Exercise Sheet 10

Algebraic Geometry

Jeremy Feusi May 10, 2022

Exercise 1. Lüroth's Theorem in algebra says that if L is a subfield of k(t) such that L|k has transcendence degree 1, then there exists an element $u \in L$ such that L = k(u). Reformulate this theorem into a non-trivial statement about projective curves.

Answer. First observe that since the transcendence degree of k(u) is 1, we must have that u is transcendental over k. Consequently, the map $k[t] \rightarrow k(u)$ mapping t to u is injective. That is to say, we obtain a map of fields $k(t) \rightarrow k(u)$ sending t to u. It is obviously surjective and hence we may reformulate Lüroth's Theorem as:

Every L as in the exercise is isomorphic to k(t).

We apply the equivalence of categories between regular projective curves over k and finitely generated field extensions of k of transcendence degree 1. Under this equivalence, L is mapped to some regular projective curve X and k(t) is mapped to \mathbb{P}^1 . The fact that L is a subfield of k(t) means that we have a dominant rational map $\phi: X \to \mathbb{P}^1$. Now, Lüroth's theorem says that in fact L is isomorphic to k(t) meaning that X is birational to \mathbb{P}^1 . But regular projective curves are birational if and only if they are isomorphic showing that $X \cong \mathbb{P}^1$. Summarizing, we have:

Let X be a regular projective curve such that there exists a dominant rational map $\phi: X \to \mathbb{P}^1$. Then $X \cong \mathbb{P}^1$.

Exercise 2. Show that the rational map

$$(x,y): Z(y^2 - x^3 - x^2) \to \mathbb{P}^1$$

does not extend to a morphism (has no regular extension to 0).

Answer. Assume such an extension ϕ would exist. Then define $a \coloneqq \phi(0,0)$. We first assume that $a \in D_+(x)$. Hence composing with the map $\psi_x : D_+(x) \to \mathbb{A}^1$ given by $\psi_x(x:y) = \frac{y}{x}$ we obtain a map $f \coloneqq \psi_x \circ \phi : Z(y^2 - x^3 - x^2) \to \mathbb{A}^1$. This map must be a polynomial morphism by the characterization of regular functions on affine varieties. Moreover, it is given on $Z(y^2 - x^3 - x^2) \cap D(x)$ by $f = \frac{y}{x}$. That is to say, on this open subset of $Z(y^2 - x^3 - x^2)$:

$$x \cdot f = y.$$

Since $Z(y^2 - x^3 - x^2)$ is separated (by the exercise below), the equality must hold everywhere and in k[x, y] we find a $g \in k[x, y]$ such that

$$x \cdot f = y + g \cdot (y^2 - x^3 - x^2)$$

where we identify f with a representative in k[x, y]. But now, evaluating at x = 0 we obtain the equality in k[y]:

$$0 = y + g(0, y) \cdot y^2.$$

This is impossible (for example the derivative of the right hand side evaluated at y = 0 is 1 which is non-zero) and consequently, no such f can exist.

The case $a \in D_+(y)$ is analogous. \Box

Exercise 3. Show that affine, projective and quasi-projective varieties over k are separated.

Answer. We split the proof into multiple steps:

- 1. Every subvariety of a separated variety is separated.
- 2. \mathbb{A}^n is separated.
- 3. \mathbb{P}^n is separated.

Notice that these three steps show the claim, since affine, projective and quasiprojective varieties are all subvarieties of either \mathbb{A}^n or \mathbb{P}^n .

Step 1: Let X be separated and $Y \subseteq X$. The inclusion induces a (continuous) morphism $\phi: Y \times Y \to X \times X$ given by $\phi(y, y) = (y, y)$ (that is to say, the inclusion of the products). Let Δ_X and Δ_Y denote the diagonals in $X \times X$ and $Y \times Y$. Then, since X is separated, Δ_X is closed. Moreover, $\Delta_Y = \phi^{-1}(\Delta_X)$ and by continuity of ϕ , Δ_Y is closed showing that Y is separated.

Step 2: Notice that $\mathbb{A}^n \times \mathbb{A}^n \cong \mathbb{A}^{2n}$ where \mathbb{A}^{2n} has coordinate ring $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$. Then the diagonal is given by $Z(x_1 - y_1, \ldots, x_n - y_n)$ and is hence closed.

Step 3: It suffices to show that the intersection of Δ with every affine open subset of $\mathbb{P}^n \times \mathbb{P}^n$ is closed. Indeed, if this is the case, then its complement is open in every affine open and hence open in $\mathbb{P}^n \times \mathbb{P}^n$ showing that Δ is closed.

Hence let $D_+(x_k)$ and $D_+(y_j)$ be the corresponding affine opens in the factors \mathbb{P}^n . Applying the isomorphism ϕ between $D_+(x_k) \times D_+(y_j)$ and $\mathbb{A}^n \times \mathbb{A}^n$ shows that

$$\phi(D_+(x_k) \times D_+(y_j) \cap \Delta) = \Delta \subseteq \mathbb{A}^n \times \mathbb{A}^n$$

which is closed by step 2. Consequently \mathbb{P}^n is separated. \Box