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Exercise 1. Let X be an algebraic variety, p a point in X. Show that the
differential map

dp : OX,p → mp/m2
p

that sends a function f to the equivalence class of f − f(p) satisfies the Leibniz
rule.

Answer. Let f, g ∈ OX,p. Then:

f(p)dp(g) + g(p)dp(f) = f(p)(g − g(p)) + g(p)(f − f(p)) + m2
p

= f(p)g − f(p)g(p) + g(p)f − g(p)f(p) + m2
p

= fg − g(p)f(p) + (f(p)g − f(p)g(p) + g(p)f − fg) + m2
p

= dp(fg) + (ϕ + m2
p)

where
ϕ = f(p)g − f(p)g(p) + g(p)f − fg.

Notice that
ϕ = −(f − f(p))(g − g(p)) ∈ m2

p

and thus we conclude that

f(p)dp(g) + g(p)dp(f) = dp(fg).

Exercise 2. Compute the singularities of the curve

Z = Z(Xm − Y n) ⊆ A2
k
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over fields of arbitrary characteristics.

Answer. Notice that Z is defined by a single equation. Hence since the height
of any minimal prime containing Xm −Y n is 1 by Krull’s principal ideal theorem,
the codimension of any irreducible component of Z is 1.

Now, for the dimension of the tangent space, let p = (x, y) ∈ Z. We first consider
the ideal:

mp = (X − x, Y − y) ⊆ k[X, Y ]/(Xm − Y n).

Notice that Xm − Y n need not be irreducible and hence (Xm − Y n) is not
necessarily I(Z). However, it is always a subset of I(Z) and since quotients of
vector spaces have lower dimension, calculating mp/m2

p gives us an upper bound
on the dimension of the tangent space. Since at any point, the dimension of the
tangent space is larger or equal to the codimension, this gives us a sufficient
condition for a point to be regular.

Now:

mp/m2
p

∼=
((X − x, Y − y) + (Xm + Y n))

(((X − x)2, (Y − y)2, (X − x)(Y − y)) + (Xm − Y n))

∼=
(X − x, Y − y)

((X − x)2, (Y − y)2, (X − x)(Y − y), Xm − Y n) .

Defining a := X − x and b := Y − y:

mp/m2
p

∼= (a, b)/(a2, b2, (a + x)m − (b + y)n).

But now, observe that

(a + x)m − (b + y)n = xm + amxm−1 − yn − bnyn−1 + g

for some g ∈ (a2, b2). Consequently since xm − yn = 0:

mp/m2
p

∼= (a, b)/(a2, b2, amxm−1 − bnyn−1).

If mxm−1 or nyn−1 is not equal to zero (without loss of generality, assume
mxm−1 ̸= 0 ):

mp/m2
p

∼= (a, b)/(a2, b2, a − (mxm−1)−1bnyn−1)
∼= (b)/(b2) ∼= kb

which is a vector space of dimension 1. Hence, by the argument given above,
whenever mxm−1 ̸= 0 or nyn−1 ̸= 0, (x, y) is a regular point. It remains to
analyze the case when

mxm−1 = nyn−1 = 0. (∗)
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In this case, the above vector space is isomorphic to kX ⊕ kY which is a vector
space of dimension 2.

First if m = 1 or n = 1, then (∗) never holds. Consequently, we may assume
that m, n ≥ 2. Now, assume that m = m′pk and n = n′pl are both divisible by
the characteristic p of k. Without loss of generality, k ≥ l. Then notice:

Xm − Y n = (Xm′pk−l

− Y n′
)pl

and hence replacing (m, n) with (m′pk−l, n′) we may assume that n and p are
coprime. In this case, the only possibility for (∗) to hold is y = 0 and thus too
x = 0. If Xm − Y n is irreducible, then the above shows that (0, 0) is a singular
point. Therefore, it remains to consider the cases in which n and p are coprime
and Xm − Y n is reducible in k[X, Y ].

First, assume that m and n are not coprime. Consequently there exists q > 1
such that m = qm′ and n = qn′. It follows that:

Xm − Y n = (Xm′
)q − (Y n′

)q

= (Xm′
− Y n′

)(Xm′(q−1) + Xm′(q−2)Y n′
· · · + Y n′(q−1)).

Since (0, 0) is a zero of both of these factors, (0, 0) is contained in at least two
irreducible components of Z and as shown in the lecture, it is singular.

We remain with the case that m and n are coprime: By Gauss’s lemma, it suffices
to check whether f := Xm − Y n is irreducible in k(X)[Y ]. We first instead
notice that f is irreducible in k[Xm, Y ] by the same degree considerations as for
the case m = 1. In particular, by Gauss’s lemma, f is irreducible in k(Xm)[Y ].
Observe that k(X) is a finite extension of k(Xm) of degree m. Since degY (f) = n

is coprime to the degree of the extension, we conclude that f is also irreducible
in k(X)[Y ].

Note: We can see that f remains irreducible in k(X) as follows: Let L|k(X) be
a splitting field of f . Consider a root α ∈ L of f . Then by the multiplicativity
of degrees of field extensions:

[k(X, α) : k(X)][k(X) : k(Xm)] = [k(X, α) : k(Xm)]
= [k(X, α) : k(α, Xm)][k(α, Xm) : k(Xm)].

Now the left-hand side is equal to [k(X, α) : k(X)] · m. Moreover, the left-hand
side is [k(X, α) : k(α, Xm)] · n. Since m and n are coprime, it follows that
n|[k(X, α) : k(X)] and some irreducible factor of f must have degree at least n.
Since n is the degree of f , we conclude.

To summarize, we have found the following characterization:

Let m = m′pk and n = n′pl with m′ and n′ coprime to p where p is the
characteristic of k (if p is 0, m = m′ and n = n′ ). Without loss of generality,
k ≥ l.
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• Every point in Z \ {(0, 0)} is regular.
• m′pk−l = 1 or n′ = 1:

– {(0, 0)} is a regular point.
• m′pk−l, n′ ≥ 2:

– {(0, 0)} is not regular.

Exercise 3. Show that the quadric cone

W = Z(XY − Z2) ⊆ A3
k

is singular and normal (i.e., its coordinate ring is integrally closed).

Answer. Let f = (XY − Z2). Notice that degX(f) = 1 and hence f ∈
k[X, Y, Z] = k[Y, Z][X] is irreducible. Now:

∂Xf = Y

∂Y f = X

∂Zf = −2Z.

Thus by the Jacobian criterion, W has a singularity at (0, 0, 0) showing that W

is singular.

For the normality of W , notice that we have

k[W ] = k[X, Y, Z]/(f) ∼= k[s2, t2, st] ⊆ k[s, t]

via the map ϕ induced by ϕ := ev(s2,t2,st). Indeed, surjectivity of ϕ is obvious
and if ϕ(g) = 0,then for every x ∈ A3 with f(x) = 0, we have

g(x) = g(√x1
2
,
√

x2
2
,
√

x1x2) = ϕ(g)(√x1,
√

x2) = 0

which shows by the Nullstellensatz that gn ∈ (f) for some n ≥ 0. But (f) is
prime since f is irreducible and we conclude that g ∈ (f). This shows that ϕ is
injective. We must hence show that k[s2, t2, st] is integrally closed. First notice
that k[s, t] is a UFD and hence integrally closed. Since k[s2, t2, st] ⊆ k[s, t]
this implies that any integral element of Frac(k[s2, t2, st]) must be contained
in k[s, t]. Assume that f ∈ k[s, t] is integral over k[s2, t2, st] and not contained
in the latter ring. Write f = g

h where g, h ∈ k[s2, t2, st]. Then we obtain an
equation k[s, t]:

fh = g.

Since by assumption f /∈ k[s2, t2, st], there exists some monomial of f which is
not a product of s2, t2 and st. For an arbitrary monomial sαtβ , this is the case if
and only if α and β have different parity. But now, order the monomials of f first
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by their degree in t and then by their degree in s. Consider the (unique) maximal
monomial with respect to this order in f which is not contained in k[s2, t2, st].
Multiplying this monomial with the maximal monomial in h yields a unique
maximal monomial in fh whose degree in t and s have different parity (since all
monomials in h are contained in k[s2, t2, st]). Since fh = g ∈ k[s2, t2, st], this is
a contradiction and we conclude that no such f exists. In particular, k[s2, t2, st]
is integrally closed.

Exercise 4. For
X = Z(f1, . . . , fr) ⊆ An

k

with fi prime, we define the tangent bundle of X as the set

T (x) :=
{

(x, v) ∈ X × An
k :

n∑
i=1

∂fj

∂xi
(x) · vi = 0, ∀j

}
.

Show that T (X) is an affine variety.

Answer. We consider the polynomials fi as polynomials in k[x1, . . . , xn, y1, . . . , yn].
Moreover, define

gj :=
n∑

i=1

∂fj

∂xi
(x)yi ∈ k[y1, . . . , yn] ⊆ k[x1, . . . , xn, y1, . . . , yn].

Then
T (X) = Z(f1, . . . , fr, g1, . . . , gr) ⊆ A2n

k

and we conclude.
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