Exercise Sheet 1

Algebraic Geometry

Jeremy Feusi March 25, 2022

Exercise 1. Let F_1, \ldots, F_r be homogeneous polynomials in $k[x_1, \ldots, x_n]$ and let $X = Z(F_1, \ldots, F_r)$ be the closed algebraic subset they define. Show that X is a cone with apex at the origin: that is, show that if x is a point in X, the line joining x to the origin lies entirely in X.

Answer. Assume that $x \in X$. Then the line joining x and the origin is parametrized by $t \mapsto tx$ for $t \in k$. Notice that $tx \in X$ if and only if $F_i(tx) = 0$ for all $i \in \{1, ..., r\}$. However, $F_i(tx) = t^d F_i(x) = 0$ where $d = deg(F_i)$ and we conclude.

Exercise 2. Let $M_{n,m}$ be the space of $n \times m$ -matrices with coefficients from k. It can be identified with the affine space \mathbb{A}^{nm} with coordinates x_{ij} where $1 \leq i \leq n$ and $1 \leq j \leq m$. Let r be a natural number less than both n and m and let W_r be the set of $n \times m$ -matrices of rank at most r. Show that W_r is a closed algebraic subset. Show that all the W_r 's are cones over the origin. Hint: Determinants are polynomials.

Answer. Notice that a matrix has rank at most r if and only if all its minors of rank r+1 are zero. Let $M=(X_{ij})_{ij}\in k[X_1,\ldots,X_{nm}]$. Then, the minors F_1,\ldots,F_k of M of rank r+1 are homogeneous polynomials of degree r+1. Moreover, for any $A\in M_{n,m}$ the minors of A are exactly $F_i(A)$ (that is to say, the polynomial F_i evaluated at the entries in A). Consequently $W_r=Z(F_1,\ldots,F_k)$ and we conclude by exercise 1.

Exercise 3. For every natural number $d \geq 2$ let $C_d \subseteq \mathbb{A}^d$ be the curve defined by the parametric representation $\phi(t) = (t, t^2, \dots, t^n)$ and let \mathfrak{a} be the ideal $\mathfrak{a} = (x_i - x_1 x_{i-1} : 2 \leq i \leq d)$. Show that C_d is a closed algebraic set, that $I(C_d) = \mathfrak{a}$ and \mathfrak{a} is a prime ideal.

Answer. First, observe that $C_d \subseteq Z(\mathfrak{a})$ is obvious since $t^i - t \cdot t^{i-1} = 0$. Conversely, let $(x_i)_i \in Z(\mathfrak{a})$. Inductively, $x_i = x_1^i$. Indeed, for i = 1, this is obvious and by $x_i = x_1 x_{i-1}$ we conclude that $(x_i)_i = \phi(x_1) \in C_d$. Consequently $I(C_d) = I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

It remains to show that $\mathfrak a$ is prime: Consider the k-algebra morphism $\psi: k[x_1,\ldots,x_n] \to k[x]$ defined by $\psi(x_i) = x^i$. Then $\psi(x_i-x_1x_{i-1}) = x^i-x^i=0$ and ψ induces a map $\overline{\psi}: k[x_1,\ldots,x_n]/\mathfrak a \to k[x]$. We claim that this is an isomorphism. To show this, we construct an inverse: Let $\eta: k[x] \to k[x_1,\ldots,x_n]/\mathfrak a$ be defined by $\eta(x)=[x_1]$. Then observe that

$$\overline{\psi} \circ \eta(x) = \overline{\psi}([x_1]) = x$$

and since x generates k[x] as a k-algebra, $\overline{\psi} \circ \eta$ is the identity. Conversely, for every $i \in \{1, \dots, n\}$:

$$\eta \circ \overline{\psi}([x_i]) = \eta(x^i) = [x_1^i]
= [x_1^{i-1}x_2] = \dots = [x_i].$$

Analogously to the above, we conclude that $\eta \circ \overline{\psi}$ is the identity and $\overline{\psi}$ is an isomorphism. Now, since k[x] is an integral domain $\mathfrak a$ is prime. \square