# Exercise Sheet 1 

Algebraic Geometry

Jeremy Feusi
March 25, 2022

Exercise 1. Let $F_{1}, \ldots, F_{r}$ be homogeneous polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $X=Z\left(F_{1}, \ldots, F_{r}\right)$ be the closed algebraic subset they define. Show that $X$ is a cone with apex at the origin: that is, show that if $x$ is a point in $X$, the line joining $x$ to the origin lies entirely in $X$.

Answer. Assume that $x \in X$. Then the line joining $x$ and the origin is parametrized by $t \mapsto t x$ for $t \in k$. Notice that $t x \in X$ if and only if $F_{i}(t x)=0$ for all $i \in\{1, \ldots, r\}$. However, $F_{i}(t x)=t^{d} F_{i}(x)=0$ where $d=\operatorname{deg}\left(F_{i}\right)$ and we conclude.

Exercise 2. Let $M_{n, m}$ be the space of $n \times m$-matrices with coefficients from $k$. It can be identified with the affine space $\mathbb{A}^{n m}$ with coordinates $x_{i j}$ where $1 \leq i \leq n$ and $1 \leq j \leq m$. Let $r$ be a natural number less than both $n$ and $m$ and let $W_{r}$ be the set of $n \times m$-matrices of rank at most $r$. Show that $W_{r}$ is a closed algebraic subset. Show that all the $W_{r}$ 's are cones over the origin. Hint: Determinants are polynomials.

Answer. Notice that a matrix has rank at most $r$ if and only if all its minors of rank $r+1$ are zero. Let $M=\left(X_{i j}\right)_{i j} \in k\left[X_{1}, \ldots, X_{n m}\right]$. Then, the minors $F_{1}, \ldots, F_{k}$ of $M$ of rank $r+1$ are homogeneous polynomials of degree $r+1$. Moreover, for any $A \in M_{n, m}$ the minors of $A$ are exactly $F_{i}(A)$ (that is to say, the polynomial $F_{i}$ evaluated at the entries in $A$ ). Consequently $W_{r}=$ $Z\left(F_{1}, \ldots, F_{k}\right)$ and we conclude by exercise 1 .

Exercise 3. For every natural number $d \geq 2$ let $C_{d} \subseteq \mathbb{A}^{d}$ be the curve defined by the parametric representation $\phi(t)=\left(t, t^{2}, \ldots, t^{n}\right)$ and let $\mathfrak{a}$ be the ideal $\mathfrak{a}=\left(x_{i}-x_{1} x_{i-1}: 2 \leq i \leq d\right)$. Show that $C_{d}$ is a closed algebraic set, that $I\left(C_{d}\right)=\mathfrak{a}$ and $\mathfrak{a}$ is a prime ideal.

Answer. First, observe that $C_{d} \subseteq Z(\mathfrak{a})$ is obvious since $t^{i}-t \cdot t^{i-1}=0$. Conversely, let $\left(x_{i}\right)_{i} \in Z(\mathfrak{a})$. Inductively, $x_{i}=x_{1}^{i}$. Indeed, for $i=1$, this is obvious and by $x_{i}=x_{1} x_{i-1}$ we conclude that $\left(x_{i}\right)_{i}=\phi\left(x_{1}\right) \in C_{d}$. Consequently $I\left(C_{d}\right)=I(Z(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.

It remains to show that $\mathfrak{a}$ is prime: Consider the $k$-algebra morphism $\psi$ : $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k[x]$ defined by $\psi\left(x_{i}\right)=x^{i}$. Then $\psi\left(x_{i}-x_{1} x_{i-1}\right)=x^{i}-$ $x^{i}=0$ and $\psi$ induces a map $\bar{\psi}: k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a} \rightarrow k[x]$. We claim that this is an isomorphism. To show this, we construct an inverse: Let $\eta: k[x] \rightarrow$ $k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$ be defined by $\eta(x)=\left[x_{1}\right]$. Then observe that

$$
\bar{\psi} \circ \eta(x)=\bar{\psi}\left(\left[x_{1}\right]\right)=x
$$

and since $x$ generates $k[x]$ as a $k$-algebra, $\bar{\psi} \circ \eta$ is the identity. Conversely, for every $i \in\{1, \ldots, n\}$ :

$$
\begin{aligned}
\eta \circ \bar{\psi}\left(\left[x_{i}\right]\right) & =\eta\left(x^{i}\right)=\left[x_{1}^{i}\right] \\
& =\left[x_{1}^{i-1} x_{2}\right]=\cdots=\left[x_{i}\right] .
\end{aligned}
$$

Analogously to the above, we conclude that $\eta \circ \bar{\psi}$ is the identity and $\bar{\psi}$ is an isomorphism. Now, since $k[x]$ is an integral domain $\mathfrak{a}$ is prime.

