the DLP is hard.

(In principle it’s possible that there might be groups where DLP is hard, but there is some
clever trick for solving DH without going via DLP; but as far as I know there are no known
examples, so these problems seem to be equally hard.)

9.2 Choosing the group

What G shall we take? If G has order N, then we can solve the DLP in G by brute force in
O(N) steps, so we want this to be out of range of practical computation. On the other hand,
representing elements of G and computing with them has to take at least O(log N) steps, and
usually is exactly this order. So we want G to land in the gap where O(log N) is reasonable,
but O(N) is beyond reach.

There are slightly better ways of solving DLP for a “generic” group, such as Pollard’s ρ method,
which will get you down from O(N) to O(

√
N), but that is still unbridgeably far from O(log N).

Unit groups. Diffie and Hellmann originally took G = (Z/p)×, where p is a large prime. Then
G is cyclic, and we can choose g to be a generator of G (a primitive root mod p).

However, this protocol has a hidden flaw. There is a family of algorithms called index calcu-
lus which can be used to solve the discrete log problem in (Z/p)× in O(e(log p)1/2

), or even
O(e(log p)1/3

), steps. This is not polynomial in log p but it’s a lot less than exponential. One can
also try using multiplicative groups F×q where q is a prime power, but the index calculus attack
can be used on these too, so they are also vulnerable.

Worse still, the expensive part of the computation depends only on p, and not on the specific
element whose discrete logarithm we’re trying to find. Since finding large primes is expensive,
many Diffie–Hellmann implementations use the same few primes (of size about 2210

); and it’s
widely believed that various governments’ spy agencies might have done the pre-computation

69

needed to break Diffie–Hellman for those primes, for all possible choices of key at once. We
could increase the size of the primes used and be safe for a few more years, but that slows
down the key-exchange computation.

9.3 Elliptic curves

As we’ll see in the next chapter, elliptic curves over finite fields give rise to examples of abelian
groups which seem to have no “special vulnerabilities”. That is, there are no algorithms cur-
rently known for solving the DLP for these specific groups which are any faster than exponen-
tial in the key length.

The standard cryptographic protocol used by Web browsers today (TLS 1.3) uses elliptic curve
Diffie–Hellmann as its key-exchange algorithm. So every time you type a password into a web
site, you are using elliptic curves! There’s a good answer if anyone ever challenges you to
prove that advanced mathematics is useful in the real world.

70

10 Elliptic curves

10.1 Definitions

Let K be a field.

Definition. A Weierstrass equation over K is an equation of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

for some constants a1, . . . , a6 ∈ K.

The variety defined by a Weierstrass equation can be singular, or nonsingular. An elliptic curve is a
nonsingular variety defined by a Weierstrass equation.

We say two elliptic curves are isomorphic if they differ by a coordinate change

x 7→ λ2x + r, y 7→ λ3y + sx + t

for some λ ∈ K× and r, s, t ∈ K.

For short we can write “the elliptic curve [a1, . . . , a6]”. Note that there isn’t an a5; the reason for
this funny numbering is that if we do a coordinate change with r = s = t = 0 but λ arbitrary,
then this coordinate change replaces ai by λiai.

Lemma. If K does not have characteristic 2 or 3, any elliptic curve is isomorphic to one having the form

y2 = x3 + Ax + B,

(a short Weierstrass equation), and the smoothness condition is 4A3 + 27B2 6= 0.

10.2 The group law

Let E be an elliptic curve. If K ⊆ L ⊆ K, let E(L) be the set of points (x, y) ∈ L2 lying on E,
together with an extra point “at infinity” denoted O.

Lemma. Let L be a line in the affine plane. Then L intersects E at exactly three points (counted
with multiplicity), unless L is a vertical line x = c for some c, in which case there are exactly two
intersections.

In the third case we formally define the “third intersection point” to be O. Then we have the
following theorem:

71

Theorem. There is a unique abelian group structure on E(K) with the following properties:

• the point O is the identity;

• if L is any line and P, Q, R are its three intersection points with E, then P + Q + R = 0.

Concretely, we can describe the group operation as follows. Let P, Q ∈ E(K). Since we know
O is the identity, we can assume neither P nor Q is O.

• If P 6= Q, let L be the line through P and Q. If P = Q, let L be the tangent at P.

• Let R be the third intersection of L with E.

• Let L′ be the vertical line through R. This intersects E at R and one other point, and we
define this other point to be P + Q.

The tough thing is proving that this binary operation is associative (the other group axioms are
relatively easy). For a proof, see the textbook by Silverman.

Explicit formulae

Suppose E is in short Weierstrass form. Given P = (x1, y1) and Q = (x2, y2), with x1 6= x2
(i.e. P 6= ±Q), the equation of the line joining them is given by y = λx + ν, where

λ =
y2 − y1

x2 − x1
, ν =

y1x2 − x1y2

x2 − x1
.

If P = Q, then we compute the tangent line using partial derivatives, and get

λ =
3x2

1 + A
2y1

, ν =
−x3

1 + Ax1 + 2B
2y1

.

In either case, we can find L ∩ E by solving

(λx + c)2 = x3 + Ax + B,⇐⇒ x3 − λ2x + · · · = 0.

The three roots have to sum to λ2, giving x3, and we can find y3 from the equation of L.
Hence

R = (x3, y3) =
(
λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν

)
.

Proposition. (i) For any field L with K ⊆ L ⊆ K, the subset E(L) ⊆ E(K) is a subgroup.

(ii) If the field operations in L are computable, then so is the group law on E(L).

Proof. Clear from the formulae: if x1, y1, x2, y2 are in L, then so is everything else, and we can
compute it by doing an explicit finite sequence of field operations.

(This is also true for curves in long Weierstrass-form curves, even in the bad characteristics
where short Weierstrass forms don’t exist. It’s the same proof, just with messier formulae.)

Corollary. If K = Fq is a finite field, then E(K) is a finite group in which the group operations are
(efficiently) computable.

72

10.3 Elliptic curves over finite fields

How big is E(Fq), for E an elliptic curve? It’s not hard to see that

1 6 #E(Fq) 6 2q + 1.

The 1 is for O; and for the points not at infinity, there are q possibilities for x and at most two
y-values for each. However, it’s actually always very close to the middle of this range.

If we wanted to make a list of points on E, we could list all x ∈ Fq and for each one, check if
f (x) is a square (giving 2 points on E) or a non-square (giving no points). Not forgetting the
extra point at ∞, we have

#E(Fq) = q + 1 + #{x : f (x) nonzero square } − #{x : f (x) non-square }.

Since F×q is a cyclic group of even order, exactly half its elements are squares. So we might
expect these two sets to be about the same size, i.e. #E(Fq) should be close to q + 1.

Exercise. Can you show that if q = 3 mod 4, and E has the form y2 = x3 + Ax with A 6= 0, then
#E(Fq) is exctly q + 1? (Hint: find a bijection between the two sets of x-values.)

10.3.1 The Frobenius and Hasse’s inequality

Let tq(E) = q + 1− #E(Fq); we’re expecting this number to be “small”.

Theorem (Hasse’s inequality). Let E be an elliptic curve over Fq. Then |tq(E)| 6 2
√

q.

The proof of this theorem is rather deep, and we won’t give the details here (see Silverman’s
book for a full account). It rests on computations with endomorphisms of elliptic curves – maps
of algebraic varieties E → E over Fq which are compatible with the group structure. The set
End(E) is naturally a ring, using the group structure of E to define addition, and composition
of endomorphisms for multiplication.

This works over any field, but if E is defined over Fq, we have a special element of End(E), the
Frobenius ϕq, defined by

(X, Y) 7→ (Xq, Yq).

Note that the points fixed by ϕq, i.e. the kernel of 1− ϕq, is exactly E(Fq).

The key point of Hasse’s inequality is that the Frobenius satisfies a quadratic polynomial in
End(E):

(ϕq)
2 − tq ϕq + q = 0.

Hasse’s inequality is then precisely the assertion that this polynomial can’t have distinct real
roots, which follows from computations involving degrees of isogenies.

A by-product of this argument is the following. If we go up from Fq to Fqk , we just replace ϕq

by its k-th power, and we can compute the degree of 1− (ϕq)k if we know that of 1− ϕq. The
result is the following:

73

Proposition. Let αq, βq be the roots of the polynomial X2 − tqX + q. Then, for any field extension Fqk

of Fq, we have
#E(Fqk) = 1 + qk − (αq)

k − (βq)
k.

Remark. In cryptography it’s common to use elliptic curves over large finite fields of charac-
teristic 2, say F2k with k ∼ 100. If we take an E which is actually defined over F2 (a “binary
Koblitz curve”), then computing t2(E) is very quick, and then we can compute t2k(E) easily
from the previous proposition.

10.3.2 Computing #E(Fq)

We’d like to be able to compute tq(E), and hence #E(Fq), in reasonable time, even if q is quite
large. (For example, the cryptographic protocol used to encrypt Bitcoin transactions uses the
curve y2 = x3 + 7 over Fp, where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, and we need to
know #E(Fp).)

Theorem (Schoof, 1985). There is an algorithm to compute t = tq(E), given q and the equation of E,
whose complexity is polynomial in log q.

We’ll now sketch how Schoof does this. We know that t fits into the quadratic polynomial

φ2 − tφ + q = 0 ∈ End E(Fq), (†)

i.e. we have the relation

(Xq2
, Yq2

) + q · (X, Y) = t · (Xq, Yq) in Fq[X, Y]/(Y2 − X3 − AX− B),

where the additions and multiplications are understood via the group law on E. In principle
we could just solve for t from this, but this would be a terrible algorithm in practice, since the
degrees of both sides in X grow polynomially with q.

Schoof’s algorithm relies on taking (x, y) to be a torsion point: a point with ` · (x, y) = 0, for
` 6= p a small prime. This means that we are now trying to solve

(Xq2
, Yq2

) + q̄(X, Y) = t̄(Xq, Yq) ∈ Fq[X, Y]/(Y2 − X3 − AX− B, ψ`(X)),

where the bars denote reduction mod `, and ψ` is the `-division polynomial of E, vanishing
precisely at the x-coordinates of `-torsion points, whose degree is (`2 − 1)/2. Now we never
need to use polynomials of degree bigger than a fixed power of `; and if ` is small (roughly log
q in size), then this is a much more feasible computation. However, it only tells us t mod `.

So Schoof makes a table of small primes `1, `2, . . . and computes ti = t mod `i for each i; this
determines t mod L = ∏i `i. If we take enough primes that L > 4

√
q, then Hasse’s inequality

gives a unique possibility for q; and the small primes are dense enough that the number of
steps is still polynomial in log q.

Example. For the Bitcoin curve, 4
√

q ∼ 1039, which seems rather huge, but is actually less than
2× 3× 5× · · · × 103 (the product of the first 27 primes).

74

[Schoof’s algorithm would be a good project topic for students interested in algebraic geome-
try.]

Remark. There are other algorithms for computing t, which all start from (†). One interesting
example is Kedlaya’s algorithm, which computes the matrix of ϕq acting on a certain space of p-
adic differential forms; the trace of this matrix is tq(E). There are also generalisations to curves
of higher degree (despite the lack of a group operation).

10.3.3 Group structure

Having found the size of the group E(Fq), we can ask about its structure.

Theorem. Let K = Fq be a finite field. Then E(K) is isomorphic to Z/L× Z/LM, for some integers
L, M with L | q− 1.

The point is that E(Fq) can’t have more than n2 elements of order n, for any n. So there can’t
be more than two cyclic groups in the decomposition. To see that L has to divide q− 1, we use
a construction called the Weil pairing, which is a skew-symmetric form

E(K)[n]× E(K)[n]→ µn(K) = {x ∈ K× : xn = 1}.

Since E(K) has L2 points of order L, then K× has to contain an L-th root of unity, implying that
L has to divide q− 1.

These constraints on L mean that it “usually” ends up being quite small, i.e. E(K) is usually
cyclic or close to it.

Exercise.

(i) Show that if q = 2k and q − 1 is a prime, then every elliptic curve E over Fq has E(Fq)
cyclic.

(ii) If q = 17, how many possible groups Z/L× Z/LM can occur which satisfy the conclu-
sions of the last two theorems?

Having computed #E(Fq) (e.g. via Schoof’s algorithm), then we can compute gcd(#E(Fq), q−
1). If we’re lucky, this will be small enough to factorize into prime powers, and hence we can
compute all the possibilities for L. For each candidate L, if it is not too large, we can compute
how many L-torsion points there are on E by factorizing the L-division polynomial in Fq[X].

Remark. If q − 1 and #E(Fq) have a large common factor, then determining the structure of
E(Fq) might be difficult. However, this case is less useful for cryptographic purposes any-
way. Curves used in cryptography are generally chosen so that #E(Fq) is either prime (e.g. the
Bitcoin curve), or a small integer times a prime.

10.4 Elliptic curves over Q

We might well want to consider elliptic curves over Q. In fact it’ll be useful to set up the theory
more generally, and consider elliptic curves over number fields.

75

10.4.1 The Mordell–Weil theorem

Theorem (Mordell). E(K) is a finitely generated abelian group, so

E(K) ∼= Zr × E(K)tors

where r ∈ Z>0 (the rank of E) and E(K)tors (the torsion subgroup) is a finite abelian group.

We’d like to compute: the torsion subgroup, the rank, and set of r points generating E(K)
modulo torsion.

Remark. Note the shift in perspective from the finite field case, where all the questions were
in principle finite computations, and the problem was how to solve them efficiently when q
was too large for a brute-force check. Now our fields are infinite, so the challenge is to show
that the computations are even possible at all; we’re not going to worry about how to do them
efficiently!

10.4.2 Torsion and reduction

The torsion subgroup is “the easy bit”. First, we note that for any given N we can compute
all points of order N in E(K), just by factorizing the N-division polynomial in K[X]. So we are
safe as soon as we can find an upper bound for the order of points in E(K)tors.

We can do this by reduction modulo primes. Let p /OK; we suppose p doesn’t divide 2 or 4A3 +
27B2. Then the reduction of the Weierstrass equation defines an ellpitic curve E over the finite
field kp = OK/p.

Given a non-zero point P ∈ E(K), we can write it in projective form (u : v : w) with u, v, w
having denominators coprime to p, and not all divisible by p. Then (ū : v̄ : w̄) define a point
P̄ ∈ Ē(kp).

Proposition. This map is a group homomorphism E(K)→ Ē(kp); and its kernel contains no nonzero
torsion points.

In particular, it follows that #E(K)tors divides #Ē(kp) (which we can compute). So we have an
upper bound for its order.

Example. Consider y2 = x3 + 4 over Q. The first prime not dividing 2(4A3 + 27B2) is p = 5;
we find that Ē has 6 points, so the torsion subgroup of E must have order dividing 6. The 6-
division polynomial has degree 19, but factoring a degree 19 polynomial is easy for a computer,
and we find it has no roots except x = 0, which gives the points (0,±2). So E(Q)tors =
{O, (0, 2), (0,−2)} ∼= C3.

(We could also be more sneaky and check p = 7 as well, and find that E mod 7 has only 3
points; so it would suffice to factor the 3-division polynomial instead, which is much smaller.)

Remark. Actually, for K = Q, we always have #E(Q)tors 6 12. This is a very deep theorem of
Mazur. More generally, Merel showed that for any number field K there is a bound, depending
only on K, for how big E(K)tors can be for an elliptic curve E/K. However, if we are given a
specific E, then computing reduction mod p is easy and cheap, and usually gives much better
bounds.

76

10.4.3 Computing non-torsion points

A significant stepping-stone towards computing E(K) is the following result:

Theorem (Weak Mordell–Weil). For any integer N, the group E(K)/NE(K) is finite.

This is clearly a consequence of full Mordell–Weil. The standard proof of Mordell–Weil in-
volves proving the weak form first, and then doing some extra work to deduce the full theorem
from this.

However, it is also useful for computations: once we know that Mordell-Weil is true, it follows
that

E(K)/NE(K)
image of E(K)tors

∼= (Z/NZ)r,

and any set of elements of E(K) whose images are a minimal generating set of this quotient
will actually generate a finite-index subgroup of E(K).

So computing this quotient is the key to understanding the K-points of E. This is known as
N-descent.

Let’s suppose K is big enough that all the N-torsion points in E(K) are actually in E(K). Given
a point P ∈ E(K), we can choose a point P̃ ∈ E(K) with NP̃ = P. We can then define a map

λP : Gal(K/K)→ E(K)[N], λP(σ) = σ(P̃)− P̃.

This doesn’t depend on the choice of P̃ lifting P; and if P is actually in NE(K), then we can
choose P̃ to be in E(K), so λP is the zero map. This construction defines an injective map

E(K)/NE(K) ↪→ Hom
(

Gal(K/K), E(K)[N]
)
∼= Hom

(
Gal(K/K),Z/NZ

)⊕2

∼=
[
K×/(K×N)

]⊕2
.

This isn’t a lot of help on the face of it, since the target is still infinite. However, one can check
that the image lands in a certain subgroup of K×/(K×N) (defined by conditions on the prime
factorisation):

Definition. For S a finite set of primes, let SelN(K, S) be the group of classes [α] ∈ K×/K×N such
that for all primes p /∈ S, the power of p dividing α is a multiple of N.

If S = ∅, this is the N-Selmer group which we saw in chapter 8; and the arguments there
extend to show that SelN(K, S) is finite (and computable) for any finite set S. For instance, if
K = Q, then Sel2(Q, S) ∼= (Z/2)#S+1, generated by ±1 and the elements [p] for p ∈ S.

Proposition. The image of E(K)/NE(K) is contained in SelN(K, S)⊕2, where S is the set of primes
dividing N∆(E).

77

So we can embed E(K)/NE(K) inside a finite set, which proves the weak Mordell–Weil theo-
rem (at least under our rather strong hypotheses on K).

We can be a bit more concrete for N = 2. The assumption that all the 2-torsion points are
defined over K means we can write E as y2 = (x− e1)(x− e2)(x− e3), with ei ∈ K. Then there
is an injection

E(K)/2E(K)→ Sel2(K, S)× Sel2(K, S),

defined by (x, y) 7→ ([x− e1], [x− e2]) if x 6= e1, e2 (with various formulae for the special cases
when (x, y) is a 2-torsion point).

Proposition. Let ([b1], [b2]) ∈ Sel2(K, S). Then ([b1], [b2]) is in the image of E(K)/2E(K) if either

• it is one of the special elements (1, 1), (e1−e3
e1−e2

, e1 − e2), (e2 − e1, e2−e3
e2−e1

) (which are the image of
E(K)[2]);

• or, the equations
b1z2

1 − b2z2
2 = e2 − e1, b1z2

2 − b1b2z2
3 = e3 − e1

have a solution (z1, z2, z3) ∈ K× × K× × K, in which case we can take

P = (b1z2
1 + e1, b1b2z1z2z3) ∈ E(K).

If we list all the pairs (b1, b2), then usually we will either spot an obvious solution, or there will
be a cheap trick (using congruences modulo various primes) to show that no solutions exist. If
this works, it gives us a finite set of points generating E(K)/2E(K).

78

11 Group theory I: finitely-presented groups

11.1 Presentations of groups

How can we describe a group? One important description is by specifying a list of generators
and a list of relations between them (a presentation of a group). We’re interested in the case
when the list of generators and the list of relations are both finite. This clearly doesn’t always
imply that G itself is finite!

Example. Let G be the group generated by 2 elements a, b with the relations a2 = b2 = (ab)2.
What does G look like? Is it finite?

The difficulty here is that there cannot be a general algorithm for such questions!

Theorem. Each of the following problems is undecidable:

• Given a finite presentation G = 〈g1, . . . , gn | r1, . . . , rm〉, determine if G is the trivial group.

• Given a finite presentation, determine if G is finite.

• Given two finite presentations, determine whether the groups they describe are isomorphic.

These are consequences of the Novikov–Boone theorem in group theory; see Chapter 12 of Rot-
man’s book for more details. What “undecidable” means here is that there is no algorithm
to solve the problem which is guaranteed to terminate in finitely many steps (on any valid
input).

However, we can get away with something weaker:

Proposition. For each of the problems above, there exists an algorithm which will terminate if and only
if the groups are finite (and will run forever otherwise).

Todd–Coxeter enumeration

Let’s look at the example 〈a, b|a2 = b2 = (ab)2〉 above. We can write the relations as aab−1b−1 =
1 and abab−1 = 1.

Attached to G and the generating set {a, b} is a graph X, which is a directed graph (more
precisely multigraph), the Cayley graph, defined as follows:

• The vertices are the elements of G.

• The arrows are labelled with a or b; there is an a-labelled arrow from g to h if ga = h, and
similarly for b.

79

The relations imply that if we start at any vertex of X and “walk along the relation” – e.g. going
from g → ga → gab → gaba → gabab−1 – we have to get back to g again. The point of Todd–
Coxeter enumeration is to gradually build up the Cayley graph of G, starting with the identity
and gradually adding vertices and edges, while making the following promise: at each stage
of the algorithm, if we walk from any vertex along a relation path, we will either fall off the
edge of the graph, or we will get back to the starting vertex.

Let’s see how this works for my example group. We’ll give numbers to the elements of G in
the order we discover them.

• At the start we know there is a vertex for the identity (number 1). We know that each of
our two relations gives a path from 1 going back to 1 (but we don’t know what happens
in between). So we write the following in our notes, leaving gaps for the unknown parts:

1
a a b−1 b−1

1 1
a b a b−1

1

• The first “gap” is because we don’t know where a sends element 1. So let’s call this ele-
ment 2. We now need a line in each table for the path starting at 2; and we make an extra
table to record the fact that a sends 1 to 2:

1
a

2
a b−1 b−1

1
2 2

1
a

2
b a b−1

1
2 2

a b
1 2

• The next thing we need is 2 · a, let this be 3:

1
a

2
a

3
b−1 b−1

1
2 3 2
3 3

1
a

2
b a b−1

1
2 3 2
3 3

a b
1 2
2 3
3

• Element 4 is going to be 3 · b−1. Since the first relation has to work, we get for free that
4 · b−1 = 1, i.e. 1 · b = 4; so we can fill in a couple more entries in our tables using this:

1
a

2
a

3
b−1

4
b−1

1
2 3 2
3 3
4 3 4

1
a

2
b a

4
b−1

1
2 3 2
3 3
4 2 3 4

a b
1 2 4
2 3
3
4 3

• Fast-forward a few more steps; after 7 cycles we have a table

80

1
a

2
a

3
b−1

4
b−1

1
2 3 5 6 2
3 5 7 3
4 3 4
5 7 5
6 4 6
7 7

1
a

2
b

6
a

4
b−1

1
2 3 6 2
3 5 3
4 2 3 4
5 7 5
6 4 3 5 6
7 7

a b
1 2 4
2 3 6
3 5
4 3
5 7
6 4 5
7

To fill in the next blank in the first table, we need an element 8 with 8b = 7 and 3b = 8.
Then we can put an 8 in the blank in the second table too; and we deduce 8a = 6. So the
new 8th row in the first table fills itself in: 8a = 6, 6a = 4, 4b−1 = 1. So this row has to
start as 8 6 4 1. But we also know it ends 7 8. So we have a collapse: elements 1 and 7 are
the same!

So we can strike out all the 7’s and replace them with 1’s, and again apply all the relations
we know. Then we get this table:

1
a

2
a

3
b−1

4
b−1

1
2 3 5 6 2
3 5 1 8 3
4 8 3 4
5 1 2 5
6 4 5 6
- - - - -
8 6 4 1 8

1
a

2
b

6
a

4
b−1

1
2 3 8 6 2
3 5 8 3
4 2 3 4
5 1 4 5
6 4 3 5 6
- - - - -
8 6 5 1 8

a b
1 2 4
2 3 6
3 5 8
4 3
5 1
6 4 5
- - -
8 6 1

• We’re nearly there, but there are a few loose ends, we don’t know 4a for instance. We’ll
introduce an element 4a = 9 and see what happens:

1
a

2
a

3
b−1

4
b−1

1
2 3 5 6 2
3 5 1 8 3
4 9 8 3 4
5 1 2 9 5
6 4 9 5 6
- - - - -
8 6 4 1 8
9 8 6 2 9

1
a

2
b

6
a

4
b−1

1
2 3 8 6 2
3 5 9 8 3
4 9 2 3 4
5 1 4 9 5
6 4 3 5 6
- - - - -
8 6 5 1 8
9 8 1 2 9

a b
1 2 4
2 3 6
3 5 8
4 9 3
5 1 9
6 4 5
- - -
8 6 1
9 8 2

We have no loose ends left: the relations imply that the subset of G consisting of these 8
elements is closed under multiplication by a or b, so in fact it’s all of G. The conclusion is
that G has order 8, and we can read off the group operation from our third table.

81

Cosets of subgroups

A more general version of Todd–Coxeter enumeration comes up when we have a presentation
for G, and a list of elements (expressed as words in the generators) that generate a subgroup
H. In this version, the assumption is that [G : H] is finite (we don’t suppose G iself is finite),
and we want to compute a set of representatives for this quotient, together with the right-
multiplication action of G on the set H\G. This corresponds to gradually building up the
Schreier graph of G and H, which is a generalisation of the Cayley graph with vertices indexed
by cosets H\G.

I won’t go through the details, but the idea is very similar to the examples above (which is
just the special case when H = {idG}); in this version, the numbers in our table represent
cosets Hgi (rather than just elements gi). The only major difference is that we have an extra
table for each generator of H, corresponding to the fact that H fixes the coset {1}; but H won’t
necessarily fix all the other cosets, since H might not be normal. So these “subgroup tables”
always have a single row, starting and ending with 1 – we don’t add extra rows to them.

Remark. A useful consequence of this algorithm is that it gives a membership test for the
subgroup H: if we are given an element g ∈ G, expressed as a word in the generators, then
Todd–Coxeter allows us to compute the permutation of H\G given by the action of g. This
permutation fixes the coset of idG iff g ∈ G.

11.2 Black box subgroups

We’ll now consider the following variant of the Todd–Coxeter problem. As before, we have a
finitely-generated group G, and a finite-index subgroup H. However, rather than a generating
set for H, we have some black-box algorithm which takes an element of G, expressed as a word
in the generators, and tells us if it’s in H. Can we compute the index [G : H] and a generating
set of H?

Example. A key example is the modular group G = SL2(Z). This has a presentation G ∼=
〈a, b | a3 = b2, a6 = 1〉 where

a =

(
0 −1
1 1

)
, b =

(
0 −1
1 0

)
.

Suppose H is “all matrices in SL2(Z) that are congruent to 1 mod 7”. It’s obvious this has finite
index (it’s the kernel of a homomorphism to a finite group), and if we have a word in a and b,
we can compute the corresponding matrix and check if it’s 1 mod 7.

We’ll build a list X of representatives of H\G as follows. Suppose G has two generators a, b
(as in my example). We start with X = {idG}. At each step, we compute, for each x ∈ X,
the element xa. We want to know if the coset Hxa is one we already know, or not; so for each
y ∈ X we compute xay−1 and check if it’s in H. If none of them are in H, then xa is a new coset,
at we put it into X. If we don’t discover any new cosets this way, we try cosets of the form xb
instead. Since H has finite index, the process must stop: we get an X such that {Hx : x ∈ X} is
a subset of H\G stable under a and b, so it must be everything1.

1Exercise: Why is this subset necessarily stable under a−1 and b−1 as well?

82

Remark. Note that in this algorithm we don’t have the “collapsing” phenomenon: at each step
the list of known cosets can only get bigger. So one can write down a priori bounds for the
number of steps needed in terms of [G : H].

The algorithm terminates with X a list of representatives of H\G. However, it also gives us a
little more. Say we number the elements of X as x1, . . . , xn, with x1 = 1. As part of the above
algorithm, for each xi ∈ X, we’ve computed which H-coset contains xia; so we can write

xia = hixα(i), hi ∈ H, α(i) ∈ {1, . . . , n}.

So we get a permutation α of {1, . . . , n}, and a bunch of elements hi, recording how a acts on
H\G. Similarly, we get a permutation β and some elements h′i ∈ H recording how b acts.

Proposition. The set of elements ΣH = {h1, . . . , hn, h′1, . . . , h′n} generate H.

Proof. Let ΣG be the given generating set of G. In the course of the above computation, we’ve
computed a set of representatives X and, for each u ∈ ΣG and x ∈ X, a relation of the form
xu = vx′ with v ∈ ΣH. Simple manipulations also allow us to write xu−1 = v−1x′′ for some
v ∈ ΣH and x′′ ∈ X.

Let h ∈ H. By assumption we can write h as a word in the elements of ΣG, say h = u1u2 . . . ur
where each ui is in Σ±1

G . We have x1 = 1, so h = x1h = x1u1 . . . ur; we can now use the above
relations to shift the x step-by-step to the right, until we end up with a formula h = v1 . . . vrxj

for some j, with vi ∈ Σ±1
H . But h ∈ H, so xj must be 1 and so we’ve written h using the elements

of ΣH.

Remark. As well as a generating set for H, this also gives us an algorithm to solve the word
problem for H, i.e. write any element of H in terms of the generators (assuming we already
know how to do this for G). With a little extra work, we can also find a complete set of relations
between the generators ΣH, showing that finite-index subgroups of finitely-presented groups
are finitely-presented.

11.3 Implementations

The tool we’re most used to, Sage, is unfortunately not very good at computing with presenta-
tions of groups. For these problems, you are better off with Magma, or GAP (a specialist group
theory package). Fortunately GAP comes bundled free with Sage: you can start it with sage

-gap instead of sage at a terminal prompt.

83

12 Group theory II: Representations of groups

12.1 The setting

In this section G will be a finite group.

Definition. A representation of G is a homomorphism ρ : G → GLn(C), for some n. Two represen-
tations are isomorphic if they differ by a change of basis.

We say ρ is irreducible if there is no nonzero subspace of Cn preserved by all the matrices ρ(g) for
g ∈ G.

The theory tells us that any representation is isomorphic to a direct sum of irreducible represen-
tations (uniquely up to the order of the factors). Morever, the set of irreducible representations
of G is finite.

A lot of information about ρ can be encoded in its character, which is the function χρ : G → C
defined by χρ(g) = Tr ρ(g). We have χρ(h−1gh) = χρ(g) for any g, h ∈ G, so χρ is really
a function on the set of conjugacy classes of G (which is usually much smaller than G itself,
e.g. Conway’s Monster group has order about 1054 but only a hundred or so conjugacy classes).
It always takes values in the ring of integers of Q(ζN), where N is the exponent of G (the largest
order of an element); often it actually lies in a much smaller subring.

The character table of G is a grid with columns labelled by the conjugacy classes [gj] of G, and
rows labelled by the irreducible representations ρi; the (i, j)-entry is χρi(gj). It turns out that
it’s a square grid, i.e. the number of representations is the number of characters (and in fact it’s
a matrix of full rank). This table encodes a huge amount of information about the structure of
G.

Remark. The finite simple groups have been classified: there are a number of infinite families,
and a list of “sporadic” groups not fitting into any family, of which Conway’s Monster is the
largest. There is an amazing book, the Atlas of Finite Groups (written by six of the leaders of the
classification project), which contains – among other data – character tables for all the sporadic
finite simple groups.

12.2 Burnside’s algorithm

Our last topic will be an algorithm which computes the character table of a group G. We’ll
assume G is small enough that listing all its elements is practical (so this probably won’t work
for the Monster!).

84

Definition. For R, S, T conjugacy classes in G, define

cR,S,T = #{(r, s) ∈ R× S : rs = t},

for t any element of T (it doesn’t matter which we pick).

If we know the multiplication table of G, then we can compute the integers cR,S,T.

Lemma. If χ = χρ is the character of a d-dimensional irreducible representation, then for any two
conjugacy classes R, S, we have(

|R|χ(R)
d

)
·
(
|S|χ(S)

d

)
= ∑

T
cR,S,T

(
|T|χ(T)

d

)
.

Equivalently, if we number the conjugacy classes as R1, . . . , Rr, then for each k = 1, . . . , r, the

matrix Mk with (i, j)-th entry cRkRi Rj has the column vector vρ with j-th entry |Rj|χρ(Rj)
d as an

eigenvector. Note that if we number the conjugacy classes starting with R1 = {idG}, then vρ

has first entry 1.

Conversely, one checks that any vector that is a simultaneous eigenvector of all the Mk’s must
be a scalar multiple of vρ for some ρ. We can find such eigenvectors by diagonalising the Mk’s,
and this gives us enough information to reconstruct vρ (the scaling is fixed since the first entry
of vρ is 1). The only thing left in order to reconstruct χρ is to compute d; but this can be done
using the “character orthogonality relations”, which imply that

∑
k

|(vρ)k|2

|Rk|
=

|G|
(dim ρ)2 .

Remark.

• Note that we don’t need all the Mk’s for this; we just need to take enough values of k to
split up the space into 1-dimensional eigenspaces.

• Note that this gives us χρ but it doesn’t actually give us ρ as a map G → GLn. This
is a feature, not a bug: there are ways of getting your hands on explicit matrices if you
really need them, but usually it’s more informative to work with the characters of the
representations rather than messing about with matrices.

85

	Introduction
	What this course is (and isn't) about
	Our toolkit
	Computing mathematical objects
	Exact data-types
	New structures from old
	Integers
	Approximating the reals

	A subtle example: the algebraic real numbers
	Theory
	Implementations

	Linear Algebra
	Linear algebra over fields
	Echelon form
	Subspaces
	Kernels and images
	Eigenspaces

	Linear algebra over Z
	Hermite form
	Smith normal form

	Polynomials in one variable, I
	Generalities
	Finite fields
	Setup
	Factorisation in Fq[X]
	Irreducibility
	Conway polynomials

	Polynomials over Q and Z
	Preliminaries
	A bad factorization algorithm

	Polynomials in one variable, II
	Mignotte's bound
	Hensel lifting
	Hensel's lemma
	Factorization by Hensel lifting
	Galois groups

	Commutative algebra
	Ideals
	The language of algebraic geometry
	Dividing polynomials
	Gröbner bases
	Buchberger's algorithm
	Reduced Gröbner bases

	More computations with ideals
	Elimination theory
	Images of sets, preimages of ideals
	Dimensions and Hilbert polynomials
	Solving equations

	Algebraic number theory
	Number fields
	Rings of integers
	Ideals and factorization
	History
	Computing with ideals
	Norms of ideals
	Prime ideals and Dedekind–Kummer
	Two-element generating sets

	The unit group
	Computing WK
	Computing the free part

	The class group
	Two pretty applications

	The key computational problems
	Real quadratic fields
	The general case

	Some hints at class field theory
	Capitulating ideals
	The Hilbert class field
	Ray class groups
	Computing class fields
	The 2-part
	Generalisation: Kummer theory

	Interlude: public-key cryptography
	Cryptographic algorithms
	Symmetric versus private-key
	The RSA algorithm
	Diffie–Hellmann key exchange

	Choosing the group
	Elliptic curves

	Elliptic curves
	Definitions
	The group law
	Elliptic curves over finite fields
	The Frobenius and Hasse's inequality
	Computing #E(Fq)
	Group structure

	Elliptic curves over Q
	The Mordell–Weil theorem
	Torsion and reduction
	Computing non-torsion points

	Group theory I: finitely-presented groups
	Presentations of groups
	Black box subgroups
	Implementations

	Group theory II: Representations of groups
	The setting
	Burnside's algorithm

